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Abstract 

The matrices of non-homogeneous Markov processes consist of time-dependent functions whose values at time form 
typical intensity matrices. For solving some problems they must be changed into stochastic matrices. A stochastic 
matrix for non-homogeneous Markov process consists of time-dependent functions, whose values are probabilities 
and it depend on assumed time period. In this paper formulas for these functions are derived. Although the formula is 
not simple, it allows proving some theorems for Markov stochastic processes, well known for homogeneous 
processes, but for non-homogeneous ones the proofs of them turned out shorter.  
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Introduction 

Non-homogeneous (sometimes called inhomogeneous) Markov stochastic processes often appear in scientific 
literature as solutions of many real problems due to twenty-four hour or seasonal fluctuations of probability of many 
real events [2], [4], [5], [6], [10], [11], [12], [14], [17]. But the general theory of these processes very seldom appears 
in textbooks of stochastic processes. The theorems in this paper apply to all continuous-time, discrete value Markov 
stochastic processes. 

All non-homogeneous continuous-time discrete value stochastic processes )[0,)( TttX   with Markov property can be 

defined by Nnknk tf ,, )]([  - a matrix of time-dependent, integrable and limited on limited intervals functions 

R)[0,:, Tf nk  where: 

 

 ,0)(, knifnforallkandtf nk   (1) 
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They can be defined by a probability space )),(,( P   for a Markov stochastic process )[0,)( TttX   by the 

formulas:  
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 or they can be defined by formulas without described a stochastic process, althought such process always exists 
([13]). 

The matrix of functions )]([ , tf nk  is named an intensity matrix [15], [1], or state-transition matrix [8], [16] for the 



 
I S S N  2 3 4 7 - 1 9 2 1  

 V o l u m e  1 3  N u m b e r  3  
                      J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

 

7245 | P a g e                                                                        
2 0 1 7 ,  J u n e                                      h t t p s : / / c i r w o r l d . c o m /  
 

stochastic process )[0,)( TttX  . The intensity matrix specifies all features of continuous-time discrete value stochastic 

processes with Markov property. In particular it should clearly define a stochastic matrix of this process for any fixed 
time-period. 

Idea of time-depended stochastic and intensity matrices are not new [3], [9]. The equations that I am derived in my 
article, can complement the theory shown in these papers. Moreover the theory of non-homogeneous stochastic 
processes with Markov property turned out to be easer than theory of their special case: homogeneous processes. 

The first aim of this study is to construct a stochastic matrix for a continuous-time discrete value stochastic process 

with Markov property, whose intensity matrix (e.g. matrix of the function )(, tf nk  wchich satisfy the properties 1, 2 

and 3) and time period   is known. The formulas of probability are the same than in [9] but written in different way. 

This simplifies and shortens the proofs of some theorems about Markov processes and it is the second aim. The third 
aim is showing that for homogeneous processes similar formulas are too complicated for applications. It shows that 
Markov stochastic processes theory should be taught starting with non-homogeneous processes. 

An intensity matrix for the stochastic matrices 

For non-homogeneous stochastic processes, stochastic probability matrices Nnknk ttF ,21, )],([  can be different for 

different 1t  and 2t  such that 21 < tt  are initial and final times of one or multiple transitions from state kE  to state 

nE . For these matrices the following features have been assumed: 

 

 ,1),(0 21, nforallkandttF nk   (6) 
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where )(, tf nk  are integrable functions. 0=),(, ttF nk  for nk   and 1=),(, ttF kk  for all k . 

For a Markov stochastic process the following formula is true:  

 ),(),(=),( 32,21,31, ttFttFttF nmmk

m

nk 
N

 (10) 

 for all k  and n , and 321 << ttt . In the proof of this equation the property (7) is used. But there isn’t a proof that 

the property (7) is nessesary. 

After the division of the interval ),[ 21 tt  into 1L  equal segments )1)(,[ 11   itit  where 
1

= 12





L

tt
 , we 

receive the formula:  
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 =),( 21, ttF nk  (11) 
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In many sequences ),,...,,( 1 nmmk L  the equalities: 1= mk  or 1= ii mm  , or nmL =  can be observed. Each 

such a long sequence can be ordered by number of state changes, noted as r . Sometimes it will be note 0= mk , 

01 = xt  and rmn = , 12 = rxt  for reduction of the notation of the equations. 

Let ),...,( 21 rxxx  be beginnigs of intervals )1)(,[  ii  of changing states 
0

= mk EE  to 
1

mE , 
1

mE  to 
2

mE , 

1r
mE  to n

r
m EE = . The interval ),[ 10 xx  is a time of no changing state km EE =

0
. 

Equation (11) can be noted as:  
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 for j=1,2,...,r. 

For 0=r  and nk =  this equation is reduced to ),( 21, ttG kk . For 0=r  and nk   it is equal 0, as probability of 

impossible event. The event 1=r  and nk =  is also impossible, so it’s probability is equal 0 . 

 

 

 

Theorem  For r=0:  
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 Proof  Using itsi 1=  the following conversions can be done:  
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 because of 1=1))/((lnlim 1  xxx  and )(=1)/),((lim ,,0 tfttF kkkk    due to assumption (6). 

After substituting 21 = tx  equation (15) is received. Using ixsi =  the following conversions can be done:  
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 The last equation can be transformed into (16). The general equation for r transitions can be proved by mathematical 
inductions using the transformations shown above.  

According to theorem 1 the general relationship between an intensity matrix and a stochastic matrix is shown by the 
formula: 
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 where 10 = tx , 21 = txr , km =0  and nmr = . They are integrals of the functions which are known in statistics 

as incomplete integrals. They are not new concepts in mathematics, but rarely used. 
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Stochastic matrices for the intensity matrix 

In this section the matrix Nnknk tf ,, )]([  of integrable functions with properties (1), (2) and (3) given in introduction. 

Matrix )],([ 21, ttF nk  is defined by formulas (20)-(23). The properties of this matrix are analysed. 

Property (1) is obvious. Properties (3) and (6) are true if each ),( 21, ttF nk  is finite. Each ),( 21, ttF nk  is finite if the 

sum ),( 21,1=
ttF nkn


 is finite. So it is enough to analyse property (2). 

Lemma  For any 1x  and 2x  ( 21 < xx ) and time-dependent, integrable function f   
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Theorem  Let Nnknk tf ,, )]([  be any finite or infinite matrix of integrable functions, finite on finite intervals of time, 

which has properties (7), (8) and (9). Then the matrix of the functions given by formula (20)-(23) satisfy the property:  
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 This inequolity is the same, as:  
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 according to lemma 1. After substituting this formula into equation (29) we receive:  

 =),...,,( 10
2
,

1

1

q

t

qt

q
m

q
m

mmmK




 (31) 

  

 ).,...,,(),...,,( 110
2

1,
1

110
2

1,
1

  q

t

qtq

t

qt mmmKmmmH  

 

It can be proved that:  

 =),...,,(... 10
2
,

1

11201

q

t

qt

q
m

q
mmmmm

mmmK




 (32) 

  

  









),...,,(...= 10
2
,

1

211201

1

1=

r

t

rt

r
m

r
mmmmm

q

r

mmmH  

  



 
I S S N  2 3 4 7 - 1 9 2 1  

 V o l u m e  1 3  N u m b e r  3  
                      J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

 

7251 | P a g e                                                                        
2 0 1 7 ,  J u n e                                      h t t p s : / / c i r w o r l d . c o m /  
 

 1))((exp
0

,
0

2

1

 dssf mm

t

t

 

 

 1),...,,(...= 10
2
,

1

11201

1

0=

 






r

t

rt

r
m

r
mmmmm

q

r

mmmH  

 

So:  

 =),...,,(... 10
2
,

1

11201

1

0=

r

t

rt

r
m

r
mmmmm

q

r

mmmH






 (33) 

  

 1),...,,(...1 10
2
,

1

11201

 




q

t

qt

q
m

q
mmmmm

mmmK  

 

The q  can be replaced by  . It means that 1),( 21,  ttF nkn
.  

Theorem  Let Nnknk tf ,, )]([  be any matrix of integrable functions, which has properties (7), (8) and (9), and there exists 

such a real number M , that Mtf kk >)(,  for each k  and time t . Then:  
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Proof  Due to equation (33) it is sufficient to prove that:  
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If the matrix Inknk tf ,, )]([  is finite (e.g. the set of indexes I  is finite) and all functions nkf ,  are limited, then there 
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exists a real number M , such that Mtf nn >)(,  for all n. For each finite intensity matrix Inknk tf ,, )]([  the 

corresponding stochastic matrix Inknk ttF ,21, )],([  has the property 1=),( 21, ttF nkn  for all k  and time period 

),[ 21 tt . 

Property 1=),( 21, ttF nkn  isn’t true for some infinite matrices Nnknk tf ,, )]([ . It has long been known that there 

exist stochastic processes which stochastic matrices does not have this property [7]. Number ),(1 21, ttF nkn  is 

a probability that the realization of stochastic processes starting from the state kE  at time 1t  reaches infinity before 

time 2t . For many infinity intensity matrices this probability is positive. 

The stochastic matrix of homogeneous stochastic processes 

For a homogeneous stochastic process the intensity matrix Nnknk tf ,, )]([  is independent of time. It is a matrix 

Nnknka ,, ][  of constant functions, whose integrals can be easily calculated. The nka ,  are real numbers, positive for 

nk   and negative for nk = , and 0=,nkn
a  for all k . 

The calculation of the stochastic matrix N nknkA ,, )]([  can be realised by the calculation of )(, r
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For r=2:  



 
I S S N  2 3 4 7 - 1 9 2 1  

 V o l u m e  1 3  N u m b e r  3  
                      J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

 

7254 | P a g e                                                                        
2 0 1 7 ,  J u n e                                      h t t p s : / / c i r w o r l d . c o m /  
 

 =),(,2 nkH t

t


 (40) 

  

 =)(exp 12,

2

,

2

1

,

1

,,

1

dxdxdsadsadsaaa nn

t

x

mm

x

x

kk

x

t

nmmk

t

x

t

tm



  

 

 122,12,1,,,

1

))()()((exp dxdxxtaxxatxaaa nnmmkknmmk

t

x

t

tm




 

The double integral (named )(mI ) must be calculated after consideration of all possible dependencies between 

kka , , mma ,  and nna , . 

If nnmmkk aaa ,,, ==  then:  
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If mmkk aa ,,   and nnmm aa ,,   and nnkk aa ,,    
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 where  

  ))((exp)(=),,( ,,,,,,,, mmnnkknnkknnmmkk aaaaaaaa  
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Writting the formulas for any r is impossible. The complicated form of these equations is the cause of the lack of them 
in the textbooks of probability. 

5  Conclusions 

This paper shows that an intensity matrix is more basic in the theory of continuous-time, Markov stochastic processes 
than a stochastic matrix. The intensity matrix generates a stochastic matrix and sometimes this matrix does not 
satisfy the condition: the sum of elements in each row equals one. Therefore, this condition is not necessary for 
stochastic matrices. 

Although the form of equation (20) is not simple, it allows proving some theorems for Markov stochastic processes. 
This equation allows calculating a stochastic matrix by computer programs for given intensity matrices. Because 

series (20) is convergent, for any 0>  there exists such Nsr  that:  
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 Therefore, a calculation of a stochastic matrix with willed accuracy is possible after finite steps. 

Having state transition matrix we can calculate an ergodic coefficient, a limited matrix for a stochastic process 
probability distribution after long time (if ergodic coefficient is less than 1) and other characteristics of stochastic 
processes. Until now, this was not possible. 
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