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ABSTRACT 

It turns out that the equations of mathematical physics, which consist equations of the conservation 

laws for energy, linear momentum, angular momentum, and mass, possess additional, hidden, 

properties that enables one to describe not only a variation of physical quantities (such as energy, 

pressure, density) but also processes such as origination of waves, vortices, turbulent pulsations and 

other ones. It is caused by the conservation laws properties. 

In present paper the development of nonequilibrium in gasdynamic systems, which are described by the 

Euler and Navier-Stokes equations, will be investigated.   

Under studying the consistence of conservation laws equations, from the Euler and Navier-Stokes 

equations it can be obtained the evolutionary relation for entropy (as a state functional).  The 

evolutionary relation possesses a certain peculiarity, namely, it turns out to be nonidentical. This fact 

points out to inconsistence of the conservation law equations and noncommutativity of conservation 

laws.  

Such a nonidentical relation discloses peculiarities of the solutions to the Navier-Stokes equations due 

to which the Euler and Navier-Stokes equations can describe the processes the development of 

nonequilibrium and emergence of vortices and turbulence.  

It has been shown that such processes can be described only with the help of two nonequivalent 

coordinate systems or by simultaneous using numerical and analytical methods.  
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1. Introduction      

It is well known that the the equations of mathematical physics, which consist equations of the 

conservation law equations for energy, linear momentum, angular momentum, and mass, are used for 

describing material systems such as thermodynamical, gas-dynamical, cosmical, and other ones. The 

Navier-Stokes and Euler equations are examples of such equations.  

However, under the description of development of nonequilibrium processes by means of these 

equations, some difficulties arise.  

It turns out that these equations possess additional, hidden, properties that enables one to describe not 

only a variation of physical quantities but also the development of nonequilibrium and emergence of 

various structures and formations. This is due to the properties of conservation laws.  

In present paper the Euler and Navier-Stokes equations for gas-dynamical system that describe the 

processes of development of nonequilibrium and  the emergence of vorticity and turbulence will be 

investigated.  

As it is known, the Euler and Navier-Stokes equations, which describe fluid and gas flows, consist of  the 

conservation law equations for energy, linear momentum,  angular momentum, and mass. It turns out 

that the conservation law equations are inconsistent. This fact points out to the noncommutativity of the 

conservation law equations that brings into existence  of internal forces, development of honequilibrium 

and emergence of various formations examples of which are waves, vertices, turbulent pulsations.  

This follows from the relation for entropy which is the state functional for hydrodynamical and 

gasdynamic systems. Such relation, which describes nonequilibrium processes, is obtained from the  

Euler and Navier-Stokes equations.  

[The concept of "state functional" relates to the properties of physical quantities of material medium 

(like temperature, energy, pressure or density) and the conservation law properties. Since the physical 

quantities relates to a single material  medium, a connection between them should exist. Such a 

connection defines the material system state (nonequilibrium or locally equilibrium one.) This means 

that there exists a characteristics of material system that defines its state. The state functional is just a 

functional that is a characteristics of material media. It should be noted that every material medium has 

state functional of its own. So the entropy is a state functional of thermodynamical, hydrodynamic and 

gasdynamic systems. However, the entropy that depends on thermodynamic variables is the state 

functional of thermodynamic system, the entropy that depends on space-time variables are the state 

functional of hydrodynamic and gasdynamic systems. Such functionals as the action functional, 

Poуnting's  vector, Einstein's tensor, wave function, and others are state functionals.]   

 2. Evolutionary relation for entropy considered as a state 

     functional  of  gasdynamic system  

Evolutionary relation for entropy is obtained under investigating the consistence of conservation law 

equations that made up the set of Euler and Navier-Stokes equations. (Equations are consistent ones if 

they can be convolved into an identical relation for differentials.)    

For investigation of the consistency of the conservation law equations it is necessary to use two 

nonequivalent frames of reference: the inertial frame of reference (the Euler frame of reference is an 

example of such frame) and the accompanying one. The accompanying frame of reference is a frame of 

reference connected with the manifold made up by the trajectories of the material system elements (the 

Lagrange frame of reference is an example of such a frame).  
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Let us analyze the correlation of the equations that describe conservation laws for energy and 

linear momentum  

 In the inertial frame of reference the energy equation can be reduced to the form:  

1A
Dt

Ds
=

                                                                      (1) 

Here s  is the entropy.  

In the case of viscous heat-conducting gas described the Navier-Stokes equations the expression 1A
can 

be written as (see [1], Chapter 6, formula (6.2.4))  
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Here iq  is the heat flux and ki  is the viscous stress tensor.  

In the case of ideal gas described by the Euler equations we have 01 =A .  

Since the total derivative with respect to time is that along the trajectory, in the accompanying frame of 

reference the equation of the conservation law for energy takes the form:  

11
A

s
=
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

                                                                                                                                
(3)  

where 
1  is the coordinate along the trajectory.  

 In the accompanying frame of reference the equation of conservation law for linear momentum can be 

presented as  
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(4) 

where 
 is the coordinate in the direction normal to the trajectory. In the case of two-dimensional flow 

of ideal gas one can obtain the following expression for the coefficient A  (see [1], Chapter 6, formula 

(6.7.12)): 
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where 
y/ux/u −= 12 .  
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In the case of viscous gas the expression  A  includes additional terms related to viscosity and heat-      

conductivity.  

One can see that in the accompanying frame of reference the equations for energy and linear 

momentum are reduced to the equations for derivatives of entropy s . In this case equation (3) obtained 

from the energy equation defines the derivative of entropy along the trajectory, and equation (4), 

assigned to the equation for linear momentum, defines the derivatives of entropy in the direction 

normal to trajectory.  

    Equations (3) and (4) can be convoluted into the relation   

=ds
                                                                                                                                 

(6)       

where 


 = dA  is the first degree skew-symmetric differential form [2] and = ,1 . (A summing 

over repeated indices is carried out.)  Since the conservation law equation are evolutionary ones, the 

relation obtained is also an evolutionary relation. In this case the skew-symmetric form ω  is 

evolutionary one as well.  

   Relation (6) has been obtained from the conservation law equation for energy and linear momentum. 

In this relation the form ω  is that of the first degree. Taking into account the conservation law 

equations for angular momentum and mass, the evolutionary relation may be written as  

pds =
                                                                                                                             

(7)  

  where the form degree  p  takes the values 321 ,,p = . 

3. Nonidentity of the evolutionary relation.  Noncommutativity of the  

conservation  law  

Evolutionary relation (6) has a certain peculiarity. This relation appears to be nonidentical. This relation 

involves the skew-symmetric differential formω , which is unclosed and cannot be a differential like the 

left-hand side of this relation. The evolutionary form ω  is not closed since the differential of 

evolutionary form ω  and its commutator are nonzero.  

The differential of evolutionary form ω  is expressed as 


 = ddKd 1

1 , where 1K  are 

components of the form commutator. Without accounting for terms that are connected with the 

deformation of the manifold made up by the trajectories, the commutator can be written as  
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(8) 

The coefficients A  of the form ω  have been obtained either from the equations of the conservation 

law for energy or from that for linear momentum. This means that in the first case the coefficients 

depend on the energetic action and in the second case they depend on the force action. In actual 

processes energetic and force actions have different nature and appear to be inconsistent. The 
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commutator of the form ω  constructed of the derivatives of such coefficients is nonzero. Since the 

commutator of the form ω  is nonzero, this means that the differential of the form ω  is nonzero as 

well. Thus, the form ω  proves to be unclosed and is not a differential. In the left-hand side of relation 

(6) it stands a differential, whereas in the right-hand side it stands an unclosed form that is not a 

differential. Such a relation cannot be an identical one.           

The nonidentity of the evolutionary relation points to the fact that the conservation law equations for 

energy and linear momentum appear to be inconsistent. This means that the conservation laws are 

noncommutative. Below it will be shown that the noncommutativity of conservation laws leads to the 

fact that, due to inconsistence, the external actions cannot be directly transformed into the quantities of 

gasdynamic system of its own and acts as internal forces leading to development of nonequilibrium. 

The evolutionary relation, which turns out to be nonidentical, describes such processes.   

The evolutionary relation, firstly, discloses specific features of the solutions to Euler and Navier-Stokes 

equations describing nonequilibrium processes and, secondly, describes the processes of 

nonequilibrium development and emergence of observable formations (such as waves, vortices, 

turbulent pulsations, and so on). 

4. Peculiarities of the solutions to Euler and Navier-Stokes    

    equations.  Processes  of nonequilibrium  development    

    and  emergence   of  observable formations 

 

From the evolutionary relation it follows that the Euler and Navier-Stokes equations possess solutions of 

two types, namely, the solutions that are not functions (they depends not only on the variables) and the 

solutions that are discrete functions.  

Inexact solutions to the Euler and Navier-Stokes equations (the solutions that are not functions) 

The nonidentity of the evolutionary relation points to the fact that the conservation law equations for 

energy and linear momentum (entered into the set of Euler and  Navier-Stokes equations) appear to be 

inconsistent. They cannot be contracted into an identical relation (which is built by differentials) and 

integrated directly. This means that the solutions to equations are not functions, which depend only on 

variables. Such solutions will depend on the commutator of the form ω  which enters into the 

evolutionary relation. (If the commutator be equal to zero, the evolutionary relation would be identical 

and the equations would be integrated directly).  

 

 

Physical meaning of inexact solutions. Nonequilibrium state of gasdynamic system     

Inexact solutions have a physical meaning. They describe a nonequilibrium state of gasdynamic system. 

This follows from the evolutionary relation.  

Evolutionary relation (see (6) and (7)) includes a differential of entropy, which is a state functional.  

If from evolutionary relation the differential of entropy could be obtained, this would point to the fact 

that entropy is a state function. And this would mean that the state of a gasdynamic system is a 
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equilibrium one. But, since evolutionary relation is a nonidentical relation, from that one cannot obtain 

the differential of entropy and find the state function. This means that the gasdynamic system is in a 

non-equilibrium state.  

One can see that the solutions of the Euler and Navier-Stokes equations, which are not functions, describe 

a nonequilibrium state of gasdynamic system.  

The nonequilibrium means that in a gasdynamic system an internal force acts. It is evident that the 

internal force is described by the commutator of skew-symmetric formω . Everything that gives a 

contribution into the commutator of the evolutionary form ω  leads to emergence of internal force that 

causes the nonequilibrium state of a gasdynamic system. [From the analysis of the expression A  in 

formulas (2) and (5) one can see that the terms, which are related to the multiple connectedness of the 

flow domain, the nonpotentiality of the external forces and the nonstationarity of the flow contribute 

into the commutator. In the case of a viscous non-heat-conducting gas, the terms related to the 

transport processes will contribute to the commutator (see, formula (2)). All these factors lead to 

emergence of internal forces, that is, to nonequilibrium, and to development of various types of 

instability.] 

Here it can be noted that the nonidentity of the evolutionary relation is connected with a 

noncommutativity of conservation laws. And this points out to the fact that the noncommutativity of 

conservation laws is a cause of nonequilibrium state of a gas-dynamic system.  

 Evolutionary relation is a selfvarying relation. Since one of the objects of evolutionary relation is an 

unmeasurable quantity, the other cannot be compared with the first one, and hence, the process of 

mutual variation cannot be terminated.  

The process of the evolutionary relation selfvariation describes the process of selfvariation of 

nonequilibrium state of gasdynamic system. This process proceeds under the internal force action and is 

described by inexact solutions to the Euler and Navier-Stokes equations. 

Realization of exact solutions of the Euler and  Navier-Stokes equations 

The Euler and Navier-Stokes equations can have exact solutions (which are functions) in the case if from 

the evolutionary skew-symmetric form ω  in the right-hand side of nonidentical evolutionary relation it 

is realized a closed skew-symmetric form, which is a differential. In this case the identical relation is 

obtained from the nonidentical relation, and this will point out to a consistency of the conservation law 

equations and an integrability of the Euler and Navier-Stokes equations.  

However, from the evolutionary unclosed skew-symmetric form, which differential is nonzero, one can 

obtain a closed exterior form with a differential being equal to zero only under degenerate 

transformation (a transformation that does not conserve differential). This is possible only under 

additional conditions.  The vanishing of such functional expressions as determinants, Jacobians, 

Poisson's brackets, residues and others corresponds to these additional conditions. This is due to 

realization of some degrees of freedom.  

The conditions of degenerate transformation specify the integrable structures (pseudostructures) on 

which the solutions become exact ones. The characteristics (the determinant of coefficients at the 

normal derivatives vanishes), the singular points (Jacobian is equal to zero), potentials of simple and 

double layers, and others are such integrable structures.  

The conditions of degenerate transformation can be realized under selfvariation of nonidentical 

evolutionary relation.  
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If the conditions of degenerate transformation be realized, from the unclosed evolutionary form ω  

(see evolutionary relation (6)) with nonvanishing differential 0d , one can obtain the differential 

form closed on pseudostructure. The differential of this form equals zero. That is, it is realized the 

transition  

       0d → (degenerate transformation) → 00 == 


 d,d     

The realization of the conditions of  00 ==  



 d,d    means that it is realized a closed dual 

form ω , which describes some an integrable structure   , and the closed exterior form ω  which 

basis is an integrable structure obtained.  

Since the form ω  is a closed on pseudostructure form, this form turns out to be a differential. (It 

should be emphasized that such a differential is an interior one: it asserts only on pseudostructure, 

which is defined by the condition of degenerate transformation).  

On the pseudostructure  , which is an integrable structure, from evolutionary relation (6) it is obtained 

the relation  

 =)s(d
                            (9) 

which occurs to be an identical one, since the form ω  is a differential.  

On integrable structures the desired quantities of gasdynamic system (such as the temperature, 

pressure, density) become functions of only independent variables and do not depend on the 

commutator (and on the path of integrating). These are generalized solutions, which are the discrete 

functions, since they are realized only under additional conditions (on the integrable structures). Such 

solutions may be found by means of integrating (on integrable structures) the Euler and Navier-Stokes 

equations.  

Physical meaning of exact solutions.Transition of gasdynamic system into locally-equilibrium 

state. Emergence of observable formations  

From identical relation one can obtain the differential of entropy ds and find entropy s  as a function of 

space-time coordinates. It is precisely the entropy that will be a gasdynamic function of state. The 

availability of gasdynamic function of state would point out to equilibrium state of a gasdynamic 

system. However, since the identical relation is satisfied only under additional conditions, such a state of 

gasdynamic system will be a locally-equilibrium one.  

Since the non-equilibrium state has been induced by an availability of internal force and in the case of 

locally-equilibrium state there is no internal force (in local domain of gasdynamic system), it is evident 

that under transition of gasdynamic system from non-equilibrium state into locally-equilibrium state the 

nonmeasurable quantity, which acts as internal force, changes to a measurable quantity. This manifests 

itself in the form of arising a certain observable measurable formation. Waves, vortices, turbulent 

pulsations and so on are examples of such formations.  

Exact generalized solutions to the Euler and Navier-Stokes equations describe such observable 

formations arisen.  



 

 

7689 

 It can be noted that under calculating the streamline flow around solids by ideal gas described by the 

Euler equations, the contribution to commutator is due to a multiply connectedness. In this case, at 

aU  (U is the velocity of the gas particle, a  is the speed of sound) the transition to the locally 

equilibrium state is possible on the characteristics and on the envelopes of characteristics [3] as well, 

and weak shocks and shock waves are observable formations. If aU  such a transition is possible only 

at singular points. The formations emerged due to a convection are of the vortex type. (One can see 

that in gasdynamic system, even in the case of ideal gas, it can emerge physical structures and relevant 

formations that lead to emergence of vorticity.)  

   Under calculating the streamline flow around solids by viscous gas described by the Navier-Stokes 

equations, the contribution to commutator is due to a multiply connectedness and viscosity. The 

transition to the locally-equilibrium state is allowed at singular points, because in this case

01

1
= A/s

, that is, the external exposure acts onto the gas particle separately. The development 

of instability and the transitions to the locally equilibrium state are allowed only in an individual fluid 

particle. Hence, the formations emerged behave as pulsations. These are turbulent pulsations.  

 

5. On the problem of numerical solving the Euler and Navier-Stokes 

    equations 

Problems of numerical solving the Euler and Navier-Stokes equations relate to the fact that these 

solutions are defined on different spatial objects. The solutions of one type are defined on initial 

coordinate space whereas the solutions of another type are defined on integrable structures. Such 

solutions cannot be obtained by a continuous numerical simulation of derivatives.  

The solutions of first type can be obtained only by numerical modeling the equations on the original 

nonintegrable manifold (it is impossible to find such a solution by analytical method). To obtain the 

generalized solutions by numerical simulation, one must use second systems of reference (on integrable 

structure). The generalized solutions can be obtained also by analytical methods if the integrability 

conditions are imposed on the equations. The methods of characteristics, symmetries, eigen-functions 

and others are examples of such methods.  

Therefore, to describe the emergence of vorticity and turbulence by numerical simulation, one must use 

two systems of reference, or by using simultaneously numerical and analytical methods.   

CONCLUSION  

In present paper it is shown that the Euler and Navier-Stokes equations possess additional, hidden, 

properties that enables one to describe not only a variation of physical quantities (such as energy, 

pressure, density) but also processes such as origination of waves, vortices, turbulent pulsations and 

other ones. When studying the consistence of conservation law equations, from these equations it 

follows the evolutionary relation for entropy as state functional, that describe the development of 

nonequilibrium.  

 A evolutionary relation discloses peculiarities of the solutions to the Euler and Navier-Stokes equations. 

From the evolutionary relation it follows that the Euler and Navier-Stokes equations possess solutions of 

two types, namely, the solutions that are not functions (they depends not only on the variables) and the 

solutions that are discrete functions. The solutions of the first type describe a nonequilibrium state of a 

gasdynamic system. And the solutions of the second type describe a locally-equilibrium state of a 

gasdynamic system. The transition from the solutions of the first type to ones of the second type 
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describe a transition of gasdynamic system from a nonequilibrium state to a locally-equilibrium state, 

and this process is accompanied by emergence of vorticity or turbulence. Such a process relates to the 

transition from tangent manifold to integral structures and can be performed only with the help of two 

nonequivalent coordinate systems or by simultaneous using numerical and analytical methods.  
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