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Abstract

The matrices of non-homogeneous Markov processes consist of time-dependent functions whose values at time form
typical intensity matrices. For solving some problems they must be changed into stochastic matrices. A stochastic
matrix for non-homogeneous Markov process consists of time-dependent functions, whose values are probabilities
and it depend on assumed time period. In this paper formulas for these functions are derived. Although the formula is
not simple, it allows proving some theorems for Markov stochastic processes, well known for homogeneous
processes, but for non-homogeneous ones the proofs of them turned out shorter.
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Introduction

Non-homogeneous (sometimes called inhomogeneous) Markov stochastic processes often appear in scientific
literature as solutions of many real problems due to twenty-four hour or seasonal fluctuations of probability of many
real events [2], [4], [5], [6], [10], [11], [12], [14], [17]. But the general theory of these processes very seldom appears
in textbooks of stochastic processes. The theorems in this paper apply to all continuous-time, discrete value Markov
stochastic processes.

All non-homogeneous continuous-time discrete value stochastic processes (Xt)te[OT) with Markov property can be

defined by [f, (1)l v - @ matrix of time-dependent, integrable and limited on limited intervals functions

f..:[0,T) >R where:

f ., (t) = 0 forallkandnifn =k, )
f () <Oforallk, )
D fiq(t) = Oforallk. 3)

neN

They can be defined by a probability space (€2, 5(€2),P) for a Markov stochastic process (X,), o1y by the

formulas:
P{X.. =E | X, =E
fk,n(t) - I|m { t+z n | t k} (4)
r—0" T
or
P{X.. =E | X, =E }-1
fk,k(t): I|m { t+z kz|- t k} , (5)
r—0"

or they can be defined by formulas without described a stochastic process, althought such process always exists

([13]).

The matrix of functions [ f,  (t)] is named an intensity matrix [15], [1], or state-transition matrix [8], [16] for the
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stochastic process (Xt)te[0 T The intensity matrix specifies all features of continuous-time discrete value stochastic

processes with Markov property. In particular it should clearly define a stochastic matrix of this process for any fixed
time-period.

Idea of time-depended stochastic and intensity matrices are not new [3], [9]. The equations that | am derived in my
article, can complement the theory shown in these papers. Moreover the theory of non-homogeneous stochastic
processes with Markov property turned out to be easer than theory of their special case: homogeneous processes.

The first aim of this study is to construct a stochastic matrix for a continuous-time discrete value stochastic process
with Markov property, whose intensity matrix (e.g. matrix of the function fk n(t) wchich satisfy the properties 1, 2

and 3) and time period A is known. The formulas of probability are the same than in [9] but written in different way.
This simplifies and shortens the proofs of some theorems about Markov processes and it is the second aim. The third
aim is showing that for homogeneous processes similar formulas are too complicated for applications. It shows that
Markov stochastic processes theory should be taught starting with non-homogeneous processes.

An intensity matrix for the stochastic matrices
For non-homogeneous stochastic processes, stochastic probability matrices [Fk,n (t11t2)]k,neN can be different for

different t, and t, such that t; <t, are initial and final times of one or multiple transitions from state E, to state

E, . For these matrices the following features have been assumed:

0<F,(t,t,) <1forallkandn, (6)
D Fea(t,t,) =1forallk, (7)
neN

lim K, (t,t+7)=0foralln =k
7—0

and

lim F  (t,t+7) =1forallk, ®)
7—0

Fo.(tt+7)—F (Lt
m (L T+7) — Ry ( ):fk’n(t)forallnandk ©

70

where f,  (t) are integrable functions. F (t,t) =0 for K= n and K, (t,t) =1 forall k.

For a Markov stochastic process the following formula is true:

Fen (t,t) = ZFk,m (tlltZ)Fm,n (t,,t;) (10)

meN

forall K and N, and t1 < t2 < t3. In the proof of this equation the property (7) is used. But there isn’t a proof that
the property (7) is nessesary.

Adter the division of the interval [t;,1,) into L+1 equal segments [t, +10,t, + (1 +1)0) where & = t|2__t11
+

, we

receive the formula:
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F.(t,t) = (11)

> D Rt +0)F, o (G +84+258)F, (G +LS,).

mleN mLeN

In many sequences (K, M,,...,m_,n) the equalities: K =m, or m, =m, +1, or m_ =N can be observed. Each
such a long sequence can be ordered by number of state changes, noted as I' . Sometimes it will be note K = m,,
t,=X and N=m,, t, =X

r+1 for reduction of the notation of the equations.

Let (X, X,,...X,) be beginnigs of intervals [iJ, (1 +1)J) of changing states E, = Emo toE_ ,E toE

m my my

Emr_1 to Emr = E,. Theinterval [X,, X,) is atime of no changing state Emo =E,.

Equation (11) can be noted as:

Fo.t,t)= 12)

ZL: Z Z Gk,k(tl’xl)Gk,ml(Xl’X2)“'Gmr_l,n(xr’t2)

r=0 m #m, ¢---¢mr71xl<x2 <m<xr

where:

(q-y)s-1

Gt x)= [ Feu(X+i8,%+(i+1)5), 13)
i=0
ijfl'mj (X} X)) = (14)
(Xj+1*Xj)/57l
ij—l'mj (Xj, X; +6) 1:1[ ij,mj (X; +i8,%; +(i+1)9)

forj=1,2,...,r.

For r =0 and K =N this equation is reduced to G, , (t;,t,). For r =0 and K # n itis equal 0, as probability of

impossible event. The event I' = 1 and K =n isalso impossible, so it's probability is equal 0.

Theorem For r=0:
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b
lim Gy i (t,t;) = exp (] 4 (¥)dx). (15)
Forr=l1and N#K:
t X t)
lim > Gy (4, )Gy (1) = [fi (exp ([ (s)ds + [ £, , (s)ds)ax. (16)
—> X t1 t1 g
For I >1 transitonsand K #m, #---=m,_, #n:
!j_rlg ZGk,k (tl’ Xl)Gk,ml (Xp X2) . .Gmr—r” (Xr ,t2) = 7)
Hty b
[T fm O f ) 060D Bry (X
Ux X

X X th
o ([ (s)ds+ [ f,  (s)ds+...+ [ £, (s)ds)dx,...dx,dx.
Y X X

r

Proof using S, =t, +iJ the following conversions can be done:

(g4 V61
LirrgGk,k t, %)= !yi”} H Fex (S8 +0) = (18)

i=0

(-t V6-1
!siLTgeXp( z In(F,  (Si,8i +9))) =

i=0

& |j (5()(1%51 In(F (S8 +0)) F (5,8, +) -1
P all = F(s,s+0)-1 o

):

e ([ i, ()dx)
4

because of |imy_1IN(X)/(X—1) =1 and lims_o (F, (t,t+0)—-1)/6 = f, (1) due to assumption (6).

After substituting X; = t2 equation (15) is received. Using S; = X+ i0 the following conversions can be done:

V)
|§ing ZGk,k (t, X)Gn (X, 1,) = (19)
U x=ty
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(ty )51

IImZGkk(tl'x)Fkn(X X+5) H Fkk(sl’ |+5)=

(t,—xy5-1
||m ZGkk(tl’X)Fkn(X X+0)exp( z In(Fy  (si,8; +0))) =

Fen (X X+0) Q2 N(F (5,5 +9))
s

CEDY )=

i=0

t
lim 5> G (. %)
- x=t

im | 00, ()91, () 0 1, (5.
—0 y 4 X

The last equation can be transformed into (16). The general equation for r transitions can be proved by mathematical
inductions using the transformations shown above.

According to theorem 1 the general relationship between an intensity matrix and a stochastic matrix is shown by the
formula:

Fk'n(tl,tz):iz Do > HEKmum,.,m ) 20)

r=0m km, =m; M _1#My_o

mp_g#n
where:

)
Httlz,o (k) =exp (I fk,k(x)dx)1 (21)

by
H2,(k,n) = j fkn(x)exp(j o (5)ds+ j f. . (s)ds)dx, 22)

l
H, (Mg, my,...,m,) = (23)
X1 %re1 Xre1 oy X1

j j j [Tt . (x)exp(zj fr m (S)dS)0X,...dx,lx,

X ¥ X T

where X, =t,, X,,;, =t,, M, =K and m, =n. They are integrals of the functions which are known in statistics
as incomplete integrals. They are not new concepts in mathematics, but rarely used.
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Stochastic matrices for the intensity matrix

In this section the matrix [ f,  (t)], .y of integrable functions with properties (1), (2) and (3) given in introduction.
Matrix [F  (t;,t,)] is defined by formulas (20)-(23). The properties of this matrix are analysed.

Property (1) is obvious. Properties (3) and (6) are true if each F (t,,t,) is finite. Each F_ (t;,t,) is finite if the

sum Z(::le’n (t11t2) is finite. So it is enough to analyse property (2).
Lemma For any X, and X, (X; < X,) and time-dependent, integrable function f

Jgf (X)exp (jx.f (s)ds)dx =exp (ff (x)dx) -1 (24)

Y1 Y1 Y1

Proof Let h(x) =exp If(s)ds .Then: h'(X) = f(X) exp(j‘f (s)ds) . so:

1 1

1 0o (] S)a90x=h(y,)-h(y) =em([ f () -1 =

Y1 Y1 Y1

Theorem Let [fk n(t)]k neN e any finite or infinite matrix of integrable functions, finite on finite intervals of time,
which has properties (7), (8) and (9). Then the matrix of the functions given by formula (20)-(23) satisfy the property:

ZFk,n (t,t,)<1 (26)

neN

for any time period (tl,'[z) )

Proof it will be proved that for any g>1:

q-1
X222 > HAkmum,.,m n)<1 @)

nor=0m =km,=m M _1#Mp_o
m._,#n
r-1

This inequolity is the same, as:

g-1
I DY Httl%,(k,ml,mz,...,mr_l,mr)Sl (28)

r=0m =km, =m; M _#Mp_pMe#m,_4

Let 4 >1. Letfor X, =1, and X,,; =1,,and My =K.

Xg+1 —
Kngq (Mg, my,...,m,) = (29)
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*g+1%q+1 g+l g-1%i41

[ ] ﬁfmi_ymﬁ (x)ep (X [ 1 o (5)ds)dx,...dx,dx,
X

Xqg 171 i=0 x;
There is a difference between K “+1(m0,m1, ,m,) and H q”(mo,ml, ,M,) because the sum of

0

components of the function exp () in K, q+l o (Mg, My,...,m,) is shorter than in H, qﬂ q (Mg, my,...,m,).

According to assumption (9):

> Kq*l(mo,ml, wmy) = (30)
Mg Mg _g
*q+1%q+1 ¥o+l g1 q-2%i+1
— [ [ T T ym 0ORC | i (S)ASIW (X, 1), ...y,
0o % Xq—2 =1 1=0 %
where:
q+l
W(x) = | o m l(x)exp(jf e 1 (8)ds)d (%) =
g1 Xg-1
Xq+l
op( [ fn n,,(9)08)~1
Xg-1

according to lemma 1. After substituting this formula into equation (29) we receive:

Z K (mo,ml,...,mq): (31)
&q (Mg, my,m )+ Kth (Mg, my,..,m ).

It can be proved that:

DI Kttl%q(mo,ml,...,mq): 32)

my#mg My #my My #Mg_y

:_qz_l“z > 2 HE(mg,mg,. m)—

r=1 m #MyMy#my - M _q#m._,
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P ([ (5)ds)+1
4

=_qiz >y H;%r(mo,ml,...,mr)+l

r=0 m #MgMy#my  me#me 4

So:

$F Y. 3 HEmm..m)=

r=0m=mgmy=m - m.=m._,

-> > K;%q(mo,ml,...,mq)31

my#mg My #my My #Mg_y

The ( can be replaced by 0. It means that Zan,n (t,t,)<1.

in Mathematics

(33)

Theorem Let [fk,n (t)]k,neN be any matrix of integrable functions, which has properties (7), (8) and (9), and there exists

such a real number M , that fk,k (t) >—M foreach K and time t. Then:

> Fn(ty,t,) = 1forallkandtimeperiod [t;, t,).

Proof Due to equation (33) it is sufficient to prove that:

lim > .. > > K ,(mg,m,...,m,) =0.

—m
a myEMy Mg #EMg oMy #mg g

For any q:
t
Do D 2 KA mym,.,my) =
ml;sk mq_lqzmq mq’émql
by b
)INED YD S | M AR S
mlf-k q l¢mq qu¢mq ayxy q 1
% *q
(| frgmg ()05 +...+ | Fig 1 (8)S)X, .0, =
t1 xq—l
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[ oo | 0 fy 0y 00D (0
UX X

X *q
(| frgmg ()05 +...+ | fig g (d8)dX...cx <
i

Xq -1

t2t2 t2
M [ [ | MO —t) == M (%, =X, 1))dx,..dx, =
uyx Xq-1
t212 t2
M [ [ | 00 (-M 0, ~t))dx, ., =
I1X1 Xq_l
Lty b
I\/Iq—l.” I exp (=M (X, —t,))dx, ,...dx —
tle Xq 2
Lty
ooemt, -] | a0
t:I.XZI. Xq 2
Lty L
M ].. j exp (—M (X, —1,))dX, ,...dx, —
tle Xq 2

Texp (=M (t, —t ))(t—t)(H =..=

(q-1)!

1—ie><p(—M(t t))(M((t t),))qul

v A o
But erOFEXp (=A) =1 forany A, so the equation 35 is true.

If the matrix [ f,  (t)], .o, is finite (e.g. the set of indexes | is finite) and all functions f,  are limited, then there
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exists a real number M , such that f_ (t)>—M for all n. For each finite intensity matrix [f,  (t)], .o, the
corresponding stochastic matrix [F ,(t;,t,)], .., has the property Zan,n (t,,t,) =1 for all K and time period
[tt)
Property ank’n(tl,tz) =1 isn't true for some infinite matrices [ f, ()] .oy - It has long been known that there
exist stochastic processes which stochastic matrices does not have this property [7]. Number l—Zan'n (tl,tz) is
a probability that the realization of stochastic processes starting from the state Ek at time tl reaches infinity before
time t2 . For many infinity intensity matrices this probability is positive.
The stochastic matrix of homogeneous stochastic processes
For a homogeneous stochastic process the intensity matrix [ f,  (t)], .oy is independent of time. It is a matrix
[ak,n]k,neN of constant functions, whose integrals can be easily calculated. The @, , are real numbers, positive for

K # N and negative for K = n, and znak'n =0 forall k.

The calculation of the stochastic matrix [A (A)]; sy can be realised by the calculation of Ay (A) where

An(B) = ZE:;OA{’,] (A) and:

A= > . > HiAKm,m,,.,m ). (37)
my#kmy =My Mg #Mp_p
mr_l¢n

The H " (k,m;,m,,...,m,_;,n) are given by formulas (21)-(23) after substitution t, =t anf t, =t+A.

For r=0:
t+A
HiG (k) = ep( [ a,,ds) = exp (3, (A), (38)
t
For r=1:
t+A X t+A
Hi (k,n) = [, eo0([a, ds+ [a,,ds)dx = (39)
t t X
t+A
= [a, 00, (x—1)+a,,(t+A—x)dx =
t
a,, .
S (eXp (ak,kA) - eXp (an,nA))Ifak,k # an,n
Ak —Qny
a AP (8 A) ifa, = a,,
For r=2:
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H:5 (k,n) = (40)
t+At+A X Xa t+A
> I 'fak,mam,n exp('fak,kds + J‘am,mds+ ‘fan,nds)dxzdxl =
motox t X *2
t+At+A
Z J. _[ ak,ma‘m|n exp (ak,k (Xl _t) + a'm,m (XZ - Xl) + an,n (t +A— XZ))dXdel

m t Xl

The double integral (named I(m)) must be calculated after consideration of all possible dependencies between

Qs Qpp and a .
If a,, =a,,=4a,, then:
a .a_ Aexp(a A
| (m) — k,m“m,n Xp( k,k ) (41)
2
Ifa,, =a,,and a,  #a,, then:
I (m) - a‘k,mam,nAexp (ak,kA) . ak,mam,n[exp (ak,kA) _exp (an,nA)] (42)
2
ak,k _an,n (ak,k _an,n)
If &  #a,, and &,  =a,, then:
I (m) — ak,mam,nAexp (an,nA) . ak,mam,n[exp (ak,kA) —eXp (an,nA)] (43)
2
a'k,k _an,n (ak,k _an,n)
Ifa,, =a,,and 3 , #a,, then:
| (m) - ak,mam,nAeXp (ak,kA) _ ak,ma‘m,n[exp (ak,kA) _exp (am,mA)] (44)
ak,k _a‘m,m (a‘k,k _am,m)z
If &y #a,,,and &, #a,, and & , #a,,
a .a
I(m) - k,m%m,n '¢(akk’a ,a ) (45)
(ak,k _am,m)(ak,k _an,n)(am,m _an,n) ' e
where
(D(ak,k ) a‘m,m’a‘n,n) = (ak,k _an,n)exp ((ak,k + an,n _am,m)A) -
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(ak,k _am,m)exp (ak,kA) _(am,m _an,n)exp (an,nA)'

Writting the formulas for any r is impossible. The complicated form of these equations is the cause of the lack of them
in the textbooks of probability.

5 Conclusions

This paper shows that an intensity matrix is more basic in the theory of continuous-time, Markov stochastic processes
than a stochastic matrix. The intensity matrix generates a stochastic matrix and sometimes this matrix does not
satisfy the condition: the sum of elements in each row equals one. Therefore, this condition is not necessary for
stochastic matrices.

Although the form of equation (20) is not simple, it allows proving some theorems for Markov stochastic processes.
This equation allows calculating a stochastic matrix by computer programs for given intensity matrices. Because

series (20) is convergent, for any & > 0 there exists such I, N that:

iz > HAKmM,..m n)<e (46)

r=rgmp=k m_,=m._,
m,_y#n
Therefore, a calculation of a stochastic matrix with willed accuracy is possible after finite steps.

Having state transition matrix we can calculate an ergodic coefficient, a limited matrix for a stochastic process
probability distribution after long time (if ergodic coefficient is less than 1) and other characteristics of stochastic
processes. Until now, this was not possible.
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