

The solvable subgroups of large order of L2(p), p≥5

Вγ

A. Abduh and Abeer A. AlGhawazi
Department of Mathematics, Umm Al-Qura University Makkah, P.O.Box 56199, Saudi Arabia

Keywords: Maximal subgroup;; solvable; p-nilpotent; formation

AMSC: 20D10, 20D20

Abstract

By using the following theoretical and computational algorithms , we determined the solvable subgroups of large order of the finite non-abelian simple linear groups $G = L_2(p) = PSL(2,p)$, for $p \ge 5$ and p is a prime number , also their presentations and permutation representations have been found .

Theoratical algorithm

In this section we study theoreticaly the following:

- Determining the solvable subgroups of large order S of L₂(p) , p≥5 and finding their structures up to isomorphisms.
- Finding the presentation of S ,also we find its generators from its character table.
- · Finding the permutation representations of S .

Determining S

Since any solvable subgroup of large order S of G is either one of the maximal subgroups of G or it is contained in one of them , so we have to deal with the maximal subgroups of G . We begin by stating Dickson's results [8] about the maximal subgroups of $PSL(2,p) = L_2(p)$, p is an odd prime number . The result is divided according to p .

Theorem [8]

Let $p = 2^f \ge 4$. Then the maximal subgroups of PSL(2,p) are :

- (1) $C_2^f \rtimes C_{p-1}$ that is , the stabilizer of a point of the projective line ,
- (2) $D_{2(p-1)}$
- (3) $D_{2(p+1)}$
- (4) . PGL(2,p₀), where p= p_0^r for some prime r and p₀ \neq 2.

Theorem [8]

Let $q = p^f \ge 5$ with p an odd prime. Then the maximal subgroups of PSL(2,q) are:

- (1) . $\mathcal{C}_p^f \rtimes \mathcal{C}_{(q-1)/2}$, that is , the stabiliser of a point of a projective line ,
- (2) . D_{q-1} for $q \ge 13$,
- (3) . D_{q+1} for $q \neq 7,9$,
- (4) . $PGL(2, q_0)$ for $q = q_0^2$ (2 conjugacy classes),
- (5) . $PSL(2, q_0)$, for $q = q_0^r$ where r an odd prime,
- (6) . A_5 , for $q\equiv \pm 1 (mod\ 10)$, where either q=p or $q=p^2$ and $p\equiv \pm 3 \pmod{10}$ (2conjugacy classes),
- (7). A_4 , for $q = p \equiv \pm 3 \pmod{8}$ and $q \not\equiv \pm 1 \pmod{10}$,
- (8) . S_4 for $q = p \equiv \pm 1 \pmod{8}$ (2 conjugacy classes).

Now, if we put $q = p^1 \ge 5$, we get the following corollary as a result of the above theorem:

Corollary.

Let $p \ge 5$, p is a prime number. Then the maximal subgroups of $L_2(p)$ are:

- (1) $C_p \rtimes C_{(p-1)/2}$
- (2) D_{p-1} , for $p \ge 13$
- (3) D_{p+1} , for $p \neq 7,9$.
- (4) A_5 , for $p \equiv \pm 1 \pmod{10}$
- (5) A_5 , for $p \equiv \pm 3 \pmod{10}$ (2 conjugacy classes)

- (6) A_4 , for $p \equiv \pm 3 \pmod{8}$ and $p \not\equiv \pm 1 \pmod{10}$
- (7) S_4 , for $p \equiv \pm 1 \pmod{8}$ (2 conjugacy classes)

Proposition.

- (1) The dihedral groups D_{2n} of order 2n are solvable .
- (2) The symmetric group S₄ is solvable
- (3) A₅ is not solvable
- (4) S_3 and A_4 are solvable
- (5) If $H \triangleleft G$ and both H and G / H are solvable then G is solvable .
- (6) The semi direct product $C_p \rtimes C_q$, where p and q are odd primes, is solvable

Theorem. Let H be the solvable subgroup of large order of L₂(p). Then

- (1) $H \cong A_4$, for p=5
- (2) $H \cong S_4$, for p=7
- (3) $H \cong C_p \rtimes C_{(p-1)/2}$, for $p \ge 11$

Proof:

- (1) For p=5 , the maximal subgroups of $L_2(5)$ are A_4 of order 12 , D_{10} of order 10 and S_3 of order 6 and all are solvable . But 12 is the largest order , so A_4 is the solvable subgroup of large order in $L_2(5)$.
- (2) For p=7 , the maximal subgroups of $L_2(7)$ are S_4 of order 24 and $C_7 \rtimes C_3$ of order 21 and both are solvable . But 24 > 21 , S_4 is the solvable subgroup of large order in $L_2(7)$.
- (3) For p≥11, by Corollary 4.1.1.3, the orders of the maximal subgroups of L₂(p) are as follows:

$$\left| \ \ \mathcal{C}_p
times \mathcal{C}_{(p-1)/2}
ight| = rac{p(p-1)}{2}$$
 (solvable)

$$\left|D_{p-1}\right| = p - 1 \tag{solvable}$$

$$\left|D_{p+1}\right| = p + 1 \tag{solvable}$$

 $|A_5| = 60(A_5$ is not solvable and also it does not contain a subgroup of

order large than 12)

$$|A_4| = 12 (solvable)$$

$$|S_4| = 24 (solvable)$$

Now, it is clear that $\frac{p(p-1)}{2}$ is greater than both (p-1) and (p+1). Also for the smallest p=11, we

have
$$\frac{p(p-1)}{2} = \frac{11(11-1)}{2} = \frac{11 \times 10}{2} = 55$$
 and $55 > 12$ and $55 > 24$

So , the largest order is $\frac{p(p-1)}{2}$ and then $C_p \rtimes C_{\frac{(p-1)}{2}}$ is the solvable subgroup of large order of L₂(p) , where p≥11.

presentation of S.

The finite non-abelian simple group $L_2(p)$, $p \ge 5$ and p is a prime number , of order $\frac{p(p-1)(p+1)}{2}$ can be presented as, [2]:

$$L_2(p) = \langle a, b : a^2 = b^3 = (ab)^p = 1 \rangle$$
, for p≥5

The presentations of the solvable subgroup of large order S of L₂(p),p≥5 are as follows :(By using theorem 4.1.1.5and [11])

р	G	S	S	[G : S]	Presentation of S
5	L ₂ (5)	A ₄	12	5	$\langle a, b : a^2 = b^5 = (ab)^2 = 1 \rangle$ []
7	L ₂ (7)	S ₄	24	7	$\langle a, b : a^2 = b^7 = (ab)^2 = 1 \rangle$ []
p≥11	L ₂ (p),	$C_p \rtimes C_{\frac{(p-1)}{2}}$	$\frac{p(p-1)}{2}$	P+1	$S = \langle a, b \mid a^{-p} = b^{\frac{(p-1)}{2}} = e, aba^{-1} = b^k \rangle \text{ with } (\frac{(p-1)}{2}, k) = 1$
					And it is a (p, $\frac{(p-1)}{2}$, $\frac{(p-1)}{2}$) –subgroup in L ₂ (p)

The permutation representations of S:

Let $G=L_2(5)$ and $S\cong A_4$

From the Character table of G and S

The character table of $A_5 \cong L_2(5)$

	2 3 5	2 1 1	2	i i	i	i
	2P 3P 5P	1a 1a	2a 1a 2a 2a	3a 1a	5b 5b	5a 5a
X.1 X.2 X.3 X.4 X.5		1 3 3 4 5	1 -1 -1	1 1 -1	1 A *A -1	1 *A A -1

The character table of A_4

A = (1-Sqrt(5))/2

We have $:L_2(5)$ have 5 conjugacy classes of elements : 1a,2a,3a,5a,5b (of order 1,2,3,5,5 respectively) and A_4 have 4 conjugacy classes of elements 1a,2a,3a,3b (of orders 1,2,3,3 respectively) . So, we have :

$ C_G(a) $	60	4	3	5	5
CL(G)	1a	2a	3a	5a	5b
CL(S) fused up to CL(G)	1a	2a	3a		
			3b		
$ C_S(a) $	12	4	3		
			3		
Permutation character $\chi = 1_S \uparrow^G = \frac{ C_G(a) }{ C_S(a) }$	5	1	1+1=2	0	0
(reducible character)					
χ splits to 2 irreducible characters	1	1	1	1	1
	4		1	-1	-1

And so, the induced Character is : $1_S \uparrow^G = 1a + 4a$

Let $G = L_2(7)$ and $S=S_4$: From the Character table of G and S:

The character table of S_4

We have $L_2(7)$ have 6 conjugacy classes of elements : 1a ,2a ,3a ,4a, have 5 conjugacy classes of elements 1a,2a,2b,3a,4a (of orders 1,2,2,3

The character table of $L_2(7)$

7410 | Page

168	8	3	4	7	7
1a	2a	3a	4a	7a	7b
1a	2a	3a	4a		
	2b				
24	4	3	4		
	8				
7	2+1=3	1	1	0	0
1	1	1	1	1	1
6	2	0	0	-1	-1
	1a 1a 24 7 1	1a 2a 1a 2a 2b 24 4 8 7 2+1=3	1a 2a 3a 1a 2a 3a 2b 2b 24 4 3 8 7 2+1=3 1 1 1 1 1	1a 2a 3a 4a 1a 2a 3a 4a 2b 3a 4a 24 4 3 4 8 7 2+1=3 1 1 1 1 1 1 1	1a 2a 3a 4a 7a 1a 2a 3a 4a 2b 3a 4a 24 4 3 4 8 7 2+1=3 1 1 0 1 1 1 1 1 1

And So , the induced Character is : $1_{S} \uparrow^{G} = 1a + 6a$

G=L₂(p),and S= $c_p \times c_{\frac{(p-1)}{2}}$ (where $p \ge 11$).

The conjugacy classes , representations and the character tables of G have been found by adams [2] , as follows :

Conjugacy Classes of G	Representations of G		
1. I 2. $c_{2}(\epsilon, \gamma) = {\epsilon \choose 0} {\gamma \choose 0} (\epsilon = \pm 1, \gamma \in \{1, \Delta\})$ 3. $c_{3}(x)(x \neq \pm 1), c_{3}(x) = c_{3}(-x) = c_{3}(\frac{1}{x}) = c_{3}(-\frac{1}{x})$ 4. $c_{4}(z)(z \in \mathbb{E}^{1}, z \neq \pm 1), c_{4}(z) = c_{4}(\bar{z}) = c_{4}(-z) = c_{4}(-\bar{z})$	1. $\rho(\alpha)(\alpha^{2} \neq 1), \rho(\alpha) \simeq \rho(\alpha^{-1})$ 2. $\bar{\rho}(1)$ 3. $\rho'(1)$ 4. $\pi(\chi)(\chi^{2} \neq 1, \chi \neq \bar{\chi}), \pi(\chi) \simeq \pi(\bar{\chi})$ 5. ω_{e}^{\pm} if ζ (-1) = 1 6. ω_{o}^{\pm} if ζ (-1) = -1		

Character Table of $PSL(2,q), q \equiv 1 \mod (4)$										
		Number :	1	2	$\frac{q-5}{4}$	1	$\frac{q-1}{4}$			
		Size :	1	$(q^2-1)/2$	q(q+1)	$\frac{q(q+1)}{2}$	q(q-1)			
Rep	Dimension	Number	1	$c_2(\gamma)$	$c_3(x)$	$c_3(\sqrt{-1})$	$c_4(z)$			
ρ(α)	q + 1	$\frac{q-5}{4}$	(q + 1)	1	$\alpha(x) + \alpha(x^{-1})$	$2\alpha(\sqrt{-1})$	0			
$\bar{\rho}(1)$	q	1	q	0	1	1	-1			
$\rho'(1)$	1	1	1	1	1	1	1			
$\pi(\chi)$	q – 1	$\frac{q-1}{4}$	(q-1)	-1	0	0	$-\chi(z) \\ -\chi(z^{-1})$			
ω_e^\pm	$\frac{q+1}{2}$	2	$\frac{q+1}{2}$	$\omega_e^{\pm}(1,\gamma)$	$\zeta(x)$	$\zeta(\sqrt{-1})$	0			

	Character Table of $PSL(2,q), q \equiv 3 \mod (4)$									
	Number: $\begin{vmatrix} 1 & 2 & \frac{q-3}{4} & \frac{q-7}{4} \end{vmatrix}$									
	Size: 1 $(q^2-1)/2$ $q(q+1)$ $q(q-1)$ $q(q-1)$									
Rep	Dimension	Number	1	$c_2(\gamma)$	$c_3(x)$	$c_4(z)$	$c_4(\delta)$			

$\rho(\alpha)$	q+1	$\frac{q-3}{4}$	(q + 1)	1	$\alpha(x) + \alpha(x^{-1})$	0	0
$\overline{\rho}$ (1)	q	1	q	0	1	-1	1
ρ'(1)	1	1	1	1	1	1	1
$\pi(\chi)$	q — 1	$\frac{q-3}{4}$	(q - 1)	-1	0	$-\chi(z) \\ -\chi(z^{-1})$	$-2\chi(\delta)$
ω_o^\pm	$\frac{q-1}{2}$	2	$\frac{q-1}{2}$	$\omega_o^{\pm}(1,\gamma)$	0	$-\chi_0(z)$	$-\chi_0(\delta)$

Property [10]

Let A be a normal subgroup of G such that A is the centralizer of every non-trivial element in A. If further G/A is abelian, than G has |G:A| linear characters, and (|A|-1)/|G:A| non-linear irreducible characters of degree =|G:A|.

Theorem

Let $G = L_2(p), p \ge 11$, and let $S = C_p \rtimes C_{\frac{(p-1)}{2}}$. Then S has $\frac{P+3}{2}$ conjugacy classes of elements.

Proof:

Since $S = \mathcal{C}_p \rtimes \mathcal{C}_{\frac{(p-1)}{2}} \Rightarrow (\textit{front} \quad \textit{h edefinition} \quad)$, $\mathcal{C}_p \unlhd \mathcal{S} \Rightarrow \text{every non-trivial element of } \mathcal{C}_p \text{ has centralizer of order p and isomorphic to } \mathcal{C}_p$. Now, $S/\mathcal{C}_p \cong \mathcal{C}_{\frac{(p-1)}{2}}$ is cyclic , and so it is abelian. So , by applying theorem 4.1.3.4 \Rightarrow S has [S : $\mathcal{C}_p] = \frac{(p-1)}{2}$ linear characters and $(|\mathcal{C}_p|-1)/[S:\mathcal{C}_p] = \frac{p-1}{\frac{p-1}{2}}$ =2 non-linear irreducible characters of degree $\frac{p-1}{2}$. Then , totally , S has $\frac{p-1}{2} + 2 = \frac{p+3}{2}$ irreducible characters and so by corollary 1.9.7. (The number of conjugacy classes is equal to the number of irreducible characters), \Rightarrow The number of conjugacy classes of $S = \frac{p+3}{2}$, $p \ge 11$.

Theorem. Let S = $C_p \bowtie C_{\frac{(p-1)}{2}}$, p≥11. Then S has the following conjugacy classes of elements:

- 1- The identity .2- 2 classes of order p .
- 3- If $\frac{p-1}{2}$ is a prime number, then S has $\frac{p-3}{2}$ classes of elements order $\frac{p-1}{2}$ 4- If $\frac{p-1}{2}$ is not a prime number, then S has $\frac{p-3}{2}$ classes of elements of order

Proof:

- Since S is a group then it hase an identity element which is unique.
- 2- From the character tables of G mentioned above with respect to both cases $p\equiv 1\pmod 4$ and $p\equiv 3\pmod 4$, we find that G has only 2 conjugate classes of types $C_2(\gamma)$ and $\overline{C_2(\gamma r)}$ and each class is of size $\frac{p^2-1}{2}$, and the centralizer of an element in each class is of order p. Now the sylow p-subgroup of $S = C_p \rtimes C_{\frac{(p-1)}{2}}$ is isomorphic to \mathcal{C}_p and so S has conjugacy classes of elements of order p and they are must be only tow conjugate classes, for , if they are $> 2 \Rightarrow$ they must be at least 4 conjugacy classes and 2 of them are fused to $C_2(\gamma) \in G$ and the remaining are fused to $\overline{\mathcal{L}_2(\gamma \gamma)}$

G:	1a		$C_2(\gamma)$	$\overline{\mathcal{C}_2(\gamma \Upsilon)}$		
1		1		From cha	racter tables of G	→
if S has at least 4	. (а	\overline{a}	,
conjugacy classe a, \bar{a}, b, \bar{b} , the	s J			B	$\overline{\mathcal{D}}$	
will be fused to	(2	2	

which means the perm. Character is:

⇒ S has only 2 conjugacy classes of e therefore each class is of size = $\frac{|S|}{p} = \frac{p-1}{2}$

which is imposible because the value must be equal 1

der p, and

3- If p≥11 and q= $\frac{p-1}{2}$ is also a prime number \Rightarrow S = $\mathcal{C}_p \rtimes \mathcal{C}_q \Rightarrow$ S has elements of only orders 1,p,q and it has no elements of order pq because S is not cyclic. Now, we have the numbers of conjugacy classes of type $\frac{p-1}{2} = \frac{P+3}{2} - 1 - 2 = \frac{P+3-2-4}{2} = \frac{P-3}{2}$ and since $\frac{P-1}{2}$ is prime \Rightarrow the centralizers of elements of order $\frac{P-1}{2}$ have the same order and so each of these classes contains p elements , and all are lieing in C (x) \in C and then we have:

	Number		Order	Classes Fusions
	$ \mathcal{L}(a) $ (α) Cs(a) of classes	of elemen	its	
Any prime	1	1	1	1
p≥11				$C_2(\gamma)$
	2 p	p	$\frac{p-1}{2}$	$ \begin{array}{c c} C_2(\gamma) \\ \text{For } \left C_S(a) \right = p & \text{Which} \\ \text{divides} & \text{only} \\ \left C_G(C2(\gamma)) \right \\ \end{array} $
When $\frac{p-1}{2}$ is a prime number		ρ	<u>-1</u> 2	$C_3(x)$ For $\left \mathcal{C}_{\mathcal{S}}(a) \right = \frac{p-1}{2}$ Which divides only $\left \mathcal{C}_{\mathcal{C}}(C3(x)) \right $
S	$\left \frac{p+3}{2}\right $ and $\left \mathcal{S}\right = 1 + \frac{p-1}{2} \times 1$	$2 + \left(\frac{p-3}{2}\right) \times p = \frac{p}{2}$	$\frac{(p-1)}{2}$	

4- If $p \ge 11$ and $\frac{p-1}{2}$ is not a prime number, then S has elements of order 1,p and $m \Big| \frac{(p-1)}{2}$. We can easily show that S has $\frac{p-3}{2}$ conjugacy classes of order m and each class consist of p elements and has centralizers of order $\frac{p-1}{2}$ and all subgroups of order m in G have been determined in [7], and we have:

	Number of Classes	Order of element a	Size of $ \mathcal{Z}(a) $	C _s (a)	Classes Fusions up to G
Any prime p≥11	1 2	1 p	1 <u>p-1</u> 2	<i>S</i> p	1 $C_2(\gamma)$ For $ C_S(a) = p$ Which divides only $ C_C(C2(\gamma)) $
When $\frac{p-1}{2}$ is not a prime number	$\left \frac{p-3}{2} d \right ^{\frac{p-1}{2}}$	total=p	<u>p-1</u> 2		$ \begin{array}{c c} C_3 (x) \\ \text{For} & \left \mathcal{C}_{\mathcal{S}}(a) \right = \frac{p-1}{2} \text{Which} \\ \text{divides only} & \left \mathcal{C}_{\mathcal{G}}(C3 (x)) \right \\ \end{array} $
S	$\frac{p+3}{2}$ and	$ S = 1 + \frac{p-1}{2} \times 2 + \left(\frac{p-1}{2}\right)$	$\left(\frac{-3}{2}\right) \times p = \frac{p(p-1)}{2}$		

The permutation representations of S into G, $1_S \uparrow^C$ can be obtained from the following tow tables as follows:

1- When $G = L_2(p), p \ge 11$ and $p \equiv 1 \pmod{4}$

	Number of conjugacy classes:	1	2	$\frac{p-5}{4}$	1	$\frac{p-1}{4}$
	Size of each class:	1	(p ² -1)/2	p(p+1)	$\frac{p(p+1)}{2}$	p(p-1)
	Order of centralizers $C_{\mathcal{G}}(a)$	<i>G</i>	Р	$\frac{(p-1)}{2}$	(p-1)	$\frac{(p+1)}{2}$
	Order of centralizers $C_{\mathcal{S}}(a)$	S	P	$\frac{(p-1)}{2}$	No element in S has centralizer of order divides (p-1)	No element in S has centralizer of order divides $\frac{(p+1)}{2}$
	Type of classes [a]	1	$c_2(\gamma)$	c 3(x)	$c_3(\sqrt{-1})$	C 4(Z)
Irreducible c	haracters	(1+q)	1	$\alpha(x) + \alpha(x^{-1})$	$2\alpha(\sqrt{-1})$	0
Reducible character	· (induced	q	0	1	1	-1
character $1_{S} \uparrow^{G} = \frac{ C_{G}(a) }{ C_{S}(a) }$		1	1	1	-1	1
5	$C_S(a)$	(1+q)	1	2	0	0

2-When $G = L_2(p), p \ge 11$ and $p \equiv 3 \pmod{4}$

	Number of conjugacy classes:	1	2	$\frac{p-3}{4}$	1	$\frac{p-7}{4}$
	Size of each class :	1	(p ² -1)/2	p(p+1)	$\frac{p(p-1)}{2}$	p(p-1)
	Order of centralizers $C_{\mathcal{C}}(a)$	<i>G</i>	р	$\frac{(p-1)}{2}$	(p+1)	$\frac{(p+1)}{2}$
	Order of centralizers $C_S(a)$	5	P	$\frac{(p-1)}{2}$	No element in S has centralizer of order divides (p-1)	No element in S has centralizer of order divides $\frac{(p+1)}{2}$
	Type of classes [a]	1	$c_2(\gamma)$	$c_3(x)$	c 4(δ)	c 4(z)
Irreducible characters {		(q+1)	1	$\alpha(x) + \alpha(x^{-1})$	0	0
Reducible character (induced		q	0	1	1	-1
		1	1	1	-1	1
character $1_{S} \uparrow^{G} = \frac{ C_{G}(a) }{ C_{S}(a) }$		(1+q)	1	2	0	0

References:

- 1) Abdoly, V. D. ," An algorithm to construct representations of finite groups " , Ph.D thesis, Carleton University, 2003
- 2) adams,J., " Character tables of GL(2), SL(2), PGL(2) and PSL(2) over a finite field",math.umd.edu,april2002. www2.math.umd.edu/~jda/characters/characters.pdf3)
- 3) Breuer,T., " Solvable Subgroups of Maximal Order in Sporadic Simple Groups" LehrstuhlDfurMathematikRWTH, 52056 Aachen, Germany, version(1) in 2006 and version(2) in 2012 . www.math.rwth-aachen.de/ ~Thomas.Breuer/ctbllib/doc/sporsolv.pdf.

- 4) Breuer ,T. , " The GAP Character Table Library ", Version 1.2,2012 . www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib 2012. GAP package.
- 5) Burnside, W., "Theory of groups of finite order". Dover Publications Inc., New York, 1955.
- 6) Connon ,J. ,Mckay,j. and Young,Kiang-Chuen , " The non-abelian simple groups G , $|G|<10^5$ " , Communications in Algebra, Volume 7, Issue 13, pages 1397-1406 ,1979.
- 7) Cameron P. J., Maimani H. R., Omidi G. R. and Tayfeh-Rezaie B., " 3-designs from PSL(2,q) ", Elsevier Science, 2004
- 8) Dickson ,L. E., " Linear groups with an exposition of the Galois field theory ", Dover Publications Inc., New York, 1958.
- 9) Dixon, John D., " Constructing representations of finite groups ", Groups and computation (New Brunswick, NJ, 1991).
- 10) Dornhoff , L., " Group Representation Theory " , (Part A). Marcel Denker, 1971.
- 11) Drozd ,Yu.A. and Skuratovskii, R.v.," Generators and relations for products ", Ukrainian Mathematical Journal ,Volume 60, Number 7 (2008)
- 12) Giudici,M.,"Maximal subgroups of almost simple groups with socle PSL(2, q)" ,School of Mathematics and StatisticsThe University of Western Australia 35 Stirling Highway Crawley, Australia,2009. http://arxiv.org/pdf/math/0703685.pdf
- 13) Gorenstein ,D., "Finite Groups ",Harper & Row New York, Evanston and London, Harper's Series in Modern Mathematics, 1968.
- 14) Gorenstein ,D., "The classification of finite simple groups ",Vol. 1, journal of Groups, 1983.
- 15) Grove, L. C., "Groups and Characters", John Wiley & Sons, New York, 1997.
- 16) Hall, Marshall Jr., "Simple groups of order less than one million", Journal of Algebra 20: 98-102, 1972.
- 17) Issacs, I.M., "Character Theory Of Finite Groups", Dover Books on Mathematics, 1994.
- 18) James,G. and Liebeck, M., "Representations and characters of groups", Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.
- Mann, A., " Soluble subgroups of symmetric and alternating groups ", Israel Journal of Mathematics, Volume 55, Number 2, 1986.
- 20) Nickerson,S. J., " An Atlas of Characteristic Zero Representations " , Ph.D Thesis , University of Birmingham , 2006.
- 21) Rose, H.E., " A Course on Finite Groups ", Springer London Dordrecht Heidelberg, New York, 2000.
- 22) Vdovin, E. P., " Abelian and Nilpotent Subgroups of Maximal Orders of Finite Simple Groups ", Ph.d thesis SB RAS, Institute of Mathematics, 2000.
- 23) WilsonR., Walsh P., Tripp J., Suleiman, I., Rogers ,S.,Parker ,R., Norton ,S., Nickerson ,S., Linton ,S., Bray ,J. and Abbott,R.,Conway,J.H., Curtis, R.T., and Parker, R.A. " Atlas of Finite Group Representations",version(2) 1985, version(3),2004-2012,Available online at: web.mat.bham.ac.uk/atlas/.
- 24) The GAP computational System, {Groups, Algorithms, and Programming}, Version 4.5, 2010 .(http://www.gapsystem.org)