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ABSTRACT

The Fisher and Kullback- Liebler information measures were calculated from the approximation of a binomial distribution
by both the Poisson and the normal distributions and are applied to the approximation of a Poisson distribution by a
normal distribution. In this paper the concept of relative loss in information due to approximating the distribution of a
random variable X,, by that of another distribution of Y, is introduced, and this concept is used to determine the value of
the sample size for which the relative loss in information measure is less than a given level e.
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1. INTRODUCTION

Many information measures are suggested in the literature [1], [2],[4],[7].[9],[10] and [11]. Among these measures are the
Fisher information measure (1925) [5] Iz(8) that was introduced to measure the amount of information in a random
variable X. This measure is defined by:

0%{log g(x; 6) }>

where, g(x;8),0 € Q is the probability density function (p. d. f)of the random variable. Kullback-Liebler(1956) [8] directed
a divergence measure, which is defined as follows:

Let X be a r.v with (p.d.f) fi(x) under the hypothesis H; or f,(x) under the hypothesis H,. One of the main non-
parametric measures of information is the Kullback-Liebler directed divergence measure, which is given by:

ICf1, f2) = Ep, [log{fi (X)/ f2(X)]].

It is known that KI(fi: f,) = 0 with equality holds iff fi(x) = f,(x) almost surely. So, we select the sample size n such
that KI(fi: f>) is minimum [6].

We will study the information embedded in a random variable X, whose distribution for large n is approximated by the
distribution of Y, .

The question which arises here is that how large n should be for this approximation to be acceptable? To answer this
question, we follow [3] and [6]. Let I be an information measure, we select the sample size n such that the relative loss in
the Fisher and Kullback-Liebler information measures is less than some given small numbere; 0 <e < 1.

2. APPROXIMATIONS BY FISHER INFORMATION MEASURES
We measure information by using Fisher information measure :

2.1 Poisson Approximation to Binomial Distribution

LetYy,..,Y, be iidfromB(1,6), X =X",Y :B(n,60).The p.dfofXis

£(x,0) = {(;)9*(1 -0 * if x=0123,..,n o)
0 otherwise
Note that:
logf(x; 0) = log(n!) —log(n — x)! — log(x") + xlogf + (n — x)log(1 — )
From which,

2
Wz_x/ez -(n-20/(1-6)

Hence the Fisher information in X about 8 is

2
Ipin (0) = —E (L2 — /6 4 n/(1 - 6) 2)
Let X be approximated by Y:P(nf) withap.d.f
0 (ng)7 /y! i =0,12,..
.0 ={e (n8)’/y if y=012, 3
907:6) 0 otherwise )

Note that: logifig(y; 6)) = —n8 + ylog(n8) — log(y!)
From which,

0*flogg(y;0)} _ ¥

062 62
Hence the Fisher information in Y about 0 is
82{log g(y;6) }
Ip(6) =—-E (T) =n/0 4

So, the loss in the Fisher information due to approximating X by Y is
Ipin (0) — Ip(0) =n/(1—-96).

It is strange that this loss increases with the sample size. Moreover, the relative loss in the Fisher information measure
due to this approximation is

L = |(Ipin () — 1p(0))/Ipin (0)| = |(n/6 +n/(1—6) —n/0)/ (n/6 +n/(1—0))| =6
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which does not depend on sample size n. Therefore, the relative loss in the Fisher information measure cannot be used to
specify the sample size n for which the above approximation is suitable.

2.2 Normal Approximation to the Poisson Distribution

Let Yy, ..., Y, be iid from P(6) then X =7 ,Y;: P(nO) with ap.d.f as in Equation (3). The Fisher information of X is
given by Equation (4), namely,

1(6) =n/e.
Let X be approximated by Y: N(n8,n0) with a p.d. f
gy, 0) = {I/W}exp(— (y —n6)?/2n8) , —~ <y < = and 0 otherwise (5
Note that: log(g(y,8)) = —(1/2)log(2nn) — (1/2)log(®) — (y — nb)?/2n6

From which,

0%log g(y,6)
202

=1/26% — y*/nb?
Hence the Fisher information in Y about 6 is

Iy(0) = —1/26% — E y? /n63
But EY? = var(Y) + (E(Y))2 =n0 +n%6% = n6(1 + no)
Hence, Iy(0) = —1/26? +n8(1+n8)/n63 = (1 +n6)/6% —1/26% = (1 + 2nh)/26?
Therefore, the relative loss in the Fisher information due to this approximation is

L=10p(®) — Iy()/1p(O)] = [{n/6 — [(1 + 2n8)/26%]}/(n/6)| = 1/2n8
For a given small positive real number ¢ the relative loss L < ¢ implies that
1/2n6 < ¢ (6)

2.3 Normal Approximation to the Binomial Distribution

Let X:B(n,6) with a p.d.f as in Equation (1) .The Fisher information of X is given by Iz, (8) =n/6 +n/(1—6) as
given in Equation (2) above.

Let X be approximated by Y: N(n8,n6(1 — 6)) with a p.d. f

9(y,0) = {1/{/2mn6 (1 = 0) }exp{— (y — n6)?/2n6(1 - 6)} @)
Note that log(g(y,8)) = (— 1/2)log(2m) — (1/2)log@6 (1 — 8) — {(y — n6)?/2n6(1 — 6)}

From which,
2n62(1 — 0)?(2y? + 2n%0 — 4nfy) —
(2y%6 — y% + n%0? — 2n6%y)

0%logg(y,0) _ Cl(—26(1— 6) — (1 — 26)?)/26%(1 — 6)7] — I (=412 + 4103 + 4n6(1 — 0)2)

902 4n264(1 — 9)*

Hence, the Fisher informationin Y is
2n02(1 — 0)?(2E(y?) + 2n%6 — 4nE(y))
In(0) = [(—26 + 262 — 1 + 46 — 46%)/26%(1 — 0)?] — [—(ZE(yZ)B —E(y?) +n%6? — 2n02%E(y)) /4n294(1 - 0)*
(—4n6% + 4n63 + 4n6(1 — 0)?)
Since EY = nf ,EY? = nf — nb? + n%62.
Hence,

2n62%(1 — 6)?(2n6 — 2n6? + 2n%6 — 2n?6?)

In(®) = [(26 — 267 — 1)/26°(1 — 6)°] - —(3n6?% — 2n63 — nb)(—12n6? + 8nb3 + 4nbh)

]/4n294(1 —6)*

Then the relative loss in the Fisher information due to this approximation

L = |Upin (6) = In(8))/Ipin (6] ®
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3. APPROXIMATIONS BY KULLBACK - LIEBLER INFORMATION MEASURES
We measure information by using Kullback- Liebler information measure :
3.1 Poisson Approximation to Binomial Distribution

Let Yy, .., Y, beiid from B(1,0), X =X",Y;: B(n,0) with a p.d.f as in Equation (1) . On the other hand, assume that
X: P(n0) with a p.d. f as in Equation (3); then Kullback-Liebler information measure is given by

Ki(fi: f2) = By, log{fy )/ f,(0)} = Exlog[n! 6* (1 = )" *x) /x! (n — x)! e ™ (n6)*]
= log(n!) + nblog(8) + n(1 — 0)log(1 — 0) + nb —nblog(nd) — Er log(n — x)! 9
3.2 Normal Approximation to Poisson Distribution
LetX =Y, Y, : P(n6) withap.d.f asin equation (3). On the other hand let X: N(n6,n0) with the p.d.f
fo(x) = {1/V2nnb}exp{— (x —n6)?/2n8} , —o <x < (10)
It is interesting to note that fy(x) isa p.d.f of a continuous distribution, the discrete analogue of this is

f) = Py(x—1/2 < X <x+1/2) = [} f(y)dy = {1/N2mnB} [/  exp(— (y — n6)? /2n6}dy , x=0,12,..
Then the Kullback-Liebler information measure of this approximation is given by
KI(fi: f2) = Eflog{fi(x)/ f(x)} = X3=0 fi ()log (fi (x)/ f2(x)) (11)

3.3 Normal Approximation to Binomial Distribution

Let X =Y",Y : B(n,0) with ap.d.f given by equation (1). On the other hand, let X: N(n6,n6(1 —6) with the p.d.f

folx) = {1/\/2nn0(1 - 9)} exp{— (x —n8)?/2n6(1 — 6)}, — < x <« gnd zero otherwise
The discrete analogous p.d.f of this is
) =P,(x—1/2<X <x+1/2), x=012,..

x+1/2 x+1/2
= [ noay={1VzmEG=B} [ expi- = n0)/20001 - 6))ay
x—1/2 x—1/2

Then the Kullback-Liebler information measure is
Ki(fi: o) = Efllt?g{fl ()/ (0} = X0 fi()log (i (x)/ f2()) (12) .
4. RESULTS

Throughout this section, the Python 3.3 programs using the numpy library have been used to perform the computations
and plotting the figures.

4.1 The Approximation by Fisher Information Measure

Equation (6) is used for computing the smallest sample size to approximate the Poisson distribution by the normal
distribution, within a relative loss of € = 0.1. The different values of the sample size corresponding to values of 0 <6 <1
are explained in Figure 4.1 below.
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Figure 4.1: The smallest required sample size to approximate the Poisson distribution by the normal distribution
for 0 < 8 <1, within arelative loss of ¢ = 0.1.

In Figure 4.2 below, we show the probability density functions for the Poisson and Normal distributions, for different values
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Figure 4.2: The probability density functions for the Poisson distribution and the normal distribution under the
Fisher’s approximation measure.

For the approximation of the binomial distribution by the normal distribution, Equation (8) is used to compute the value of
the relative loss L as a function in the sample size n for each value of 8 = 0.1:0.1: 0.9 , for a relative loss ¢ < 0.05.
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Figure 4.3: The required sample size to approximate the binomial distribution by the normal distribution for
6 =0.1:0.1: 0.9, within a relative loss of £ = 0.05

040 . 030 -
03 e —— Bmormaal |1 0.2 2 —  Binamial
2030 o T - Normal |1 : Normal
% azst S { ‘_: 20 / \\
$oz0}” { 3015 / Ny
Fos)” B | g 3
3 010f &
o b . I L V4 N
0es \{_ o ! 005 \
g e =
0.00 ] 2 3 s .00, ] F] [] B B ? : 0
¥
0204 - - - - - - ~ , o1dp - — - -
7 N —  Hinomaal 012 § —  Hinomiol
goas / W — Normal [} £o10 / ! — Normal
- 3 -
\ 0.08
g010 A £
8 i \ § o.06
& 00s / | Fona / :
/ \‘—- e _/ ;_—
0,00 bt - — - 0.00 ~ T N— - - =
Q 2 4 L] = 10 12 B} % 18 a s 10 15 ~N s » 15
010 0.08 :
) — Bnomial .07 — Binomial
) Normal g 0.06 Normal
3006 T == 3005
$ £o0a |
2004 . =003 /
\
/ :: J
0.02 / \\ ?g: / \
) J
-~ N\
0 . —~ 000 ——a v
e 10 20 » ) 50 3 70 "Og 20 40 &0 %0 00 120 140

Figure 4.4: Approximation of the Binomial distribution by the normal distribution under the Fisher’s information
measure.

It is clear that Figure 4.3 give that this approximation is good enough even for small sample size i.e. n<20if 6=
0.2,0.3,...,0.8.

4.2 The Approximation by the Kullback-Liebler Information Measure

Equation (9) is used to evaluate KIi(fi: f>) as a function in the sample size n to approximate the Poisson distribution by the
binomial distribution for 0.2 < 8 < 0.7. The values of Ki(f;: f,) are explained in Figure 4.5.
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Figure 4.5: The Kullback-Liebler measure for approximating the Poisson distribution by the binomial distribution
for8=0.2:0.1:0.7

It is clear from the graph of Figure 4.5 that almost all values of KI(f;: f,) are very close to zero, which means that this
approximation is very good even for small sample sizes.

To approximate the Poisson distribution by the normal distribution using the Kullback-Liebler information measure,
Equation (11) is used to evaluate KI(fi: f,) for 6 = 0.1:0.1: 0.6 . The results obtained are explained in Figure 4.6 below.
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Figure 4.6: The Kullback-Liebler information measure for the approximation of the Poisson distribution by the
normal distribution for 8 = 0.1:0.1: 0.6

It is clear that from the Figure 4.6 that all values of Ki(fi: f,) for the reported values of the sample size n are almost equal
to zero . So the approximation is good for n > 30, and 6 = 0.1.

Finally, to approximate the binomial distribution by the normal distribution, Equation (12) is used to compute KI(fi: f,) for

6 = 0.4:0.1: 0.9 ,Figure 4.7 shows the obtained values of KI(f;: f,) versus n.
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Figure 4.7: The Kullback-Liebler information measure for approximating the Binomial distribution by the normal
distribution for 6 = 0.4:0.1: 0.9

It is clear from Figure 4.7 that the smallest sample size for which the two distributions become within a tolerance value of
KI(fi: f) < 0.02 increases with the value of the parameter 6. For 8 = 0.4:0.1: 0.9 the approximation is good enough for
values of n > 50.

5. CONCLUSIONS

This paper discussed the approximations of the Poisson distribution by both the binomial and normal distribution and the
binomial distribution by the normal distribution using the Fisher and Kullback-Liebler information measures.

In the Fisher information measure, it was first noticed that this measure is not possible to approximate the Poisson
distribution the normal distribution, since the relative loss is free of the sample size n. Then, from Figure 4.1 it was clear
that the approximation Poisson distribution by the normal distribution is good enough even for small sample size when
0.2 <60 < 0.8 . Note that for the cases reported in Figure 4.1 , the mean of the Poisson distribution né takes values
between 20 and 80. These results are confirmed by Figure 4.2. Finally, when approximating the binomial distribution by
the normal distribution, it is noticed from Figure 4.3 that the sample size is symmetric around 6 = 0.5. The sample size
decreases in the range 0.1 < 6 < 0.5 and increases in the range 0.5 < 6 < 0.9. The binomial distribution and the normal
distribution become identical for 8 = 0.5.

In the Kullback-Liebler information measure, when approximating the Poisson distribution by the binomial distribution,
Figure 4.5 showed that the Kullback-Liebler measure increases proportional to 8. When approximating the Poisson
distribution by the normal distribution, the smallest sample size for which the two approximation are identical decrease
with the values of 6. The two distributions are always identical for sample sizes n = 30. Finally, when fixing a tolerance
level KI(fi: f>) < 0.02 it was noticed that the minimum sample size such that the Kullback-Liebler information measure of
the approximation of the binomial distribution to the normal distribution become within the given tolerance increases with
the value of 6, and if the sample size exceeds 50 the approximation is good enough.
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