

Ideals and some applications of simply open sets

Arafa A. Nasef and R. Mareay b,*

^a Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, ^b Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.

ABSTRACT

Recently there has been some interest in the notion of a locally closed subset of a topological space. In this paper, we introduce a useful characterizations of simply open sets in terms of the ideal of nowhere dense set. Also, we study a new notion of functions in topological spaces known as dual simply-continuous functions and some of their fundamental properties are investigated. Finally, a new type of simply open sets is introduced.

Keywords and phrases: Ideal; simply open sets; simply continuous; strongly simply continuous and dual simply continuous functions.

1 Introduction

According to Biswas [4] and Neubrunnovaá[23], a subset B of a space (X,τ) is called simply open if it is the union of an open set and a nowhere dense set. In 1969 Biswas [4]introduced the concept of simply continuity and introduced some of its properties. Also, Ewert and Neubrunnova' used simply open set in [13] and [23] to define the concept of simply continuity, i.e. a function $f:X\to Y$ is simply continuous if the inverse image with respect to f of any open set in Y is simply open in X. Also, Dontchev and Ganster [11] used simply open sets to define the concept of strongly simply continuity, i.e., a function $f:X\to Y$ is strongly simply continuous if the inverse with respect to f of any semi-open set in Y is simply open in X. This enabled them to produce a decomposition of continuity for functions between arbitrary topological spaces. Let (X,τ) be a topological space. For a subset B of X, the closure and the interior of B with respect to (X,τ) will be denoted by Cl(B) and Int(B), respectively. This paper provides a useful characterizations of simply open sets in terms of the ideal of nowhere dense set. Also, we introduce and study a new notion of functions in topological spaces known as dual simply-continuous functions and investigate some of their fundamental properties.

2 preliminaries

Definition 2.1 A subset A of a topological space (X, τ) is called:

- 1. semi-open [18] if $A \subseteq Cl(Int(A))$,
- 2. semi-closed [9] if $X \setminus A$ is semi-open,or equivalently, if $Int(Cl(A)) \subset A$.
- 3. an α -set or α -open [24] if $A \subseteq Int(Cl(Int(A)))$,
- 4. α -closed [24] if $X \setminus A$ is α -open, or equivalently, if $Cl(Int(Cl(A))) \subseteq A$,
- 5. preopen [21] if $A \subseteq Int(Cl(A))$,
- 6. nowhere dense if $Int(Cl(A)) = \emptyset$,
- 7. regular open [26] if A = Cl(Int(A)).

The collection of semi -open sets, semi -closed sets and α -sets in (X,τ) will be denoted by $SO(X,\tau)$, $SC(X,\tau)$ and τ^{α} , respectively. Njåstad [24] has shown that τ^{α} is a topology on X with the following properties: $\tau \subseteq \tau^{\alpha}$, $(\tau^{\alpha})^{\alpha} = \tau^{\alpha}$ and $A \in \tau^{\alpha}$ if and only if $A = U \setminus N$ where $U \in \tau$ and N is nowhere dense in (X,τ) . Hence $\tau = \tau^{\alpha}$ if and only if every nowhere dense set in (X,τ) is closed. Clearly every α -set is semi-open and every nowhere dense set in (X,τ) is semi-closed. Andrijevi´c [2] has observed that $SO(X,\tau^{\alpha}) = SO(X,\tau)$ and that $N \subseteq X$ is nowhere dense in (X,τ) if and only if N is nowhere dense in (X,τ) .

Definition 2.2 A subset A of a topological space (X, τ) is called:

- 1. δ -set [8] if $Int(Cl(A)) \subseteq Cl(Int(A))$,
- 2. semi-locally closed [28] if A is the intersection of a semi-open set and a semi-closed set,
- 3. NDB -set [10] if the boundary of A is nowhere dense,
- 4. sg -closed [3] if the semi -closure of A is included in every semi -open superset of A,
- 5. locally closed [6] if $A=G\cap F$ where G is open and F is closed, or, equivalently, if $A=G\cap Cl(A)$ for some open set U .

We will denote the collections of all locally closed sets and semi-locally closed sets of (X,τ) by $LC(X,\tau)$ and $SLC(X,\tau)$, respectively. Note that Stone [27] has used the term FG for a locally closed subset. A dense subset of (X,τ) is locally closed if and only if it is open.

Definition 2.3 Recall that a function $f:(X,\tau)\to (Y,\sigma)$ is called:

- 1. irresolute [9] if $f^{-1}(V)$ is semi-open in (X,τ) for every semi-open set V of (Y,σ) ;
- 2. semi-continuous [18] if $f^{-1}(V)$ is semi-open in (X,τ) for every open set V of (Y,σ) ;
- 3. strongly semi-continuous [1], if $f^{-1}(V)$ is open in (X,τ) for every semi-open set V of (Y,σ) ;
- 4. simply continuous [4, 13, 23], if $f^{-1}(V)$ is simply-open in (X, τ) for every open set V of (Y, σ) .
- 5. strongly simply-continuous [11], if for every semi-open set V of Y, $f^{-1}(V)$ is simply-open in X;
- 6. pre sg continous [25] if $f^{-1}(V)$ is sg closed in (X,τ) for every semi-closed set V of (V,σ) .

3 Simply-open sets

Definition 3.1 [4, 23]. A subset B of a topological space (X, τ) is called simply-open if $B = G \cup N$, where G is an open set and N is nowhere dense in (X, τ) .

By [4], the union and the intersection of two simply open sets is a simply open sets, the complement of a simply open set is a simply open set.

The following proposition is a slight enlargement of Theorem 2.2 from [15].

Proposition 3.1 For a subset $B \subset (X, \tau)$ the following conditions are equivalent:

- 1. B is simply-open.
- 2. Fr(B) (where $Fr(B) = Cl(B) \setminus Int(B)$) is nowhere dense in X
- 3. there exist two subsets G and H of X where G is open and H is nowhere dense in X , such that $G \cup H \subseteq B \subseteq Cl(G \cup H)$
 - 4. B is semi-locally closed.
 - 5. B is a δ -set.
 - 6. B is an NDB-set.
 - 7. $B \in LC(X, \tau^{\alpha})$.

Proof. $(1) \Leftrightarrow (2)$: (see [[4],Remark 1])

 $(1) \Leftrightarrow (3): (see[r4, Definition 1])$

The implications $(1) \Leftrightarrow (4) \Leftrightarrow (5)$ is given in [15].

 $(5) \Leftrightarrow (6)$: Follows from the identity: $Int(Fr(B)) = Int(Cl(B)) \cap Int(Cl(X \setminus B))$

 $= Int(Cl(B)) \cap (X \setminus Cl(Int(B)))$

 $= Int(Cl(B)) \setminus Cl(Int(B))$.

Remark 3.1 One can deduce that:

open set \Rightarrow semi-open set \Rightarrow simply-open set

Clearly every semi-open and every semi-closed set is simply-open. Conversely, not every simply-open set is semi-open or semi-closed. As shown by the following example.

Example 3.1 Consider the following subset of the real line with the usual topology: $S = (0, \frac{1}{2}) \cup (\frac{1}{2}, 1) \cup \{2\}$.

Dontchev and Ganster [11] proved that S is simply-open but neither semi-open nor semi-closed.

Proposition 3.2

- 1. The family of all simply-open sets in a topological space (X, τ) is an algebra of sets, i.e. it contains the complement of each member as well as the union of each two members.
- 2. The finite intersection of simply-open sets is also simply-open.

Proposition 3.3 [11] For a subset $B \subseteq (X, \tau)$, the following conditions are equivalent:

- 1. B is semi-closed.
- 2. B is sg -closed and simply-open.

Proof. $(1) \Rightarrow (2)$: is clear.

 $(2) \Rightarrow (1)$: since B is simply-open, then B can be written as the intersection of a semi-open set S and a semi-closed set F. Since B is S -closed, we have that SCl(B) is contained in S. Since S is semi-closed, SCl(B) is contained in S. Therefore, SCl(B) = B, that is S is semi-closed.

Proposition 3.4 For a topological space (X, τ) the following conditions are equivalent:

- 1. Every simply-open set is semi-closed,
- 2. Every open set is regular open,
- 3. X is locally indiscrete (i.e. every open set is closed),
- 4. Every simply-open set is α -closed.

Proof. (1) \Rightarrow (2): is in Proposition 2.6 [11].

- $(2) \Rightarrow (3)$: is in Theorem 3.3 from [16].
- $(3) \Longrightarrow (4) : \text{Let } B \in SMO(X) \text{ , i.e. let } B = G \cup N \text{ , where } G \text{ is open and } N \text{ is nowhere dense. By } (3)$, G is closed and hence α -closed. Since N is also α -closed and since the α -open sets form a topology in X , then B is α -closed as well.
 - $(4) \Longrightarrow (1)$: is obvious.

In a topological space (X,τ) , a subset B is a V_s- set [7] of (X,τ) if $B=B^{V_s}$, where $B^{V_s}=\cup\{F:F\subseteq B,F^c\in SO(X,\tau)\}$. A topological space (X,τ) is called a semi- R_0- space [19] if every semi-open set contains the semi-closure of each of its singletons.

Theorem 3.1 For a topological space (X, τ) the following conditions are equivalent:

- 1. Every simply-open subspace is a $V_{\rm s}$ set,
- 2. (X, τ) is a semi- R_0 space,
- 3. Every open subspace is a $V_{\rm c}$ set.

Proof. From Remark 2.2, $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.

 $(3) \Longrightarrow (1) \text{ Let } B \subseteq SMO(X,\tau) \text{ , then } B = U \cup N \text{ , where } U \in \tau \text{ and } N \text{ is nowhere dense. By } (3) \text{ , } U \text{ is a } V_s - \text{set. Since every nowhere dense set is semi-closed, then by Proposition 3.5. [7] } B \text{ is a } V_s - \text{set.}$

Let (X,τ) be a topological space and let us denote by I_n the ideal of nowhere dense subsets of (X,τ) . On page 69 in [17] Kuratowski defined a subset $A\subseteq X$ to be open mod I_n if there exists an open set G such that $A\setminus G\in I_n$ and $G\setminus A\in I_n$.

Proposition 3.5 (see page 69 in [17])Let I_n denote the ideal of nowhere dense sets in a space (X, τ) . Then

- 1. open sets are open mod I_n ;
- 2. closed sets are open mod I_n ;
- 3. If A,B are open mod I_n , then $A \cap B, A \cup B$ and $X \setminus A$ are open mod I_n ;
- 4. $A\subseteq X$ is open mod I_n if and only if $A=G\cup N$ where G is open and N is nowhere dense in (X,τ) if and only if A is simply open.

Theorem 3.2 Let A be a subset of a space (X,τ) and let I_n denote the ideal of nowhere dense subsets of (X,τ) . Then the following are equivalent:

- 1. $A \in LC(X, \tau^{\alpha})$;
- 2. $A \in SLC(X, \tau)$;
- 3. A is a δ set;
- 4. $A \in SMO(X, \tau)$;
- 5. A is open mod I_n .

Proof. (1) \Rightarrow (2): Follows from the observation that every α – set is semi-open.

- $(2) \Rightarrow (3) : \text{ Let } A \in SLC(X,\tau) \text{ , i.e. } A = G \cap F \text{ where } G \in SO(X,\tau) \text{ and } F \in SC(X,\tau) \text{ , i.e. } G \subseteq Cl(Int(G)) \text{ and } Int(Cl(F)) \subseteq F \text{ . Since } Int(Cl(A)) \subseteq Int(Cl(F)) \subseteq F \text{ , we have } Int(Cl(A)) \subseteq In(F) \text{ . Since } A \subseteq G \subseteq Cl(Int(G)) \text{ we have } Int(Cl(A)) \subseteq Cl(Int(G)) \text{ . Consequently, } Int(Cl(A)) \subseteq Cl(Int(G)) \cap Int(F) \subseteq Cl(Int(G) \cap Int(F)) = Cl(Int(A)) \text{ . Hence } A \text{ is a } \delta \text{ set.}$
- $(3) \Rightarrow (4)$: Assume that $Int(Cl(A)) \subseteq Cl(Int(A))$ and let U = Int(A) and $N = A \setminus Int(A)$. We will show that N is nowhere dense. Clearly $Int(Cl(N)) \subseteq Int(Cl(A))$, and since $N \cap Int(A) = \emptyset$, we have $Int(Cl(N)) \cap Cl(Int(A)) = \emptyset$. So $Int(Cl(N)) = \emptyset$, i.e. N is nowhere dense.
 - $(4) \Rightarrow (5)$: See Proposition 2.1 [15].
- $(5) \Longrightarrow (1): \text{ Let } A \text{ be open mod } I_n \text{ . By Proposition } 2.1 \text{ [15], } X \backslash A \text{ is open mod } I_n \text{ , so } X \backslash A = U \cup N \text{ where } U \text{ is open and } N \text{ is nowhere dense in } (X,\tau) \text{ . Hence } I_n \text{ .}$

 $A = (X \setminus A) \cap (X \setminus U) \in LC(X, \tau^{\alpha})$ since $X \setminus N \in \tau^{\alpha}$ and $X \setminus U$ is closed in (X, τ) and consequently closed in (X, τ^{α}) .

4 On simply continuous and dual simply continuous functions

Definition 4.1 A function $f:(X,\tau)\to (Y,\sigma)$ is called dual simply-continuous if for every simply open set V of Y, $f^{-1}(V)$ is open in X.

Proposition 4.1 For a function $f:(X,\tau)\to (Y,\sigma)$, the following conditions are equivalent:

- 1. f is simply-continuous;
- 2. For every closed set V of Y, $f^{-1}(V)$ is simply-open in X.

Proposition 4.2 For a function $f:(X,\tau) \to (Y,\sigma)$, the following conditions are equivalent:

- 1. f is strongly simply-continuous;
- 2. For every semi-closed set V of Y, $f^{-1}(V)$ is simply-open in X.

In 1991, Foran and Liebnitz [14] defined a topological space (X,τ) to be strongly irresolvable if no non-empty open set is resolvable or equivalently if every subset of X is simply-open. In 1969, El'kin [12] defined a topological space (X,τ) to be globally disconnected if every set which can be placed between an open set and its closure is open, i.e. if every semi-open set is open. A semi-door space [29] is a topological space in which every set is either semi-open or semi-closed. Note that a semi-door space is always strongly irresolvable. The relationships between simply-continuous, dual simply-continuous, strongly simply-continuous and other corresponding types of functions are shown in the following diagram 1:

Figure 1:

However, the converses are not true in general as shown by the following examples:

Example 4.1 We will consider example 3.4 from [10]. Let $X = \{a,b,c\}$, $\tau = \{\varnothing,\{a\},\{b,c\},X\}$ and $\sigma = \{\varnothing,\{a\},X\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be the identity function. Clearly, f is simply-continuous but not strongly simply-continuous. Set $V = \{a,b\}$. Note that V is semi-open in σ but V is not simply-open in τ .

Example 4.2 Let $X = \{a,b,c\}$, $\tau = \{\emptyset,\{a\},\{b\},\{a,b\},X\}$ and $f:(X,\tau) \to (X,\tau)$ be a function defined as follows: f(a) = f(b) = a and f(c) = c. As pointed out in [25], f is not pre sg — continuous, thus f is not irresolute. But it is easily checked that f is strongly simply-continuous.

Proposition 4.3

- 1. If (X,τ) is locally indiscrete, then a function $f:(X,\tau)\to (Y,\sigma)$ is irresolute if and only if f is simply-continuous.
- 2. If (Y, σ) is globally disconnected, then a function $f: (X, \tau) \to (Y, \sigma)$ is strongly simply-continuous if and only if f is simply-continuous.
- 3. If (X,τ) is strongly irresolvable or, in particular a semi-door space, then every function $f:(X,\tau)\to (Y,\sigma)$ is strongly simply-continuous.

Example 4.3 Let $X = \{a,b,c,d\}$, $\tau = \{\varnothing,\{d\},\{a,d\},X\}$ and $\sigma = \{\varnothing,\{a,d\},\{b,c\},X\}$. Let $f:(X,\tau) \to (X,\sigma)$ defined by: f(a) = a, f(b) = d, f(c) = b, f(d) = c. Clearly f is simply continuous but not semi-continuous.

From the above proposition, we have the following decomposition of irresoluteness.

Theorem 4.1 For a function $f:(X,\tau)\to (Y,\sigma)$, the following conditions are equivalent:

- 1. f is irresolute,
- 2. f is strongly simply-continuous and pre sg -continuous.

Lemma 4.1 For a topological space (X,τ) , we have: a function $f:(X,\tau)\to (Y,\sigma)$ is α – continuous if and only if it is both precontinuous and $D(\alpha,p)$ – continuous.

Definition 4.2 A function $f:(X,\tau)\to (Y,\sigma)$ is called α -continuous [22](resp. precontinuous [21]), if $f^{-1}(V)$ is α -set (resp. preopen) for each $V\in\sigma$.

Theorem 4.2 For a function $f:(X,\tau)\to (Y,\sigma)$, the following conditions are equivalent:

- 1. f is α continuous,
- 2. f is simply-continuous and precontinuous.

Proof. Evidently, by Lemma 3.1, it is sufficient to prove that every simply-open set belongs to $D(\alpha, p)$. At first we shall $B \in D(\alpha, p)$ if and only if $X \setminus B \in D(\alpha, p)$: If $B \in D(\alpha, p)$ then $B \cap Int(Cl(B)) = B \cap Int(Cl(Int(B)))$ Thus we obtain $Cl(Int(B)) = Cl(Int(Cl(Int(B)))) = Cl(Cl(B) \cap Int(Cl(Int(B)))) = Cl(B \cap Int(Cl(Int(B)))) = Cl(B \cap Int(Cl(B)))$; consequently Int(Cl(B)) = Int(Cl(Int(Cl(B)))) = Int(Cl(Int(B))) . Now let us observe $Int(Cl(Int(B))) = X \setminus Cl(Int(Cl(X \setminus B)))$ and $Int(Cl(B)) = X \setminus Cl(Int(X \setminus B))$. implies $Cl(Int(Cl(X \setminus B))) = Cl(Int(X \setminus B))$ consequently and $Int(Cl(X \setminus B)) = Int(Cl(Int(Cl(X \setminus B)))) = Int(Cl(Int(X \setminus B)))$ So $(X \setminus B) \cap Int(Cl(X \setminus B)) = (X \setminus B) \cap Int(Cl(Int(X \setminus B)))$, which means $X \setminus B \in D(\alpha, p)$.

Secondly, we observe that every open set belongs to $D(\alpha,p)$ and every nowhere dense set belongs to $D(\alpha,p)$. Therefore, by the above fact, every closed set belongs to $D(\alpha,p)$ and every set of the form $X\setminus N$, where N is nowhere dense, also belongs to $D(\alpha,p)$. Then every simply-open set $U\cup N$ is of the form $X\setminus (X\setminus G)\cap (X\setminus N)$, where $(X\setminus G)\cap (X\setminus N)$ belongs to $D(\alpha,p)$ by Lemma 3.1, thus the set $G\cup N$ belongs to $D(\alpha,p)$.

Definition 4.3 A function $f:(X,\tau)\to (Y,\sigma)$ is called quasi continuous at a point $x\in X$ (see [20]) if fr each neighborhood U of x an each neighborhood open set $G\subseteq U$ such that $f(G)\subseteq V$.

Remark 4.1 It is easy to see that every quasi continuous function is simply continuous.

Definition 4.4 A function $f:(X,\tau)\to (Y,\sigma)$ is called almost quasi continuous at a point $x\in X$ (see [5]) if for each neighborhood V of f(x) and each neighborhood U of x, the set $f^{-1}(V)\cap U$ is nowhere dense.

Theorem 4.3 A function $f:(X,\tau)\to (Y,\sigma)$ is quasi continuous iff it is almost quasi continuous and simply continuous.

Proof. Follows directly according to Lemma 7 and Theorem 4 of [5].

Theorem 4.4 Let $f:(X,\tau)\to (Y,\sigma)$, $g:(Y,\sigma)\to (Z,\theta)$ be two functions and $g\circ f:(X,\tau)\to (Z,\theta)$ be the composition of f and g. Then the following properties hold: 1. $g\circ f$ is continuous if f is dual simply-continuous and g is simply-continuous,

- 2. $g \circ f$ is dual simply-continuous if f is continuous and g is dual simply-continuous,
- 3. $g \circ f$ is strongly semi-continuous if f is dual simply-continuous and g is strongly simply-continuous,
- 4. $g \circ f$ is strongly semi-continuous if f is dual simply-continuous and g is irresolute,
- 5. $g \circ f$ is simply-continuous if f is simply-continuous and g is continuous,
- 6. $g \circ f$ is strongly semi-continuous if f is strongly simply-continuous and g is irresolute,
- 7. $g \circ f$ is simply-continuous if f is strongly simply-continuous and g is semi-continuous.

5 New types of simply open sets

Definition 5.1 A subset B of a topological space (X,τ) is called simply α -open (resp. simply preopen, simply γ -open, simply β -open) if $B=G\cup N$, where G is an α -open (resp. preopen, γ -open, β -open) set and N is nowhere dense in (X,τ) .

Remark 5.1 From the above definition and Definition 2.1, we have the following implications:

Figure 2:

In the remark above, the relationships can not be reversible as the following examples show.

Example 5.1 Let $X = \{a, b, c, d, e\}$ with a topology τ .

(a) If
$$\tau = \{\emptyset, \{d\}, \{a,b\}, \{a,b,d\}, \{c,d,e\}, X\}$$
, then

- 1. $\{c\}$ is simply open but not open,
- 2. $\{e\}$ is simply α -open but not α -open,

- 3. $\{a,c\}$ is simply preopen but not preopen,
- 4. $\{a\}$ is simply preopen but not simply α -open.

References

- [1] M.E. Abd El-Monsef, R.A. Mahmoud and A.A. Nasef, Strongly semi-continuous functions, Arab Jour. of Phys. and Math. (Iraq), V.(11)(1990), 15-22.
- [2] D. Andrijevi c', Some properties of the topology of α -sets, Mat. Vesnik 36(1984), 1-10.
- [3] P. Bhattacharya and B.K. Lahirir, *Semi* -generalized closed sets in topology, Indian J.

Math., 29(1987), no. 3, 375-382.

- [4] N. Biswas, On some mappings in topological spaces, Bull.Cal. Math. Soc.61(1969),127-135.
- [5] J. Borsik and J. Dobous, On decompositions of quasicontinuity, Real Analysis Exchange, Vo. 16 (1990-1991), 292-305.
- [6] N. Bourbaki, General Topology, Part 1, Addison Wesly, Rending, Mass., 1966.
- [7] M. Caldes and J. Dontchev, G. ∧, sets and G. ∨, sets, Mem.Fac. Sci.Kochi. Univ. (Math.) 21(2000), 21-30.
- [8] C. Chattopadhyay and U.K. Roy, δ -sets, irresolvable space, Math., Slovaca, 42(1992), no.3, 371-378.
- [9] S.G. Crossley and S.K. Hildebrand, semi-topological properties, Fund. Math, 74(1972), 233-254.
- [10] J. Dontchev, The characterization of some peculiar topological spaces via A and B -sets, Acta Math. Hunger., 67(3)(1995), 67-71.
- [11] J. Dontchev and M. Ganster, A decomposition of irresoluteness, Acta Math. Hungarica 77(1-2)(1997), 41-46.
- [12] A.G. El'kin, Decomposition of spaces, Soviet Math. Dokl., 10(1969), 521-525.
- [13] J. Ewert, On quasi-continuous and cliquish maps with values in uniform spaces, Bull. Acad. Polon. Sci., 32(1984), 81-88.
- [14] J. Foran and P. Liebnitz, A characterization of almost resolvable spaces, Rend. Circ. Mat. Palermo, Serie II, Tomo XL (1991), 136-141.
- [15] M. Ganster, I.L. Reilly and M.K. Vamanamurthy, Remarks on locally closed sets, Math. Pannonica, 3(2)(1992), 107-113.
- [16] D.S Jankoivi c', On locally irreducible spcaes, Ann. Soc. Sci. Bruxelles Ser. I, 97(1983), no.2, 59-72.
- [17] K. Kuratowski, Topology, Vol. I, Academic press, New york, 1966.
- [18] N. Levine, semi-open set and semi-continuty in topological spaces, Amr. Math. Monthly, 70(1963), 36-41.
- [19] S.N. Maheshwari and R. Prasad, On R_0 spaces, Portugal Math., 34(1975), 213-217.
- [20] S. Marcus, Suvless functions quasicontinouns au sens de S. Kempists, Collage. Math. 8(1961), 47-53.
- [21] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [22] A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, α continous and α open mappings, Acta Math. Hungar., 47(1983), 213-218.
- [23] A. Neubrunnová, On transfinite sequences of certain types of functions, Acta Fac.Rer. Natur. Univ. Com. Math., 30(1975), 121-126.
- [24] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [25] T. Noiri, Semi-normal spaces and some functions, Acta Math. Hungar, 65(3)(1994), 305-311.
- [26] M.H. Stone, Applications of the Theory of Boolean Rings to General Topology, TAMS,41(1937),375-381.
- [27] A.H. Stone, Absolutely FG-spaces, Proc. Amer. Math. Soc., 80(1980), 515-520.
- [28] P. Sundaram and K. Balachandran, *Semi* -generalized locally closed sets in topological spaces, preprint.
- [29] J.P. Thomas, Maximal connected topologies, J. Austral Math. Soc. Ser.A,8(1968), 700-705.

This work is licensed under a Creative Commons Attribution 4.0 International License.