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INTRODUCTION  

The Cauchy type singular integral equation (CSIE)  
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where K (x, t) and f(x) are given real valued functions belonging to the Holder class and (t) is to be 

determined, occurs in varieties of mixed boundary value problems of mathematical physics, isotropic elastic 
bodies involving cracks and other related problems [1-3]. The singular integral in CSIE (1) is considered as 
Cauchy principal value integral. Dezhborda et al.  [5] investigated the numerical solution of various cases of 

CSIE (1) using reproducing kernel Hilbert space (RKHS) method. Chakrabarti and Berge [6] have proposed 
an approximate method to solve CSIE (1) using polynomial approximation of degree n and collocation points 
chosen to be the zeros of Chebyshev polynomial of the first kind for all cases. They showed that the 

approximate method is exact when the force function f(t) is linear. Abdulkawi [1] discussed the numerical 
solution of CSIE (1) for tow cases, unbounded and bounded. He approximated the unknown function by 
weighted Chebyshev polynomials of the first and second kind, respectively, and used Lagrange-Chebyshev 

interpolation to approximate the regular kernel. Eshkuvatov et al. [7] discussed approximate solution of CSIE 
(1) when K (x, t) = 0 for four cases. They used weighted Chebyshev polynomials of the first, second, third and 
fourth kinds. They showed that the numerical solution is ident ical with the exact solution when the force 

function is a polynomial of degree one. Abdulkawi and Akran [2] discussed the numerical solution of CSIE (1) 
when K (x, t) = 0 for bounded case. They used the Differential Transform Method in the solution. Dardery and 
Allan [10] discussed approximate solution of CSIE (1) by means of Chebyshev polynomials of first, second, 

third and fourth kind to obtain systems of linear algebraic equations which are solved numerically.  

In this paper, we focus our discussion on approximate solution of equation 
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for two types of the kernel, Separable and Convolution. 

It is known that the analytical solution of the equation (2) for bounded case is given by the following 

expression [11]. 
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DIFFERENTIAL TRANSFORM METHOD 

The transformation of the kth derivative of a function in one variable is as follows:  
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and the inverse transformation is defined by 

      0
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f x F k x x




   

The following theorems can be deduced from Eqs. (5) and (6) [4]. 

Theorem 1. if        ,f x g x h x  then  

     .F k G k H k   

Theorem 2. if     ,f x cg x  then  

    ,F k cG k  

Where c  is constant. 

Theorem 3. if  
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Theorem 4. if        ,f x g x h x  then 
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Theorem 5. if   ,nf x x  then     ,F k k n   where  
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The following Lemma and Theorems are used in this paper  2 . 

Lemma 1.  If    
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Theorem 6.  If  
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 , then the differential transform of g (x) is 
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where  k  is the differential transform of  t  and C(k ) is defined by Lemma 1. 

 

THE SCHEME OF THE APPROXIMATE SOLUTION 

The approximate solution is derived using the following procedures 

1- The unknown function  g (t) is approximated as: 

   21g t t t   

where   is regular function, so Eq.(1) becomes 
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2- Two Theorems for evaluating the following singular integral for two types of kernels are proved   
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3- Lemma 1 is used for evaluating the singular integral   

 
1

2
1

, . 9
1

kt
dt k Z

t





 


  

4- The following condition is imposed to obtain the unique solution 
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5- Maple codes are developed and run on the personal computer with Pentium 4 processors to obtain 

the numerical results. 

 

Theorem 7. If 
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where      ,k x t a x b t , then the differential transform of g(x) is 
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where      1 2, ,k B k A m are the differential transform of       , ,x b t a x respectively. 

Proof : 

Let  
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Using  Maclaurin series of the functions  t and  b t  into (13) yields  
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From (14) we obtain 
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Due to Lemma 1 ,we have 
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Using Theorem 2 and 6 into (16) we obtain 
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The proof is complete. 

Theorem 8. If 
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where    1,k x t f x t  , then the differential transform of g (x) is   
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where    1 1 2,k F k are the differential transform of    1,x f x t  respectively . 

Proof : 

Let  
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Using  Maclaurin series of the function  t and  1f x t  into (19)  yields  
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From (20) we obtain 
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By using  Binomial theorem for  function 2( )kx t  into (21) yields 
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Due to Lemma 1 we have 
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Using Theorem 2 and 5  into (23) we obtain 
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The proof is complete. 

SOLUTION OF THE SYSTEM FOR SEPARABLE KERNEL  

Taking the differential transform for two sides of  Eq.(7) and  using Theorems 

6 and 7 yields 
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By solving the system (24) we obtain the unknown coefficients  
0

( )
N

k . 
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Therefore, the approximate solution of Eq. (7) will be of the form 
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and then the solution of Eq. (1) will be of the form 
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SOLUTION OF THE SYSTEM FOR CONVOLUTION KERNEL  

Taking the differential transform for two sides of  Eq.(7) and  using Theorems 9 and 6 yields 
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By solving the system (25) we obtain the unknown coefficients  
0

( )
N

k . 

Therefore, the approximate solution of Eq. (7) will be of the form 
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and then the solution of Eq. (1) will be of the form 
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NUMERICAL RESULTS 

The errors of the approximate solutions in the following examples are computed as the absolute value of the 

difference between the exact and approximate solutions. 

Example 1. Consider the following integral equation 
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It is not difficult to verify that the exact solution of Eq.(26) is  

                                 2 2 1
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2
g t t t

 
   

 
 

It is clear that the differential Transform of     3f x x   is 
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It is clear that  , sin ,k x t t x which is Separable Kernel . 

Let  1 sing x x  ,   2g t t  , then the differential transform of 1g  and 2g   respectively are  

 
 

 

      

1

2

1

2 2 2

1
, 1,3,... 29

!

0, 0,2,...

1 1, 2 0, 3 0.

k

kG k
k

k

G G G


  




  

 

Using the system (24) with N=2 we have  
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Which equivalent to the system 
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Solving the system (31) yields 
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Thus the approximate solution of Eq.(26) is 

   2 2 32
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which is identical to the exact solution.                                                       

Example 2. Consider the following integral equation 
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It is not difficult to verify that the exact solutions of  Eq.(33) is 

   2 292 88
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It is clear that   3 2, ,k x t x xt  which is separable kernel. 

Let    3
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2.2g   respectively are  
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Which is equivalent to the system 
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Solving the system (38) yields  
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Thus the approximate solution of Eq.(33) is  
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which is identical to the exact solution. 
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Table 1. Comparison of errors between Method in [10] and proposed method 

for Eq. (33).  

Errors  

x  Proposed method (N =2) Method in [10] )N =20) 

0.000000E+00 0.000000E+00 −9.500000E-01 

0.000000E+00 5.960464E-08 −9.000000E-01 

0.000000E+00 1.192093E-07 −7.000000E-01 

0.000000E+00 1.192093E-07 −5.000000E-01 

0.000000E+00 1.788139E-07 −3.000000E-01 

0.000000E+00 1.788139E-07 −1.000000E-01 

0.000000E+00 1.788139E-07 0.000000E+00 

0.000000E+00 1.788139E-07 1.000000E-01 

0.000000E+00 1.788139E-07 3.000000E-01 

0.000000E+00 1.192093E-07 5.000000E-01 

0.000000E+00 1.192093E-07 7.000000E-01 

0.000000E+00 5.960464E-08 9.000000E-01 

0.000000E+00 0.000000E+00 9.500000E-01 

 

Example 3. Consider the following integral equation 
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It is not difficult to verify that the exact solution of  Eq.(40) is  
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It is clear that   2 2, ,k x t x t  which is separable kernel. 

Let    2

1 2, 1g x x g x   ,      2

1.1 2.21,g x g x t   , then the differential transform of 
1 2 1.1, ,g g g  and 
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Which is equivalent to the system   
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Solving the system (45) yields  

     
2 1

0 , 1 , 2 0.
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Thus the approximate solution of Eq.(40) is  

                                      2 2 1
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which is identical to the exact solution. 
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Table 2. Comparison of errors between Method in [10] and proposed method for Eq. 

(40). 

Errors  

x  Proposed method   ) N =2) Method in[10]   ) N =20 ) 

0.000000E+00 2.980232 E-08 −9.500000E-01 

0.000000E+00 2.980232 E-08 −9.000000E-01 

0.000000E+00 0.000000E+00 −7.000000E-01 

0.000000E+00 0.000000E+00 −5.000000E-01 

0.000000E+00 0.000000E+00 −3.000000E-01 

0.000000E+00 5.960464E-08 −1.000000E-01 

0.000000E+00 5.960464E-08 0.000000E+00 

0.000000E+00 5.960464E-08 1.000000E-01 

0.000000E+00 1.192093E-07 3.000000E-01 

0.000000E+00 1.192093E-07 5.000000E-01 

0.000000E+00 1.192093E-07 7.000000E-01 

0.000000E+00 8.940697 E-08 9.000000E-01 

0.000000E+00 5.960464E-08 9.500000E-01 

 

Example 4. Consider the following integral equation  
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It is not difficult to verify that the exact solution of  Eq.(47) is   

     2 21 4 1 . 48g t t t    
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0, 4,5,

F

F

F

F k k








 


  


  

 

It is clear that    
2

, ,k x t t x   which is Convolution  Kernel. 
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Let    
2

1f x t t x   , then the differential transform of  g is  

        1 1 11 0, 2 1, 3 0. 50F F F      

Using the system (25) with N=2 , we have  

       

   

            

 

 

1

2

2

1 2

2 1

1 1 1

1 0

2 2

0

2 2
2

1 2 2 1 1

0 0 0

1 1

1

1 2 51

, 1,2,3
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k
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k k k

k m k C k k C k k

k m k

k
k F k k k m C k k C k k

k

F m m



 





 



  


          




    



  
          

  



  




 



     

Which is equivalent to the system 

                                  

     

     

 

 

1 1
0 1 2 3,

4 2

1 1
0 1 2 0, 52

2 8

2 4.


       




     

 



 

Solving the system (52) yields  

      0 1, 1 0, 2 4.        

Thus the approximate solution of Eq.(47) is 

 

                                                2 21 4 . 531g x x x    

which is identical to the exact solution. 
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