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Abstract

We study a homogeneous Dirichlet boundary fractional diffusion equation with delay in a bounded domain. The fractional
time derivative is considered in the left Caputo sense. By means of a linear continuous operator, we first transform the
fractional diffusion equation with delay into a an equivalent equation without delay. Then we show that the optimal control
problem associate to the controlled equivalent fractional diffusion equation has a unique solution. Interpreting the
Euler-Lagrange first order optimality condition with an adjoint problem defined by means of right fractional Caputo derivative,

we obtain an optimality system.
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1 introduction

Let N eN" and Q be a bounded open subset of RN with boundary OQ) of class C?. Foratime T > 0, we set
Q=Qx(0,T) and £ =0Qx(0,T).Forany 7 >0, consider the following fractional differential equation with delay:

D y(x,t) = Ay(x,t) + y(x,t = 7)
y(x,t)
y(x,t)

f,(x,t), (xt)e(r,T)xQ,
g(x,t),te(0,7)xQ,
0 (xt)eZ,

1)

where f, is given in L*((z,T)x Q) which is the set of all measurable functions defined on (7,T)x€2 such that

. 112
(I IQ|p(X,t) ? dthj < +00. The function ¢ belongsto W (0,7) with

W(0,7) = {p.p € *((0,2); H*(Q)). " p € L*((0,7) x Q) | @)

The fractional derivative of order ¢, D,a is to be understood in the Caputo sense. The operator A is given by:

p0= Y 2 a0 2w |xeo

where the coefficients aij =a;1<i, j < N satisfy the following conditions:

ji
@) (H,): the coefficients a; € Cl(f_l)

(i) (H,): there exists a constant /8 >0 such that

>a,(XEE = ﬂZgﬁ,x cQeR".

i,j=1

Fractional diffusion equations describe anomalous diffusion on fractals (physical objects of fractional dimension, like some
amorphous semiconductors or strongly porous materials; see [1, 2] and references therein). Fractional diffusion equations
have been studied by several authors. For instance, in [3], Oldham and Spanier discuss the relation between a regular
diffusion equation and a fractional diffusion equation that contains a first order derivative in space and half order derivative in
time. Mainardi [4] and Mainardi et al. [5, 6] generalized the diffusion equation by replacing the first time derivative with a
fractional derivative of order & . These authors proved that the process changes from slow diffusion to classical diffusion,

then to diffusion-wave and finally to classical wave when & increases from 0 to 2. The fundamental solutions of the

Cauchy problems associated to these generalized diffusion equation (0 <a< 2) are studied in [6, 7]. By means of
Fourier-Laplace transforms, the authors expressed these solutions in term of Wright-type functions that can be interpreted
as spatial probability density functions evolving in time with similarity properties. Wyss in [11] used Mellin transform theory to
obtain a closed form solution of the fractional diffusion equation in terms of Fox’s H-function. In [12], Metzler and Klafter used
the method of images and the Fourier-Laplace transform technique to solve fractional diffusion equation for different
boundary value problems. We also refer to [8, 9, 10] where Agrawal et al. and Agrawal studied the solutions for a fractional
diffusion wave equation.

Concerning the calculus of variations and optimal control of fractional differential equation, the filed is in full expansion. In
[13], Agrawal presented a general formulation and solution scheme for fractional optimal control problem. That is an optimal
control problem in which either the performance index or the differential equations governing the dynamics of the system or
both contain at least one fractional derivative term. In that paper, the fractional derivative was defined in the
Riemann-Liouville sense and the formulation was obtained by means of fractional variation principle [15] and the Lagrange
multiplier technique. Following the same technique, Frederico et al. [16] obtained a Noether-like theorem for fractional
optimal control problem in the sense of Caputo. Recently, Agrawal [14] presented an eigenfunction expansion approach for
a class of distributed system whose dynamics are defined in Caputo sense. Following the same approach as Agrawal, in [17]
Ozdemir investigated fractional optimal control problem of a distributed system in cylindrical coordinates whose dynamics
are defined in Riemann-Liouville sense. For a time fractional diffusion equation with source term, Yamamoto et al. [29]
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discuss an inverse problem of determining a spatially varying function of the source by final over-determining data. We also
refer to [30] where for initial value/boundary value problems for fractional diffusion equation, Yamamoto et al. used the
eigenfunction expansions to prove stability in the backward problem in time.

Various fractional optimal control problem are also studied by Mophou et al. when the fractional time derivative is
expressed in the Riemann-Liouville sense. For instance, we refer to the boundary optimal control [19, 21], optimal control of
a fractional diffusion equation with state constraints [20]. Following these works, we want to control, in this paper, the
fractional diffusion equation with delay (1). Actually, this kind of equations can help to model the phenomenon of diffusion in
the soil. In this case, the delay can be understood through cultural practices which by increasing soil aggregates and
encouraging vegetation growth and the density of the vegetation cover, could curb the penetration of water into the soil. This
can slow down soil saturation before surface flow or check runoff. This delay in the diffusion can also be considered as the
result of the presence of obstacles, arrangements cropping for instance or as hedgerows and other cross fencing as in
Bamiléké villages in western Cameroon [22, 23, 24].

In this paper, we are concerned with the optimal control of the fractional diffusion equation with delay (1). To this end, we
consider the following control system:

D y-Ay+My = f+v in Q,
y =0 on X, (3)
y(0) =0 in Q.

where the control V belongs to U{,; which is closed subset of LZ(Q) . The linear and continuous operator
M :W(0,T) = L?((0,T); H?*(QY)) is defined by
y(x,t—-7) if (xt)e(r,T)xQ,

By(xn = {o it (xt)e(0,5)xQ. @

The function f is given by

£ :{fl(x,t) it (xt)e(r,T)xQ,

D g(x ) +Ag(xt) if  (xt)e(0,7)xQ ®)

Then, we consider the optimal control problem:

minJ (V) = ||y(V) — 4 ||L2(Q) +N ||V||L2(Q)

ueL{ad
where N >0 and z, € L’(Q).
To solve this problem, we use the classical optimal control theory developed by J.L. Lions [31]. So, we prove that optimal
control problem has a unique solution. Interpreting the Euler-Lagrange first order optimality condition with an adjoint problem

defined by means of a right fractional Caputo derivative, we obtain an optimality system for the optimal control. As far as we
know, the result presented here is new in fractional optimal control.

The paper is organized as follows. Section 2 is devoted to some definitions and preliminary results. In Section 3, we prove
the existence of the optimal control for system (12).

2 Preliminaries
Definition 2.1 [25] Let f ZR+ — IR be a continuous function on R" and a > 0. Then the expression
1 £ () = Lf (t—s)*" f(s)ds;t >0
[(a)~°

is called the Riemann-Liouville integral of order « .

Definition 2.2 [26] Let @ €(0,1) and let f R, — R . The left Caputo fractional derivative of order & of f is
defined by
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D)= r(ll “ £/(s)ds,t >0,

provided that the integral is defined.
Definition 2.3 [27]. Let ¢ €(0,1) and let f:R, >R, O0<a<1 and T >0. The right Caputo fractional
derivative of order o of f is defined by
-1
Il-a)t

Df(t) = j (s—t)™* f'(s)ds, ®)

provided that the integral is defined.

Remark 2.4 The right fractional Caputo derivative represents the future state of f (t) . For more details on this derivative
we refer to [27].

We need the following Lemmas which give the integration by parts for a fractional diffusion equation with Caputo derivatives
for the resolution of the optimal control problem associate to (11).

Lemma25 Let 0<a <1. Thenforany pe(C” ((_2), we have
T o
j X IQ(D, y(x,t) - Ay(x,t) )p(x, t)dxdt =

J-Q y(x,0) (J.(,Ttaﬁp(X, t)dt) dx +

[ oOC Ty (x, T)dx~ (11_ 3

Hm 81/ T? dodt - H —apdadt+

[ [yt (D o(x, )= Ag(x,t) dxalt.

Proof. See annex in Section 4

Lemma2.6[18] Let 0< #<1, X beaBanachspaceand f eC([0,T],X).Thenforall t,t, €[0,T],

e
Bt —17f L7((0.T);X)
£ @) 175 ()], < Ty A

Remark 2.7 Since C([0,T],X) < L*((0,T);X) = L?((0,T);X) because [0,T] is a bounded subset of R
Lemma 2.6 holds for f & L?((0,T);X) and we havethat 17 f e C([0,T],X) < L*((0,T);X).

Consider the following fractional diffusion equation with the Caputo fractional time derivative:

DUy-Ay+c(x)y = f in Q
y = 0 on 2, (7)
y(0) =y in Q

where the function € e C(€2) and satisfies C(X) >0 for all X €€). The operator A satisfies assumptions (H,)
and (Hz) given in Page 1018. We have the following results.

Theorem 2.8 [Theorem 4.1[28]] Let f =0 and y0 S Hé(Q) . Then problem (7) has a unique solution
y e C([0,T]; () nC([0,T];H* () nH, (L)) suchthat DIy e C([0,T1; L*(€2)) . Moreover, there exists
aconstant C >0 such that
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a 0
”y”LZ((O,T);HZ(Q)) +H D yHLZ(Q) = CHy HHl(Q)' ®

Theorem 29 [Theorem 4.2[28]] Let f el?(Q) and y°=0 . Then problem (7) has a unique solution
y e L?((0,T); H*(©) " HZ()) . Moreover, there exists a constant C >0 such that

||y||L2((0,T);H2(Q)) +H Dy 2(Q) < C” f ||L2(Q) ’ ®)

Lemma 210 Let fel*(Q) and yel?((0,T);H?(Q) be such that D* € L*(Q) and D*y—Ay = f.
Then Y|, exists and belongs L((0,T); H (6QY)). (i)

() Y|y existsand belongs L?((0,T); H **(6Q2)).

i) y(0) belongsto L*(€2)).
Proof. Since @; € Cl(f_l) for 1<1, j <n, proceeding as in [19, 20], we have (i).
On the other hand, in view of Lemma 2.6, 1“(D*y(t)) € L*(Q) because D*y € L*(Q) . Hence, y(0) exists and
belongsto L*(Q) since 1“(D*y(t)) = y(t)—y(0) and y(t) e L*(Q).
3 Optimal control

Before going further, let us justify equation (12). So, define M and f asin (4) and (5) respectively. Then f € L*(Q).
Indeed, observing in the one hand that f, € L2 ((z,T)xQ), and on the other hand that, g belongs W (0,7), we
obtain that Ag e L?((0,7)x€Q) which combining with the fact that D“g e L?((0,7)xQ) implies that
D g+Ag € L*((0,7) xQ). set

g(x,0) =0, (10)
we have that (1) can be rewritten as
Dy-Ay+My = f in Q,
y = 0 on 2, (11)
y(0) = 0 in Q
We thus consider the following system:
Dy-Ay+My = f+v in Q,
y =0 on X, (12)
y(0) =0 in Q.

where f € L*(Q) and the control V belongs to U, which is closed subset of L?(Q) . In view of the Theorem 2.9,

we know that the solution 'y = Y(V) of (12) belongsto L*((0,T); H?(£2)) . Thus we can define the functional
_ 2 2
J(v) = ”y_ Zq ||L2(Q) +N ||V||L2(Q) (13)

where z, € L>(Q) and N >0. we are interested in the optimal control problem: Find U € I,, such that
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Proposition 3.1 There exists a unique optimal control U such that (14) holds.

J(U) = inf J(v).

veuad

Proof. Let V,, € L[ad be a minimizing sequence such that
J(v.) > inf J(V).
veuad

Then Y, = Y(V,) is solution of (12). This means that Y, satisfies:

Dy, —Ay,+My =f +v. in Q,
y,=0 onZ,
Y,(X,0)=0 inQ
Moreover, in view of (15), there exists C > 0 independent of N such that

”Vn ||L2(Q) <C,

”yn ||L2(Q) <C.

Hence, we deduce from (16) that

DY, —AY, + MY, |2 <C.

@

and from Theorem 2.9 that

IDy,

2 <C,AABC

||yn ||L2((0,T);H2(Q)) S C

ISSN 2347-1921

(14)

(15)

(16a)
(16b)

(16c)

17

(18)

(19)

(20)

(21)

Hence there exists (U,8,Y) in L*(Q)xL*(Q)xL*((0,T);H?(2)) and a subsequence extracted from (V,),

(D*y,) and (Yy,) (stilcalled (V,), (B”Y,) and (Y,) ) such that

v, — u weaklyin L*(Q),

yo — y weaklyin L((0,T); HX(Q)),
Diyn — Ayn + My, — B weaklyin L%(Q),
Di"yp — & weaklyin F | Q).

Since V, isin U,, whichis a closed subsetof L*(Q), we have that

Ueldy.

(22)

(23)
(24)

(25)

(26)

Let M e LW (0,T),L*((0,T);H?*(Q))) be the linear and continuous operator defined in Page 3. Then,
M e LW (0,T),L*(Q)) and we can define the adjoint M~ of M in £(L*(Q),W(0,T)) by:

M *@(X,t)={

1022 |Page

y(x,t+7) if  (xt)e(O,T-7)xQ,
0 it (xt)e(T-7,T)xQ

@7)
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D(Q) ={p C”(Q) suchthat ¢|.,=0,p(x,0) = ¢(x,T) =0 inC2}
and denote by ID'(Q) the dual of ID(Q).

Using Lemma 2.5, we have

J.Z J‘Q(Dla Y, (X, 1) = Ay, (x,t) + My, (X, t))Lp(X, t)dxdt

=] [ Y (6 O(D 0 (1) = Ap(x, 1) + M p(x,1) )dxdt, ¥ € D(Q).

Therefore, it follows from (23) and Lemma 2.5 that

iim] [ (D Ya ()= Ay, (,0)+ My, (x,0) e (x,Ddxdt =

n—oo

ﬂ Igy(x,t)(Dr“np(x,t) — Ap(x,t) + M *gp(x,t))dxdt =

Iz IQ(D.“Y(XJ) — Ay(x,1) + My(x,t) Jp(x, t)dxdt, ¥ peD(Q).

This implies that

Dy, — Ay, + My, Dy-Ay+My weaklyin D'(Q).
Hence, in view of (24) and (25), we obtain that
D y-Ay+My = feL*(Q), (28)
D*y=5el*(Q). (29)
So, passing to the limit in (16a) while using (24), (22) and (28), we deduce that
D*y-Ay+My=f+u inQ. (30)

since Y€ L?((0,T);H?(Q)), Lemma 2.10 allows us to say that Y |,, and y(0) exist and belong respectively to
H2(6Q) and to L*(€2). Consequently, multiplying (16a) by @€ C” ((_3) with P |,=0 and (T,X) =0 on

Q) and integrating by parts over Q , we obtain by using Lemma 2.5,
T
[ ] Dy, (060 = Ay, () + My, (x,1) ) o(x, t)dxdlt =

+I ; I oY (DD 0%, 1) = Ap(x, 1) + M “p(x, 1) )dxat

Passing this latter identity to the limit when N —> 00 while using (24), (28) and (23), we get

[ LDyt = Ay, -+ My(x, 1) )io(x, et =

[T y0t(Dee(x, 1)~ Ap(x,t) + M p(x,t) )dxdt.

Integrating by part the right side of (31) while using Lemma 2.5, we obtain

1)
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ﬂ IQ(Df’y(X,t) — Ay(x,t) + My(x, t))ap(x,t)dxdt =

Lzy(x,o)( . ﬂt‘“ap(x,t)dtjdx—

rl-e)
T, 09 (32)
.[o<y'a_m>H1’2(aQ),H1’2(aQ)
T
_[0 IQ(D,"’y(x,t) —Ay(x,t)+ My(x,t))ap(x,t)dxdt,
for all ¢ € D*(Q) with ¢|,,= 0 and ¢(x,T) =0 on Q.
where (.,.)Y’Y, represents the duality bracket between the spaces Y and Y'.
Hence, (32) yields
0 = [y(x0) L ['tp(x.tadt |dx
o T(1-a) o :
T oy
p: .[0<y’a>H_1’2(BQ),H1/2(GQ)dt
for all ¢ C*(Q) with ¢|,,= 0 and ¢(x,T)=0 on Q.
- - o o0y _ _
Therefore taking in this latter identity ¢ such 8__0 on 0C), we obtain
1%
y(x,00=0 inQ (33)
and then,
y=0 on oQ. (34)

In view of (30), (33) and (34), we deduce that Yy = y(U) is a solution of (12) with U € U, because of (26). From weak

lower semi-continuity of the function V — J(V) we deduce

liminf J(v,,) = J(u).

Hence according to (15), we deduce that
J(U) < inf J(v)
vellyy
which implies that
J(U) < inf J(V)
vellyy

The uniqueness of U is straightforward from the strict convexity of J .

Theorem 3.2 If U is solution of (14), then there exist P € L*((0,T);H?(QQ)) such that (U,Y, p) satisfies the
following optimality system:
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D y(x,t)— Ay(x,t)+My(x,t) = f+u in Q,

y(X,t) = 0, on Z, (35)
y(x,0) =0 in Q,
D p(x,t)—Ap(x,t)+ p(x,t+7) = y-z, in (0,T-7)xQ,
D.“p(x,t)— Ap(x,t) = y-z, in (T-7,T)xQ, 36)
p(x,t) =0 on I,
p(x,T) =0 in Q,
and
J.OTIQ(NU + p)pdxdt>0 Veell,. (37)

Proof. Relations (30), (33) and (34) give (35).

To prove (36) and (37), we express the Euler-Lagrange optimality condition which characterizes the optimal control U :
d J =0, for all L*
@ U+ ug)|,-=0, forall peL°(Q). (38)

The state Z(p) associated to the control ¢ € L?(Q) is solution of

Dz-Az+Mz = ¢ in Q,
z = 0, on Z, (39)
z(x,0) = 0 in Q
After calculations, (38) gives
T T
IO IQz(y(u)—zd)dxdt+ NIO IQuwdxdt >0 Veypel, (40)
To interpret (40), we consider the adjoint state system:
D p-Ap+Mp = y-z, in Q,
P = 0 on Z, (41)
p(T) =5 in Q.

Make as in [18] the change of variable t —>T -t in (41), the system becomes
D p-Ap+M'p = §-z, in Q
P =0 on Z,
p(0) =0 in Q
where ¥ —2z, = y(T —t,X)—2z, € L*(Q) since y—z—d € L*(Q). Hence , using Theorem 2.9, we deduce that

problem (41) has a unique solutionin P € L?((0,T); H?(Y)). Thus, multiplying (39) by P solution of (41), we obtain
by using Lemma 2.5,

.[ZJQ(QaZ—AZ+MZ)dedt EJQ(Drap—AD+M*p)Zdth

j: IQ(y—zd)zdxdt
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Hence, in view of (39) and (40), we deduce that

[1] (p+Nuypdxdt> Vepel*(Q).

4 Annex

Lemma4.lForany ¢e(C” (C_)), we have
_[: J‘Q(Dl“y(xit) — Ay(x,t))p(x,t)dxdt =
+ Ty (x T)dx -

[ y(x,0)D*“(x,0)dx+

[ y2faon-{(], 2 saous

oQ 81/

on(xlt) D, “p(x,t)— A&p(X,t))dxdt.
Proof. Let o€ C” ((_g), “We have
[T (Dy(xt) = Ay(t, ) o(x dxdt =

j; [ Bey(x He(x, yxdt - j; [ Ay(xe(x tyaxat

We set
T o
M, = jo IQYD, y(x, )(x, t)dxdt,
T
M | ) | JAY(E X)e(xtdxdt,
Then
L
jo IQ(D,“y(x,t)—Ay(x,t))ap(x,t)dxdt = M,+M,.
We have

MZ

[T ] AY(x.t)p(x, et

‘f Imav @dadt+jj y dadt 42)

.[: IQ y(X, 1) Ap(x, t)dxdt.
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where

We have

Since
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A(X,s)

B(X)
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ﬂ J.QDIQ y(X, t)p(x,t)dxdt,

I Lot s

I (t—s)y'(x, s)ds]dt}

Ig Ey’(x S)(F(l— )I (t=s)" (X, t)dtjds}

jg_IZ y'(x 8)A(X, S)dS}dx
IQB(x)dx

B(x)

IT y'(%,8)A(X, S)ds,

A(s, X)

r(1_ 3 [ -9 “ex bt

r(1_ )I (t—s)“p(x,D)dt

1
l-a)T(l-a

[t-s)“oxt]
) t=s

t—5)"¢'(x,t)dt

1 T
Q- (1-a) L (

1 l-a
r2-a) (T=s)“p(x,T)-

1
F(Z—a) s

IZ y'(x,5)A(x, s)ds

= r(zl_ ) @(X’T)I: (T - S)l_a y'(x, S)dS

1
r@2-a)do

oy es)([] =9 e (x.tydtas.

February 20,

IT (t—9)""'(x,t)dt.
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)

and

where
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OT) T vians PT) rep _ gy !
WIO(T 5)"“y'(x,s)ds [(T-9" )],

I'2-a)
l-«a
I2-a)
— e(XT) 114
F(Z— )T y(x,0)
e(x,T)
I'l—-ea)

_ _ T -
- @(X!T)( F(Z—O() y(X’0)+I y(X,T))

(T (T =5)“ y(x.5)ds

Jo T =9)“y(xs)ds

1
F(2)

= F(2— )I&p( t)(j (t—s)="y'(x, s)ds)dt

Joyes)([] =9 e ix.tetds

=r@ Joe -9 yxo) [, d

I@ I@(UUGS)ywﬂ%)

= y(X,O) l-a
—mj.ot P (X,t)dt—

T 1
IJW)&H_)Ias)@uom%s

y(%.0) ra = y(%,0)(1-a) (T,
e )[ PO, - F(Z—jt (X, t)dt -

J yx )(F(l— )j (t-s)"9'(x, t)dt]ds

4 y(X 0) l-a y( O) -a
T2 o a2, T) ~ )jt e(x,t)dt ~

J yx )(F(l— )j (t-s)“9'(x, t)dtjds

_ Y(x,0)
" T2-a)

= y(x,0) [ r(-; _"‘a) ©(X,T) =D " “p(x, o)j + .[Z y(X,8)D.%p(x, 5)ds

T (6 T) = Y(%,0)D"“0(x,0) + | y(x,5)D, "p(x,5)ds

71 (s) _—j (t—s)“ L f (t)dt.

February 20,
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Thus
B() = ap(x,T)[—r(z_aa) y(x,0>+|1“y(x,T)j
+ (X, O)(r(2 _"a) e(X, T)+ D" “p(x, 0)] +j; y(X,8)D,“p(X,s)ds
and

l-a

M, = IQ@(X,T)E— r(Tz-a) y(x,0)+ I“‘y(x,T)jdx

l-a

+ j Qy(x,O)(r(Tz_a) @(x,T)-Dla¢(x,0)de 43)

+ [ [ y(x9)D p(x,5)ds
oJo ' el '
Hence adding (43) to (42), we obtain
T
Jo Jo (D700 )~ Ay(x,) + (¥ (x, 1) Jo(x, idxdt

l-a

= IQ@(X,T)(— F(-;—a) y(x,0)+ I“‘y(x,T)jdx

l-a

[y, O)[r(Tz » Al D*(X, O)jdx

+ [y D p(x, et

—j jmav @dadt+jj y d dt
[, [ YDA (x
= [ T “y(x,T)dx
=[ Y0 D" (x, 0)dx

-j Ia@@v @dadt+jj y dodt

+j j y(x,1) (D “e(x,)- Ap(x, t))dxdt
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