Commutativity of Addition in Prime Near-Rings with Right $(\boldsymbol{\theta}, \boldsymbol{\theta})$-3Derivations

Ikram A. Saed
Department of Applied Science, University of Technology, Baghdad, Iraq.
ikramsaed1962@gmail.com

Abstract

Let N be a near-ring and θ is a mapping on N . In this paper we introduce the notion of right (θ, θ)-3derivation in near-ring N. Also, we investigate the commutativity of addition of prime near-rings satisfying certain identities involving right (θ, θ)-3-derivation.

Keywords: Near-Ring; Prime Near-Ring; (θ, θ)-3-Derivation; Right (θ, θ)-3-Derivation.
Language: English
Date of Submission: 2018-03-10
Date of Acceptance: 2018-03-20

Date of Publication: 2018-04-13
Website: https://cirworld.com

Introduction

Suppose that N is a near-ring and θ is a mapping on N . This paper consists of two sections. In section one, we recall some basic definitions and other concepts, which will be used later in our paper, we explain these concepts by examples and remarks. In section two, we define the concept of right (θ, θ)-3-derivation in nearring N and we explore the commutativity of addition and ring behavior of prime near-rings satisfying certain conditions involving right (θ, θ)-3-derivations.

Basic Concepts

Definition 2.1: [1] A right near-ring (resp. a left near-ring) is a nonempty set N equipped with two binary operations + and. such that
(i) $(N,+)$ is a group (not necessarily abelian)
(ii) $(\mathrm{N}$, .) is a semigroup.
(iii) For all $x, y, z \in N$, we have

$$
(x+y) z=x z+y z(\text { resp. } z(x+y)=z x+z y)
$$

Example 2.2: [1] Let G be a group (not necessarily abelian) then all mapping of G into itself form a right nearring $M(G)$ with regard to point wise addition and multiplication by composite.

Lemma 2.3: [1] Let N be left (resp. right) near-ring, then
(i) $x 0=0$ (resp. $0 x=0$) for all $x \in N$.
(ii) $-(x y)=x(-y)($ resp. $-(x y)=(-x) y)$ for all $x, y \in N$.

Definition 2.4: [2] A right near-ring (resp. left near-ring) is called zero symmetric right near-ring (resp. zero symmetric left near-ring) if $x 0=0$ (resp. $0 x=0$), for all $x \in N$.

Definition 2.5: [2] Let $\left\{N_{i}\right\}$ be a family of near-rings (i $\in I$, I is an indexing set). $N=N_{1} \times N_{2} \times \ldots \times N_{n}$ with regard to component wise addition and multiplication, N is called the direct product of near-rings N_{i}.

Definition 2.6: [2] A near-ring N is called a prime near-ring if $a N b=\{0\}$, where $a, b \in N$, implies that either $a=0$ or $b=0$.

Definition 2.7: [3] Let N be a near-ring. The symbol Z will denote the multiplicative center of N, that is $=\{x \in N / x y=y x$ for all $y \in N\}$.

Definition 2.8: [3] Let N be a near-ring. For any $x, y \in N$ the symbol (x, y) will denote the additive commutator $x+y-x-y$.

Definition 2.9: [3] Let N be a near-ring. For any $x, y \in N$ the symbol $[x, y]=x y-y x$ stands for multiplicative commutator of x and y.

Properties 2.10: [3] Let R be a ring, then for all $x, y, z \in R$, we have:

$$
\begin{aligned}
& 1-[x, y z]=y[x, z]+[x, y] z \\
& 2-[x y, z]=x[y, z]+[x, z] y \\
& 3-[x+y, z]=[x, z]+[y, z] \\
& 4-[x, y+z]=[x, y]+[x, z]
\end{aligned}
$$

Definition 2.11: [4] Let N be a near-ring. An additive mapping $d: N \rightarrow N$ is said to be right derivation of N if $d(x y)=d(x) y+d(y) x$, for all $x, y \in N$.

Definition 2.12: [4] Let N be a near-ring. An 3-additive mapping d : $N \times N \times N \rightarrow N$ is said to be right 3derivation if the relations:
$d\left(x_{1} x_{1}^{\prime}, x_{2}, x_{3}\right)=d\left(x_{1}, x_{2}, x_{3}\right) x_{1}^{\prime}+d\left(x_{1}^{\prime}, x_{2}, x_{3}\right) x_{1}$
$d\left(x_{1}, x_{2} x_{2}^{\prime}, x_{3}\right)=d\left(x_{1}, x_{2}, x_{3}\right) x_{2}^{\prime}+d\left(x_{1}, x_{2}^{\prime}, x_{3}\right) x_{2}$
$d\left(x_{1}, x_{2}, x_{3} x_{3}\right)=d\left(x_{1}, x_{2}, x_{3}\right) x_{3}^{\prime}+d\left(x_{1}, x_{2}, x_{3}{ }^{\prime}\right) x_{3}$
hold for all $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, x_{3}, x_{3}^{\prime} \in N$.
Example 2.13: [4] Let S be a 2-torsion free zero-symmetric left near-ring. Let us define:
$\mathrm{N}=\left\{\left(\begin{array}{lll}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right): x, y, 0 \in S\right\}$
It is clear that N is a zero-symmetric near-ring with respect to matrix addition and matrix multiplication.
Define d: $\mathrm{N} \times \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ by
$\mathrm{d}\left(\left(\begin{array}{ccc}0 & x_{1} & y_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & x_{2} & y_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & x_{3} & y_{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{cccc}0 & x_{1} & x_{2} & x_{3}\end{array} 000\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right.$
It can be easily seen that d is a nonzero right 3-derivation of near-ring N.
Definition 2.14: [4] Let N be a near-ring. An 3-additive mapping d : $N \times N \times N \rightarrow N$ is said to be 3-derivation if the relations:
$d\left(x_{1} x_{1}, x_{2}, x_{3}\right)=d\left(x_{1}, x_{2}, x_{3}\right) x_{1}^{\prime}+x_{1} d\left(x_{1}, x_{2}, x_{3}\right)$
$d\left(x_{1}, x_{2} x_{2}^{\prime}, x_{3}\right)=d\left(x_{1}, x_{2}, x_{3}\right) x_{2}^{\prime}+x_{2} d\left(x_{1}, x_{2}^{\prime}, x_{3}\right)$
$d\left(x_{1}, x_{2}, x_{3} x_{3}^{\prime}\right)=d\left(x_{1}, x_{2}, x_{3}\right) x_{3}^{\prime}+x_{3} d\left(x_{1}, x_{2}, x_{3}^{\prime}\right)$
hold for all $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, x_{3}, x_{3}^{\prime} \in N$.
Lemma 2.15: [4] Let N be a prime near-ring, d a nonzero (σ, τ) - n -derivation of N and $\mathrm{x} \in \mathrm{N}$.
(i)If $d(N, N, \ldots, N) x=\{0\}$, then $x=0$.
(ii)If $x d(N, N, \ldots ., N)=\{0\}$, then $x=0$.

3.Main Results

First, we introduce the basic definition in this paper
Definition 3.1: Let N be a near-ring and θ is a mapping on N. An 3-additive mapping d : $N \times N \times N \rightarrow N$ is said to be right (θ, θ)-3-derivation if the relations:
$d\left(x_{1} x_{1}{ }^{\prime}, x_{2}, x_{3}\right)=d\left(x_{1}, x_{2}, x_{3}\right) \theta\left(x_{1}^{\prime}\right)+d\left(x_{1}^{\prime}, x_{2}, x_{3}\right) \theta\left(x_{1}\right)$
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{X}_{2} \mathrm{X}_{2}^{\prime}, \mathrm{x}_{3}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{x}_{3}\right) \theta\left(\mathrm{x}_{2}^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \mathrm{x}_{3}\right) \theta\left(\mathrm{x}_{2}\right)$
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \mathrm{x}_{3}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta\left(\mathrm{x}_{3}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta\left(\mathrm{x}_{3}\right)$
hold for $x_{1}, x_{1}, x_{2}, x_{2}^{\prime}, x_{3}, x_{3}^{\prime} \in N$.
we now explain this definition by following example
Example 3.2: Let S be a 2-torsion free zero symmetric commutative near-ring.
Let us define
$\mathrm{N}=\left\{\left(\begin{array}{ccc}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z\end{array}\right): x, y, z, 0 \in S\right\}$.

It can be easily see that is a non-commutative 2-torsion free zero symmetric left near-ring with respect to matrix addition and matrix multiplication.

Define $\mathrm{d}: \mathrm{N} \times \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ by
$\mathrm{d}\left(\left(\begin{array}{ccc}0 & x_{1} & y_{1} \\ 0 & 0 & 0 \\ 0 & 0 & z_{1}\end{array}\right),\left(\begin{array}{ccc}0 & x_{2} & y_{2} \\ 0 & 0 & 0 \\ 0 & 0 & z_{2}\end{array}\right),\left(\begin{array}{ccc}0 & x_{3} & y_{3} \\ 0 & 0 & 0 \\ 0 & 0 & z_{3}\end{array}\right)\right)=\left(\begin{array}{cccc}0 & x_{1} & x_{2} & x_{3}\end{array} 00\right.$
And $\theta: N \rightarrow N$ such that
$\theta\left(\left(\begin{array}{lll}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z\end{array}\right)\right)=\left(\begin{array}{lll}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z\end{array}\right)$
It is easy to see that d is a right $(\theta, \theta)-3$-derivation of a near-ring N.
The following lemma help us to prove the main theorems:
Lemma 3.3: Let N be a prime near-ring, d is a nonzero right $(\theta, \theta)-3$-derivation of N and a $\in N$, where θ is an automorphism on N .

If $d(N, N, N) \theta(a)=\{0\}$, then $a=0$.
Proof: Given that $d(N, N, N) \theta(a)=\{0\}$,
i.e: $d\left(x_{1}, x_{2}, x_{3}\right) \theta(a)=0$ for all $x_{1}, x_{2}, x_{3} \in N$.

Putting x_{1} a in place of x_{1} in equation (3.1), and using it again we get

$$
\begin{aligned}
0 & =d\left(x_{1} a_{1} x_{2}, x_{3}\right) \theta(\mathrm{a}) \\
& =\left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta(\mathrm{a})+\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta\left(\mathrm{x}_{1}\right)\right) \theta(\mathrm{a}) \\
& =\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta\left(\mathrm{x}_{1}\right) \theta(\mathrm{a}), \text { since } \theta \text { is an automorphism }
\end{aligned}
$$

So we get $\mathrm{d}\left(\mathrm{a}_{1} \mathrm{x}_{2}, \mathrm{x}_{3}\right) N \theta(\mathrm{a})=\{0\}$ for all $\mathrm{x}_{2}, \mathrm{x}_{3} \in \mathrm{~N}$.
Primeness of N implies that
Either $\theta(a)=0, a=0$ or $d\left(a, x_{2}, x_{3}\right)=0$ for all $x_{2}, x_{3} \in N$.
If $d\left(a, x_{2}, x_{3}\right)=0$ for all $x_{2}, x_{3} \in N$.
Since $d\left(x(a y), x_{2}, x_{3}\right)=d\left((x a) y, x_{2}, x_{3}\right)$ for all $x, y, x_{2}, x_{3} \in N$.
Therefore
$d\left(x, x_{2}, x_{3}\right) \theta(a y)+d\left(a y, x_{2}, x_{3}\right) \theta(x)=d\left(x a, x_{2}, x_{3}\right) \theta(y)+d\left(y, x_{2}, x_{3}\right) \theta(x a)$ for all $x, y, x_{2}, x_{3} \in N$.
Which means that
$d\left(x_{1}, x_{2}, x_{3}\right) \theta(a y)+\left(d\left(a, x_{2}, x_{3}\right) \theta(y)+d\left(y, x_{2}, x_{3}\right) \theta(a)\right) \theta(x)$
$=\left(d\left(x, x_{2}, x_{3}\right) \theta(a)+d\left(a, x_{2}, x_{3}\right) \theta(x)\right) \theta(y)+d\left(y, x_{2}, x_{3}\right) \theta(x a) \quad$ for all $x, y, x_{2}, x_{3} \in N$.

Using equations (3.1) and (3.2) in previous equation, since θ is an automorphism
We get $\mathrm{d}\left(\mathrm{y}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) N \theta(\mathrm{a})=\{0\}$ for all $\mathrm{y}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathrm{~N}$.
Since $d \neq 0$, primeness of N implies that $a=0$.
Now, we will prove the main results
Theorem 3.4: Let N be a prime near-ring and $\mathrm{d}_{1}, \mathrm{~d}_{2}$ be any two nonzero right (θ, θ)-3-derivations, where θ is an automorphism on N. If $\left[d_{1}(N, N, N), d_{2}(N, N, N)\right]=\{0\}$, then $(N,+)$ is abelian.

Proof: Assume that $\left[d_{1}(N, N, N), d_{2}(N, N, N)\right]=\{0\}$. If both z and $z+z$ commute element wise with $d_{2}(N$, $\mathrm{N}, \mathrm{N})$, then for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in N$ we have
$z d_{2}\left(x_{1}, x_{2}, x_{3}\right)=d_{2}\left(x_{1}, x_{2}, x_{3}\right) z$
And
$(z+z) d_{2}\left(x_{1}, x_{2}, x_{3}\right)=d_{2}\left(x_{1}, x_{2}, x_{3}\right)(z+z)$
Substituting $x_{1}+x_{1} /$ instead of x_{1} in (3.4) we get
$(z+z) d_{2}\left(x_{1}+x_{1}{ }^{\prime}, x_{2}, x_{3}\right)=d_{2}\left(x_{1}+x_{1}{ }^{\prime}, x_{2}, x_{3}\right)(z+z)$ for all $x_{1}, x_{1}{ }^{\prime}, x_{2}, x_{3} \in N$.
From (3.3) and (3.4) the previous equation can be reduced to
$\mathrm{z}_{2}\left(\mathrm{x}_{1}+\mathrm{x}_{1}{ }^{\prime}-\mathrm{x}_{1}-\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{3} \in N$
i.e.; $\mathrm{zd}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \mathrm{x}_{3}\right)=0 \quad$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{3} \in N$.putting $\mathrm{z}=\mathrm{d}_{1}\left(\mathrm{y}_{1}, y_{2}, y_{3}\right)$, we get $d_{1}\left(y_{1}, y_{2}, y_{3}\right) d_{2}\left(\left(x_{1}, x_{1}\right), x_{2}, x_{3}\right)=0 \quad$ for all $x_{1}, x_{1}^{\prime}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in N$. By Lemma 3.3 we conclude that $\mathrm{d}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right), \mathrm{x}_{2}, \mathrm{x}_{3}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{3} \in N$.

Since we know that for each $w \in N, w\left(x_{1}, x_{1}^{\prime}\right)=w\left(x_{1}+x_{1}^{\prime}-x_{1}-x_{1}{ }^{\prime}\right)=w x_{1}+w x_{1} /-w x_{1}-w x_{1}^{\prime}=\left(w x_{1}, w\right.$ $x_{1}{ }^{\prime}$) which is again an additive commutator of a near-ring N, putting $w\left(x_{1}, x_{1}\right)$ in place of additive commutator $\left(x_{1}, x_{1}\right)$ in (3.5) we get
$\mathrm{d}_{2}\left(\mathrm{w}\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right), \mathrm{x}_{2}, \mathrm{x}_{3}\right)=0 \quad$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{w} \in N$.
i.e.; $\mathrm{d}_{2}\left(\mathrm{w}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right)+\mathrm{d}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right), \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta(\mathrm{w})=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{w} \in N$. Using (3.5) in previous equation yields $d_{2}\left(w, x_{2}, x_{3}\right) \theta\left(x_{1}, x_{1}\right)=0$ for all $x_{1}, x_{1}{ }^{\prime}, x_{2}, x_{3}, w \in N$, using Lemma 3.3 we conclude that $\left(x_{1}, x_{1}\right)=0$. Hence $(N,+)$ is abelain.

Theorem 3.5: Let N be a prime near-ring and $\mathrm{d}_{1}, \mathrm{~d}_{2}$ be any two-nonzero right (θ, θ)-3-derivations, where θ is an automorphism on N. If $d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(y_{1}, y_{2}, y_{3}\right)+d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}, y_{2}, y_{3}\right)=0$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}$, $\mathrm{y}_{3} \in N$, then $(\mathrm{N},+)$ is abelian.

Proof: By hypothesis we have,
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(y_{1}, y_{2}, y_{3}\right)+d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}, y_{2}, y_{3}\right)=0 \quad$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in N$.
Substituting $y_{1}+y_{1}^{\prime}$ instead of y_{1} in (3.6) we get
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(y_{1}+y_{1}{ }^{\prime}, y_{2}, y_{3}\right)+d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}+y_{1}{ }^{\prime}, y_{2}, y_{3}\right)=0 \quad$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{1}{ }^{\prime}, y_{2}, y_{3} \in N$.
So we get
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(y_{1}, y_{2}, y_{3}\right)+d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(y_{1}{ }^{\prime}, y_{2}, y_{3}\right)+d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}, y_{2}, y_{3}\right)+d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}{ }^{\prime}, y_{2}\right.$, $\left.y_{3}\right)=0$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{1}^{\prime}, y_{2}, y_{3} \in N$.

Using (3.6) again in last equation we get
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(y_{1}, y_{2}, y_{3}\right)+d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(y_{1}, y_{2}, y_{3}\right)+d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(-y_{1}, y_{2}, y_{3}\right)+d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(-y_{1}, y_{2}, y_{3}\right)$ $=0$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{1}{ }^{\prime}, y_{2}, y_{3} \in N$.

Thus, we get
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) d_{2}\left(\left(y_{1}, y_{1}^{\prime}\right), y_{2}, y_{3}\right)=0 \quad$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{1}^{\prime}, y_{2}, y_{3} \in N$.
Now using Lemma 3.3 we conclude that $d_{2}\left(\left(y_{1}, y_{1} /\right), y_{2}, y_{3}\right)=0 \quad$ for all $y_{1}, y_{1} /, y_{2}, y_{3} \in N$.
Putting $w\left(y_{1}, y_{1} /\right)$ in place of $\left(y_{1}, y_{1} /\right)$, where $w \in N$, in the previous equation and using it again we get $\mathrm{d}_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \theta\left(\mathrm{y}_{1}, \mathrm{y}_{1}\right.$) $=0$ for all $\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{w} \in N$. using Lemma 3.3 , we conclude that $\left(\mathrm{y}_{1}, \mathrm{y}_{1} /\right)=0$. Hence $(N,+)$ is abelain.

Theorem 3.6: Let N be a prime near-ring and d_{1} be a nonzero right $(\theta, \theta)-3$ - derivation and d_{2} be a nonzero (θ, θ) - 3-derivation, where θ is an automorphism on N. If $d_{1}\left(x_{1}, x_{2}, x_{3}\right) \theta d_{2}\left(y_{1}, y_{2}, y_{3}\right)+\theta d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}\right.$ $\left., y_{2}, y_{3}\right)=0$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in N$, then $(N,+)$ is abelian.

Proof: By hypothesis we have,
$d_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta \mathrm{d}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)+\theta \mathrm{d}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \mathrm{d}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)=0 \quad$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} \in N$.
Substituting $y_{1}+y_{1}{ }^{\prime}$, where $y_{1}{ }^{\prime} \in N$, for y_{1} in (3.7) we get
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) \theta d_{2}\left(y_{1}+y_{1}{ }_{1}, y_{2}, y_{3}\right)+\theta d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}+y_{1}{ }^{\prime}, y_{2}, y_{3}\right)=0 \quad$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{1}{ }^{\prime}, y_{2}, y_{3} \in N$.
Thus, we get
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) \theta d_{2}\left(y_{1}, y_{2}, y_{3}\right)+d_{1}\left(x_{1}, x_{2}, x_{3}\right) \theta d_{2}\left(y_{1}^{\prime}, y_{2}, y_{3}\right)+\theta d_{2}\left(x_{1}, x_{2}, x_{3}\right) d_{1}\left(y_{1}, y_{2}, y_{3}\right)+\theta d_{2}\left(x_{1}, x_{2}, x_{3}\right)$ $\mathrm{d}_{1}\left(\mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)=0 \quad$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \mathrm{y}_{3} \in N$.

Using (3.7) in previous equation implies
$\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta \mathrm{d}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)+\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta \mathrm{d}_{2}\left(\mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)+\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta \mathrm{d}_{2}\left(-\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)+\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \theta \mathrm{d}_{2}\left(-\mathrm{y}_{1}{ }^{\prime}\right.$, $\left.\mathrm{y}_{2}, \mathrm{y}_{3}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \mathrm{y}_{3} \in N$.

Therefore
$d_{1}\left(x_{1}, x_{2}, x_{3}\right) \theta d_{2}\left(\left(y_{1}, y_{1}^{\prime}\right), y_{2}, y_{3}\right)=0 \quad$ for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{1}{ }^{\prime}, y_{2}, y_{3} \in N$.
Now using Lemma 3.3, in previous equation, we conclude that
$d_{2}\left(\left(y_{1}, y_{1}\right), y_{2}, y_{3}\right)=0$ for all $y_{1}, y_{1}{ }^{\prime}, y_{2}, y_{3} \in N$.
Putting $w\left(y_{1}, y_{1}\right)$ in place of $\left(y_{1}, y_{1}\right)$, where $w \in N$, in the previous equation and using it again we get $\mathrm{d}_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \theta\left(\mathrm{y}_{1}, \mathrm{y}_{1}\right)=0$ for all $\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{w} \in N$. Since θ is an automorphism, using Lemma 2.15, we conclude that $\left(y_{1}, y_{1}^{\prime}\right)=0$. Hence $\left(N_{1},+\right)$ is abelain.

Conclusion

In present paper we define the notion of right $(\theta, \theta)-3$ - derivations in near-rings. Also, we study and discuss the commutativity of addition of prime near-ring with right $(\theta, \theta)-3$ - derivations.

References

[1] I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago,1969.
[2] M. Ashraf, M. A. Siddeeque and Parveen, "On semigroup ideals and n- derivations in near-rings", Science Direct Journal of Taibah University for Science, Vol. 9, pp. 126-132, 2014.
[3] M. Ashraf and M.A. Siddeeque ,"On $(\sigma, \tau)-\mathrm{n}$ - derivations in near-rings", Asian - European Journal of Mathematics, 6(4), 14 pages, 2013.
[4] E.F. Adhab, " n-Additive Mappings in Prime and Semiprime Near-Rings" , PHD. thesis, Baghdad University , Iraq , 2016.

