

On Ray's theorem for weak firmly nonexpansive mappings in Hilbert Spaces

Tamer Nabil¹ and Ahmed H. Soliman²

¹Suez Canal University, Faculty of Computers and Informatics, Department of Basic Science, Ismailia, Egypt ¹t_3bdelsadek@yahoo.com

²Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt ²ahsolimanm@gmail.com

ABSTRACT

In this work, we introduce notions of generalized firmly nonexpansive (G-firmly nonexpansive) and fundamentally firmly nonexpansive (F-firmly nonexpansive) mappings and utilize to the same to prove Ray's theorem for G-firmly and F-firmly nonexpansive mappings in Hilbert Spaces. Our results extend the result due to F. Kohsaka [Ray's theorem revisited: a fixed point free firmly nonexpansive mapping in Hilbert spaces, Journal of Inequalities and Applications (2015) 2015:86].

Keywords. Ray's theorem; generalized firmly nonexpansive mapping; fundamentally firmly nonexpansive mapping; fixed point; Hilbert space.

Mathematics Subject Classification: 47H10, 54H10, 54H25.

1. INTRODUCTION and PRELIMINARIES

Let H be a real Hilbert space. The inner product and the induced norm on H are denoted by $\langle .,. \rangle$ and $\|.\|$ respectively.

The dual space of a Banach space X is denoted X^* . Consider K is nonempty closed convex subset of H. A mapping $T:K\to K$ is said to be nonexpansive mapping if

$$||Tx - Ty|| \le ||x - y|| \tag{1}$$

for all $x, y \in K$.

In 1965, Browder [1] showed that if K is bounded, then every nonexpansive mapping on K has a fixed point. In 1980, Ray [2] showed that the converse of Browder's theorem is true, i.e. every nonexpansive self mapping on K has a fixed point, then K is bounded. There are many versions of Ray's theorem for nonexpansive mapping. For examples, in 1987, Sine [3], proved Ray's theorem by applying a version of the uniform boundedness principle (see, for instance, [6]) and the convex combination of a sequence of a metric projections onto closed and convex sets. In 2010, Aoyama et al. [4], obtained a strong version of Ray's theorem for the class of λ –hybrid mappings in Hilbert spaces.

Recently, Kohsaka [5] given another proof of a strong version of Ray's theorem [4] ensuring that every unbounded closed convex subset of a Hilbert space admits a fixed point free firmly nonexpansive mapping. He used in his proof a version of uniform boundedness principle and single metric projection onto a closed and convex set.

In this paper, we define two new class of weaker firmly nonexpansive called G-firmly and F-firmly nonexpansive. We present new two versions of Ray's theorem for mappings satisfying the conditions of weaker firmly nonexpansive.

We begin with some notations and preliminaries.

Definition 1.1. [5] A mapping $T: K \to K$ is said to be firmly nonexpansive if

$$||Tx - Ty||^2 \le \langle Tx - Ty, x - y \rangle \tag{2}$$

for all $x, y \in K$.

Definition 1.2. [7] A linear subspace M of a normed space X is called proximinal (resp. Chebyshev) if for each $x \in X$, the set of best approximations to x from M,

$$P_M := \{ y \in M : ||x - y|| = \inf_{m \in M} ||x - m|| \},$$

is nonempty (resp. a singleton). It well know that for each element of the Hilbert space there exist Chebyshev convex subset.

Definition 1.3. [5] The mapping $P_K: H \to K$ which is defined by $P_K x = z_x$ for $x \in H$ such that

$$\begin{split} & \left\| P_K x - x \right\| \leq \left\| y - x \right\| \text{ for all } y \in K \text{ is called the metric projection of } H \text{ onto } K \text{, therefore, } z = P_K x \text{ if and only if } \sup_{y \in K} \left\langle y - z, x - z \right\rangle \leq 0 \text{ for all } (x,y) \in H \times K. \end{split}$$

Theorem 1.1. (A strong version of Rays theorem [4]) Let K be a nonempty closed convex subset of a Hilbert space H. If every firmly nonexpansive self-mapping on K has a fixed point, then K is bounded.

2. MAIN RESULTS

We now present our new conditions of weak nonexpansive.

Definition 2.1. A self mapping T on K is said to be G-firmly nonexpansive if

$$\frac{1}{3} \|x - Tx\|^2 \le \langle Tx - Ty, x - y \rangle \Longrightarrow \|Tx - Ty\|^2 \le \langle Tx - Ty, x - y \rangle, \ \forall \ x, y \in K.$$
 (3)

Proposition 2.1. Every firmly nonexpansive is G-firmly nonexpansive.

Remark 2.1. The converse of proposition 2.1 is not true as we will see in the following example.

Example 2.1. Define a mapping T on [0, 4] such that Tx = 0 as $x \ne 4$ and Tx = 0.5 as x = 4. Then T is G-firmly nonexpansive but T is not firmly nonexpansive. Where the inner product $\langle x, y \rangle = x.y$ for all real numbers x and y.

Proof. It is clear that T is not continuous, therefore it is not firmly nonexpansive . If x < y and $x \in [0,2] \cup \{4\}$ and $y \in [0,4)$, then $\|Tx - Ty\|^2 \le \langle Tx - Ty, x - y \rangle$ holds. If $x \in (2,4)$ and y = 4, then

$$\frac{1}{3} \|x - Tx\|^2 = \frac{x^2}{3} > 1, \langle Tx - Ty, x - y \rangle < 1 \text{ and } \frac{1}{3} \|y - Ty\|^2 > 1.$$

Thus T is generalized firmly nonexpansive mapping.

Definition 2.2. A self mapping T on K is said to be F-firmly nonexpansive if

$$\left\|T^{2}x - Ty\right\|^{2} \le \left\langle T^{2}x - Ty, Tx - y\right\rangle, \forall x, y \in K. \tag{4}$$

Proposition 2.2. Every firmly nonexpansive is F-firmly nonexpansive.

Remark 2.2. The converse of proposition 2.2 is not true as we will see in the following example.

Example 2.2. Define the mapping T on [0, 2] by

$$Tx = \begin{cases} 0 & \text{if } x \neq 2, \\ 1 & \text{if } x = 2. \end{cases}$$

And the inner product $\langle x, y \rangle = x \cdot y$ for all real numbers x and y.

Then T is F-firmly nonexpansive but T is not firmly nonexpansive.

Proof. Let x=2 and y=1.5. Then $\|Tx-Ty\|^2=1$, but $\langle Tx-Ty,x-y\rangle=0.5$. Thus T is not firmly nonexpansive mapping.

If
$$x, y \in [0,2)$$
, then $\left\|T^2x - Ty\right\| = 0$ and $\left\langle T^2x - Ty, Tx - y\right\rangle = 0$. If $x = 2$ and $y \in [0,2)$, then we have that:
$$\left\|T^2x - Ty\right\| = 1 \text{ and } \left\langle T^2x - Ty, Tx - y\right\rangle = 1.$$

Last case, if $x \in [0,2)$ and y = 2, we get that:

$$||T^2x - Ty|| = 1$$
 and $\langle T^2x - Ty, Tx - y \rangle = 2$.

Therefore T is F-firmly nonexpansive.

Lemma 2.1.

- (1) the metric projection mapping P_K (as in definition 1.3) of a Hilbert space H onto a nonempty closed subset K of H is F-firmly nonexpansive,
- (2) if K be a nonempty closed convex subset of H, $a \in H$, and $T: K \to K$ such that $Tx = P_K(x+a)$ for all $x \in K$. Then T is a F-firmly nonexpansive self-mapping on K,
- (3) $u \in K$ is fixed point of T if and only if $\langle u, a \rangle = \sup_{v \in K} \langle v, a \rangle$.

Proof. (1) Let $x, y \in H$, thus we have that:

$$\sup_{w \in K} \left\langle w - P_K^2 x, P_K x - P_K^2 x \right\rangle \leq 0 \quad \text{and} \quad \sup_{k \in K} \left\langle k - P_K y, y - P_K y \right\rangle \leq 0 \quad \text{and hence}$$

$$\begin{aligned} \left\| P_{K}^{2}x - P_{K}y \right\|^{2} - \left\langle P_{K}^{2}x - P_{K}y, P_{K}x - y \right\rangle &= \left\langle P_{K}^{2}x - P_{K}y, P_{K}^{2}x - P_{K}y \right\rangle - \left\langle P_{K}^{2}x - P_{K}y, P_{K}x - y \right\rangle \\ &= \left\langle P_{K}^{2}x - P_{K}y, P_{K}^{2}x - P_{K}y - P_{K}x + y \right\rangle \\ &= \left\langle P_{K}^{2}x - P_{K}y, y - P_{K}y \right\rangle + \left\langle P_{K}^{2}x - P_{K}y, P_{K}^{2}x - P_{K}x \right\rangle \\ &= \left\langle P_{K}^{2}x - P_{K}y, y - P_{K}y \right\rangle + \left\langle P_{K}y - P_{K}^{2}x, P_{K}x - P_{K}^{2}x \right\rangle \\ &= \sup_{w \in K} \left\langle w - P_{K}y, y - P_{K}y \right\rangle + \sup_{k \in K} \left\langle k - P_{K}^{2}x, P_{K}x - P_{K}^{2}x \right\rangle \\ &< 0. \end{aligned}$$

Which implies that: $\left\|P_{K}^{2}x-P_{K}y\right\|^{2} \leq \left\langle P_{K}^{2}x-P_{K}y,P_{K}x-y\right\rangle$. Thus P_{K} is F-firmly nonexpansive.

$$(2) ||Tx - Ty||^2 = ||P_K(x+a) - P_K(y+a)||^2 \le \langle P_K(x+a) - P_K(y+a), x+a-y-a \rangle = \langle Tx - Ty, x-y \rangle.$$

Put, x = Tu and v = y, hence T is a F-firmly nonexpansive self-mapping on K.

$$(3) \ u \in F(T) \Leftrightarrow P_K(u+a) = u \Leftrightarrow \sup_{y \in K} \left\langle y - u, u + a - u \right\rangle \leq 0 \Leftrightarrow \left\langle u, a \right\rangle = \sup_{y \in K} \left\langle y, a \right\rangle. \blacksquare$$

Lemma 2.2. The metric projection mapping of a Hilbert space H onto a nonempty closed subset K of H is G-firmly nonexpansive. Furthermore, if K be a nonempty closed convex subset of H, and $a \in H$, and $T: K \to K$ such that $Tx = P_K(x+a)$ for all $x \in K$. Then T is a G-firmly nonexpansive self-mapping on K such that $x \in K$ is fixed point of T if and only if $x \in K$ is $x \in K$.

Proof. Let $x, y \in K$, we have that:

$$||Tx - Ty||^2 = ||P_K(x+a) - P_K(y+a)||^2 \le \langle P_K(x+a) - P_K(y+a), x+a-y-a \rangle = \langle Tx - Ty, x-y \rangle$$

Hence T is a firmly self mapping on K . Then the same argument as in the proof of lemma 2.1 leads to $u \in F(T)$ if and only if $\langle u,a \rangle = \sup_{y \in K} \langle y,a \rangle$. \blacksquare

We are now ready to introduce our new versions of Ray's theorem for weak firmly nonexpansive self-mappings.

Theorem 2.1. (F-firmly version of Ray's theorem) Let K be a nonempty closed convex of a Hilbert space

- ${\cal H}$. If the following fixed point property (F) hold then ${\cal K}$ is bounded.
- (F) If every F-firmly nonexpansive mapping $T: K \to K$ has a fixed point.

Proof. Suppose that K is unbounded. Thus there exist $x^* \in H$ such that $x^*(K)$ is unbounded (see, for

instance, [6]). Then we have $a \in H$ such that : $\sup_{y \in K} \langle y, a \rangle = \infty$. Define $Tx = P_K(x+a)$ and by (3) in Lemma 2.1,

then T is a fixed point free F-firmly nonexpansive self mapping on $\,K\,.\,\,lacktriangledown$

Theorem 2.2. (G-firmly version of Ray's theorem) Let K be a nonempty closed convex of a Hilbert space H. If the following fixed point property (E) hold then K is bounded.

(E) If every G-firmly nonexpansive mapping $T:K\to K$ has a fixed point.

ACKNOWLEDGMENTS

The authors wish to thank the referees for the valuable remarks and commonts in the revision of this manuscript.

REFERENCES

- [1] F. E. Browder, Non-expansive nonlinear operators in Banach spaces, Proc. Natl. Acad. Sci. USA 54 (1965) 1041-1044.
- [2] W. O. Ray, The fixed point property and unbounded sets in Hilbert space, Trans. Am. Math. Soc. 258 (1980) 531- 537.
- [3] R. Sine, On the converse of the nonexpansive map fixed point theorem for Hilbert space, Proc. Am. Math. Soc. 100 (1987) 489- 490.
- [4] K. Aoyama, S. Lemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for λ -hybrid mapping in Hilber Spaces, J. Nonlinear Convex Anal. 11 (2010) 335-343.
- [5] F. Kohsaka, Ray's theorem revisited: a fixed point free firmly nonexpansive mapping in Hilbert spaces, Journal of Inequalities and Applications (2015) 2015:86.
- [6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011).
- [7] F. Deutsch, Linear selections for the metric projection, Journal of Functional Analysis 49 (1982), 269-292.