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Abstract: One of the important problems of stochastic processes theory is to define the Laplace-Stieltjes transform for 

the ergodic distribution of semi-markov random process. With this purpose, we will investigate the semi-markov random 
processes with positive tendency, negative jumps and delaying boundary at zero in this article. The Laplace transform on 
time, Laplace-Stieltjes transform on phase of the conditional and unconditional distributions and Laplace-Stieltjes 
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basis of the final results.  
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   Introduction 

There are number of works devoted to definition of the distribution of the semi-markov processes and its main boundary 
functionals. Some authors are used the asymptotic, factorization and etc. methods ([2],[4],[5],[6],[9][12]) But other authors 
narrowing the class of distributions of walking are found the evident form for Laplace transforms for distributions and its 
main characteristics. In [7] The Laplace transformation for the distribution of the time of the system sojourn within a given 
band and its first and second moments are found .In [8] a  model of inventory control is considered. It is described by a 
semi-markov random walk with a negative drift at an angle of  0 < α < 90°, with positive random jumps, a delay, an 
absorbing screen at zero, and a reflecting screen for a > 0 at an angle α. The Laplace transformation is found for the 
distribution of the first moment storehouse exhaustion, and the first and the second moments are explicitly obtained. In [9] 
The Laplace-Stieltjes transform with respect to phase, the Laplace transform with respect to time, the conditional 
distribution, the unconditional distribution, and the Laplace-Stieltjes transform of the ergodic distribution of the process of 
semi-markov random walk with negative drift, nonnegative jumps, delays, and boundary screen at zero are obtained. In 
[10] The first passage of the zero level of the semi-markov process with positive tendency and negative jumps will be 
included as a random variable. The Laplace transform for the distribution of this random variable is defined. In [11] for the 

step process of semi-markov random walk with delaying boundary  in 0a  the evident form of Laplace transform by 

time was found. 

The presented work explicitly defines the Laplace transform on time, Laplace-Stieltjes transform on phase of the 
conditional and unconditional  distributions and Laplace-Stieltjes transform of the ergodic distribution for the semi-markov 
random processes with positive tendency, negative jumps and delaying boundary at zero. 

1.  Problem    

Let's assume that in probability space  )(,,  PF  is given the sequence of independent , equally distributed and 

independent themselves positive random variables k and   ,1    , kk . Using these random variables we will derive 

the following semi-markov random process: 
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)(1 tX  is called semi-markov random processes with positive tendency and negative jumps. 

General form of process semi-markov random walk with delaying boundary is given by A.A. Borovkov[1]  

If process  is some process without boundary, then process  with delaying boundary at zero is defined 

following : 

(s))X(0, inf)()( 1
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0
inf sX
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Idea of construction of the process semi-markov random walk is following : 

Let 0)0(1  zX . Process )(tX  is equally to process )(1 tX  until, the process )(1 tX  is positive. 

Let 0)(1 tX  ; then )(tX  is equally to zero until, the process )(1 tX  will not have positive jump. In  moment of jump 

of the process )(1 tX  , process )(tX will be have jump, such is equally to jump of the process  )(1 tX . 

The obtained process is called a process of a semi-markov random walk with positive tendency, negative jumps and 
delaying boundary at zero. 

The aim of the present study is to find an evident form of the Laplace-Stieltjes transform of the ergodic distribution for X(t). 

 2. Definition of Laplace transform on time for the distribution of the process X(t) 

In accordance with formula of total probability for  we have 
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We denote 
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In this case equation (1) will be as follows : 
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Both sides of this equation we applied Laplace transform by “t” 
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After some simplifications we will get: 

       












 tytzydeyxRdttPezxzxR y

ty

zx

11

0

 t

0

1

0

 t dP P1)()|,(
~

)()|,(
~

 

        
















 tytzdeyxRtexRdttPezx y

ty

zx

11

0

 t

0

1

0

 t

1

0

 t dP P)|,(
~

dP )0|,(
~

)(  

       

               

dP P)|,(
~

  dP )0|,(
~

 )( 11

),0max(

 t

0

1

0

 t

1

0

 t tytzdeyxRtexRdttPezx y

zyty

zx

 
















  

If take into account 

 









zy  if      z,-y

zy  if           ,0
,0max zy  

that is, why we get 

   )()|,(
~

1

0

 t  


 dttPezxzxR

zx

 
 

  


 texR 1

0

 t dP )0|,(
~

                  
                                                                                                                                                                                 



 ISSN 2347-1921 

1002 | P a g e                                                     F e b r u a r y  1 9 ,  2 0 1 4  

    








tytzdeyxR y

t

z

y

11

0

 t

0

dP P)|,(
~

                  
 

   tytzdeyxR y

zytzy












11

 t dP P)|,(
~

_                  
                                                          (3)  

 

Both sides of this equation we applied Laplace transform by “x ”  [see (2)] 
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Take into consideration 
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At last we received the following integral equation for  z)|,( 

R when  k and   ,1    , kk equally distributed and 

independent themselves positive random variables  
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We will solve this integral equation in special case. 

Let’s assume that 1  random variable has the Erlangian distribution of n order, while 1  random variable has the single 

order Erlangian distribution: 
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In this case equation (4) will be as follows:  
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We will get differential equation from this integral equation. For this purpose, we will multiply both sides of equation (5) by 
ze

 and derive on z . Then we will multiply both sides of last equation by 
ze )(  

 and derive on z . If repeat this 

process (n-1) time we have following differential equation: 
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3. The general solution of the differential equation (6) 

      The general solution of this differential equation will be 
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where  

1,2,...n,i     , )( ik -are the roots of characteristic equation of  (6) 
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R - is the special solution of the equation (5) 
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By finding    from equation (5) we will get the following system of algebraic equations:                                                                                                                                                                     

By  

exploitation of equation (7), equation (8) becomes  
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Now we proof linear dependence of this algebraic system                         

If to consider the following substitutions: 
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equation (9) becomes: 

  
 

  
 

  
 














































A 
))(()( 

])[( 
 ),(   )( 

........................................................................................................................................

A 
))(()( 

])[( 
),(    )( 

A 
))(()( 

])[( 
),(    )( 

n

nn

1

n

nn

1

n

nn

1

n

n

n

i

n

i

nn

i

n

n

n

i

n

i

nn

i

n

n

n

i

n

i

nn

i

Ck

Ck

Ck



















 

                                                                                                                                                                                  (11) 

Thus, (11) is a linear dependence equations system, as 
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Then the general solution of integral equation (5) will be as follows: 
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This expression is the Laplace transform on time, Laplace-Stieltjes transform on phase for conditional distribution of the 

process )(tX  

4. Ergodic distribution of the process. 
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We will need to find Laplace transform on time, Laplace-Stieltjes transform on phase for unconditional distribution of the 

process )(tX  . 

From construction process )(tX  is seen that  
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Then we will get 
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This expression is Laplace transform on time, Laplace-Stieltjes transform on phase for unconditional distribution of the 

process )(tX  . 

Now, we will find Laplace-Stieltjes transform for ergodic distribution of the process )(tX . 

In  [3] ( see p.363) proved a general theorem on the ergodicity of the process semi-markov random walk. The process 
described in this article a special case of this process. 

Process )(tX  will be ergodic, if 11  EE   , or 
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If process )(tX ergodic,then we can use  Tauber’s theorem [4] 
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 Expression (14) is Laplace-Stieltjes transform for ergodic distribution of the process )(tX .Respectively, we will get the 

following characteristics for  n : 
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5. Conclusions 

In this article we have defined Laplace transforms on time, Laplace-Stieltjes transforms on phase for conditional and 

unconditional distributions and Laplace-Stieltjes transform  for the ergodic distribution. 
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