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ABSTRACT 

In [1], Ozkan Güner et al. obtained some exact solutions of the time fractional Cahn-Allen equation.  

By using the method proposed in [10], we have tested these solutions and have found that they are not the solutions of this 

equation. 
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INTRODUCTION 

In [1], Ozkan Güner et al. studied the following time fractional Cahn-Allen equation： 
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Where tD
denotes Jumarie’s modified Riemann–Liouville fractional derivative [2]. Eq. (1) arises in many scientific 

applications such as quantum mechanics and plasma physics [3-8]. They obtained some analytical exact solutions by using 

Exp-function method, the )/( GG -expansion method and First integral method[3]. However, we have observed that 

these solutions are not true. Here we list two exact solution obtained in [1] as follows: 
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In section 2, by the method proposed in [10], we will prove that the functions (3) and (4) are not the solutions of the Eq. (1). 

ANALYSIS AND RESULTS 

 By Eq. (2), we can rewrite the Eq. (1) as:  

mailto:13939195683@163.com


 

 
I S S N  2 3 4 7 - 1 9 2 1  

 V o l u m e  1 3  N u m b e r  3  
                     J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

7273 | P a g e                                                                        

J u l y ,  2 0 1 7                     h t t p s : / / c i r w o r l d . c o m /  

          

3

0

1
( ) ( ( , ) ( ,0)) .

(1 )

t

xx

d
t u x u x d u u u

dt

  


    
  

              

(5) 

      For simplicity, we choose 0.5   in Eq.(1) for checking the obtained solutions (3) and (4).  

      If the function (4) is a solution of the fractional differential Eq. (1), then the function 
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satisfies the following equation: 
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 Integrating both sides of the eq. (7) with respect to t  from 0 to 1, we have 
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      Take 0x   in Eq.(8), we have: 
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By Maple software, we obtain that left side of Eq.(9) approximately equals 0.832725 and right approximately equals 

0.087684. 

Thus, the function (4) is not a solution of the Eq.(1). Similarly we can prove that the function (3) does not satisfy Eq. (1). 

DISCUSSION AND CONCLUSIONS 

Different from integer-order differential equation, for a given fractional differential equation, it is very difficulty to test whether 

or not a function satisfies it. In this paper, by using the method proposed in [11], we have tested the functions (3) and (4) 

and have found that they are not the solutions of the Eq. (1). 
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