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ABSTRACT 

We propose an adapted Fourier transform method that gives the solution of an oscillation equation with a fractional 
damping term in ordinary domain. After we mention a transformation of cosmic time to individual time (CTIT), we explain 
how it can reduce the problem from fractional form to ordinary form when it is used with Fourier transformation, via an 
example for 1<α<2, where α is the order of fractional derivative. Then, we give an application of the results.  
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1. INTRODUCTION  

   Fourier analysis is one of those areas of mathematics that is very useful for modelling physical phenomena, including 
acoustics, heat transport, electricity and magnetism, quantum mechanics and many others [1]. On the other side, in recent 
decades, non integer (fractional) differentiation has become a more and more popular tool for modeling physical systems 
from diverse areas such as heat flow [2], electrical circuits [3]-[5], control [6]-[8] and medicine [9]. Thus the hug of Fourier 
analysis and fractional analysis was inevitable and in the literature, one can find so many fractional calculus applications 
that use Fourier transform as a solution method [10]-[11]. While some of them introduce an α-th order Fourier transform 
operator (ℱα) in different forms [12]-[13], some use conventional Fourier transform operator (ℱ) directly [10],[14] or 

implicitly [11] but as far as we know, in the current literature, there is not any approach that gives Fourier transform of the 
α-th derivative of a function in terms of Fourier transform of another function’s integer order derivative. Such an approach 
means reducing the process of working with Fourier transform from fractional domain to integer domain that gives the final 
solution in a simpler form. The main objective of this paper is to test if such an alternative treatment is possible rather than 
implementing Fourier transform method directly while finding the solution of an oscillation equation with a fractional 
damping term. 
   In this context, the article is organized as follows: In Section 2, some preliminaries about fractional calculus are 
presented. In Section 3, for the convenience of the reader, we mention about the motivation under the proposed Fourier 
transform method. Some main results are shown in Section 4. Section 5 is devoted to an example to show the adapted 
Fourier transform method works properly making comparison with the solution in [15]. Finally, some conclusions are given 
in Section 6. 
  

2. PRELIMINARIES 

Definition 1. The Riemann‐Liouville type fractional derivative of order  of a function  is 

defined by 

   (2.1) 

where  is the integer part of  

Definition 2. The Caputo type fractional derivative of order  of a function  is defined by  

   (2.2) 

where  is the integer part of  

We note that because of the lower terminal of the integrals in the above denitions is taken as infinity, actually these 

denitions coincide with each other (see 2.271 in [16]). 
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3. MOTIVATION UNDER THE PROPOSED METHOD 

It is generally known that as conventional calculus includes just integer order differential and integral operators, it 

significantly simplify its use for solving applied problems in various fields of science. However, in case of fractional 

calculus, it is not so, even if it represents a rapidly growing field both in theory and in applications to real world problems. 

Because of this, if a link between the ordinary domain and the fractional domain was provided, it would be ideal to facilitate 

the fractional order applications. Such a relation might be constructed on using two kinds of time: the individual time, , 

(which is considered as flowing equably) and the cosmic time, , (which flows non‐equably). Transformation from Cosmic 

Time to Individual Time (CTIT) can be described by the equation  

 

   (3.1) 

   
or equivalently 

  (3.2). 

This relationship between two time scales is used for giving a meaningful geometric and physical interpretation of 

fractional integration and fractional differentiation by the paper of Igor Podlubny and interested readers can find a detailed 

information on these two kinds of time in [17]. By using above equality, a transformation method that gives the exact 

solution of a fractional differential equation in terms of the solution of the corresponding integer order differential equation 

is presented in [18].  extension of this method is also presented in [19]. Also, we have recently found a fractional Laplace 

transform method in the framework of this transformation [20]. Following the same methodology we generate a new 

adapted Fourier transform method which can be used to solve oscillation equations with a damping term in the form: 

   (3.3) 

where  represents any of the mentioned fractional differentiations (Riemann‐ Liouville  or Caputo  

   are the damping and the stifness constants per mass,  (the displacement at time  of a mass) 

and  (the external force per mass) are square‐summable over , which implies that  and  approach  in the 

mean for  

4. MAIN RESULTS 

Fourier transform of a functions ‐th derivative is given by the following theorem in [16]. 

Theorem 1. 

   (4.1) 

where     and    vanishes for 

 

Theorem 2. 

   (4.2) 

where        vanishes for 

 and  .  
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Proof. We use the induction method for the proof: First we should check the validity of the theorem for . Let us 

start with the Laplace transform of the function 

 

which can be written as 

 
 

where   [α]+1. Then the Fourier transform of the function 

 

can be written immediately as 

 
 

When one substitutes the equality (3.2) into the denition of , the equality (4.2) is easily obtained: 

 

 

 

 

 

Now assume that the equality (4.2) is provided for  where  2,3,4,…Then is the equality (4.2) vericated for 

 where … or is the equality 

   (4.3) 

true for ? 

As  where ,.. and  (see (2.142), (2.143) in [16]), 

 can be written as  where ,… and . So 

 

 

 
and the proof is completed. 
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Theorem 3. Assume that  and   vanishes for   

 (4.4) 

where   and . 

Proof. First assume that 

 .   (4.5) 
This is equivalent to the equality 

.   (4.6) 

Let us use the CTIT transformation (3.2). (4.6) can be written as 

 

 
So taking the equality  into consideration  can be written as follows: 

 

 

 

 
. 

5. EXAMPLE 

Example 1. The generalized damping equation [15] is given by (3.3). Let us take    

and . Applying Fourier transform (4.2) to (3.3) and taking (4.4) into account, we find the solution of the given 

fractional differential equation as 

   (5.1) 

where  

Whereas, for the same equation, solution in [15] is given by 
 

   (5.2) 

where  

 

6. CONCLUSION 

In this paper, we propose an alternative way including conventional Fourier transform to solve the generalized damping 
equations. Our proposed methodology produces the solution just by applying a transformation, namely the CTIT 

transformation, to the definition of a function’s ‐th order derivative and reduces the problem into ordinary domain, so it 

yields the final solution in a simpler form. Also, an illustrative example is given to provide a comparison with the solution 
given in [15]. 
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