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ABSTRACT

In this work, we introduce notions of generalized firmly nonexpansive (G-firmly nonexpansive) and fundamentally firmly
nonexpansive (F-firmly nonexpansive) mappings and utilize to the same to prove Ray’s theorem for G-firmly and F-firmly
nonexpansive mappings in Hilbert Spaces. Our results extend the result due to F. Kohsaka [ Ray’s theorem revisited: a
fixed point free firmly nonexpansive mapping in Hilbert spaces, Journal of Inequalities and Applications (2015) 2015:86 ].
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1. INTRODUCTION and PRELIMINARIES

Let H be a real Hilbert space. The inner product and the induced norm on H are denoted by <., > and |||| respectively.

The dual space of a Banach space X is denoted X “ Consider Kis nonempty closed convex subset of H . A mapping
T : K — Kiis said to be nonexpansive mapping if

[T =Ty <[x-y] @
foral X,y e K.

In 1965, Browder [1] showed that if K is bounded, then every nonexpansive mapping on K has a fixed point. In 1980,
Ray [2] showed that the converse of Browder’s theorem is true, i.e. every nonexpansive self mapping on K has a fixed

point, then K is bounded. There are many versions of Ray’s theorem for nonexpansive mapping. For examples, in 1987,
Sine [3], proved Ray’s theorem by applying a version of the uniform boundedness principle (see, for instance, [6]) and the
convex combination of a sequence of a metric projections onto closed and convex sets. In 2010, Aoyama et al. [4],

obtained a strong version of Ray’s theorem for the class of A —hybrid mappings in Hilbert spaces.

Recently, Kohsaka [5] given another proof of a strong version of Ray’s theorem [4] ensuring that every unbounded closed
convex subset of a Hilbert space admits a fixed point free firmly nonexpansive mapping. He used in his proof a version of
uniform boundedness principle and single metric projection onto a closed and convex set.

In this paper, we define two new class of weaker firmly nonexpansive called G-firmly and F-firmly nonexpansive. We
present new two versions of Ray’s theorem for mappings satisfying the conditions of weaker firmly nonexpansive.

We begin with some notations and preliminaries.

Definition 1.1.[5] Amapping T : K — K is said to be firmly nonexpansive if
[Tx —Ty||2 < <Tx ~Ty,x—y) )
forall X,y € K.

Definition 1.2. [7] A linear subspace M of a normed space X is called proximinal (resp. Chebyshev) if for each
X € X, the set of best approximations to X from M,

By =y €M -y = in [x -

is nonempty (resp. a singleton). It well know that for each element of the Hilbert space there exist Chebyshev convex
subset.
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Definition 1.3. [5] The mapping P, : H — K which is defined by P, X =z, for X € H such that

||PKX— X|| < ||y— X” for all 'y € Kiis called the metric projection of H onto K, therefore, z =P, Xif and only if

sup(y—2,x—2)<0 forall (x,y) e HxK.

yeK

Theorem 1.1. (A strong version of Rays theorem [4]) Let K be a nonempty closed convex subset of a Hilbert space
H . If every firmly nonexpansive self-mapping on K has a fixed point, then K is bounded.

2. MAIN RESULTS

We now present our new conditions of weak nonexpansive.

Definition 2.1. A self mapping T on K is said to be G-firmly nonexpansive if
%”x —Tx||2 < <Tx—Ty, X—y)= ||Tx—Ty||2 < <Tx—Ty, X—y), VxyeK. 3)

Proposition 2.1. Every firmly nonexpansive is G-firmly nonexpansive.
Remark 2.1. The converse of proposition 2.1 is not true as we will see in the following example.

Example 2.1. Define a mapping T on [0, 4] such that TX=0 as X#4and TX=0.5as X=4.Then T is G-firmly

nonexpansive but T is not firmly nonexpansive. Where the inner product <X, y> = X.Y for all real numbers X and Y .

Proof. It is clear that T is not continuous, therefore it is not firmly nonexpansive . If X < Yand X €[0,2] U{4}and

y €[0,4) . then ||Tx—Ty||2 < <Tx—Ty, X —Y) holds. If X € (2,4) and Yy =4, then

Lo = X 51, (Tx Ty, x— y) <2 ana Sy ~Tyff >1.
3 3 \ 3

Thus T is generalized firmly nonexpansive mapping.m
Definition 2.2. A self mapping T on K is said to be F-firmly nonexpansive if
2 4 2
”T x—TyH £<T x—=Ty,Tx-y),Vx yeK. @)

Proposition 2.2. Every firmly nonexpansive is F-firmly nonexpansive.
Remark 2.2. The converse of proposition 2.2 is not true as we will see in the following example.

Example 2.2. Define the mapping T on [0, 2] by

0 if x=2,
Tx= .
1if x=2.

And the inner product <X, y> = X.Y for all real numbers X and Y.

Then T is F-firmly nonexpansive but T is not firmly nonexpansive.

Proof. Let X=2 and Y=1.5. Then ||Tx—Ty||2:1, but <Tx—Ty,x—y>:0.5. Thus T is not firmly

nonexpansive mapping.
Iif X,y €[0,2), then HT X —TyH =0and <T2 X—=Ty,TXx— y> =0.1f x=2and Yy €[0,2), then we have that:
HTZX—TyH =1 and <T2x—Ty,Tx— y)=1.

Last case, if X € [0,2) and ¥ = 2 , we get that:
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”TZX—TyH =1and <T2x—Ty,Tx— y)=2.

Therefore T is F-firmly nonexpansive. m

Lemma 2.1.

(1) the metric projection mapping PK (as in definition 1.3) of a Hilbert space H onto a nonempty closed

subset K of H is F-firmly nonexpansive,

(2)if K be a nonempty closed convex subsetof H, a€ H, and T : K — K such that TX =B, (X + @) for
all Xe K. Then T is a F-firmly nonexpansive self -mapping on K,

(3) U € K is fixed point of T if and only if <u, a) = Sup <y,a>.
yeK

Proof. (1) Let X,y € H, thus we have that:

Sup<W—PK2X, PKX—PKZX>SO and sup(k —Pcy,y—Py) <0 and hence

weK keK<

HPKZX— PKyH2 —<PK2x— Pc Y, Pex—Y) =<PK2x— Py, Pix— PKy>—<PK2x— P Y, Pex—Y)
:<PK2x— Py, Pix— Py — P x+ y>
i

PKZX—PKy,y—PKy>+<P,fx—PKy, PZX—Px )

<PK2x—PKy,y—PKy >+<PKy—PK2x,PKx—PK2x>
=sup(w—Py,y - Py >+sup<k— PZX,P X — P,fx>
weK keK

<0.
Which implies that: HPKZX =B yH2 < <PK2X Py, Px— y>. Thus Py is F-firmly nonexpansive.
2 2
@ [Tx=Ty|" =|Pc(x+a)—Pc(y+a)| < <PK (x+a)-P(y+a),x+a—-y—a)= <Tx—Ty, X—Y)..
Put, X=TUand V= Y, hence T is a F-firmly nonexpansive self-mapping on K.

(3) UeF(T) < P (u+a)=u<sup(y—u,u+a-u)<0«<(u,a)=sup(y,a).=
yeK yeK

Lemma 2.2. The metric projection mapping of a Hilbert space H onto a nonempty closed subset K of H is G-firmly
nonexpansive. Furthermore, if K be a nonempty closed convex subsetof H ,and a€ H ,and T : K — K such that

Tx=P (Xx+a)foral xe K.Then T is a G-firmly nonexpansive self-mapping on K such that: U € K is fixed point

of T itand onlyif (U,a) =sup(y,a).
yeK

Proof. Let X,y € K , we have that:
[Tx=Ty|" =[P (x+a) - P (y +a)[° £<PK(x+a)—PK(y+a),x+a—y—a>:<Tx—Ty,x—y>.

Hence T is a firmly self mapping on K . Then the same argument as in the proof of lemma 2.1 leads to U € F(T) if

and only if (U, @) =sup(y,a). =
yeK

5860 |Page council for Innovative Research
March 2016 www.cirworld.com



& ISSN 2347-1921
Volume 12 Number 1
Journal of Advances in Mathematics

We are now ready to introduce our new versions of Ray’s theorem for weak firmly nonexpansive self-mappings.
Theorem 2.1 . ( F-firmly version of Ray’s theorem ) Let K be a nonempty closed convex of a Hilbert space
H . If the following fixed point property (F) hold then K is bounded.

(F) If every F-firmly nonexpansive mapping T . K — K has a fixed point.

Proof. Suppose that K is unbounded. Thus there exist X" € H such that X*(K) is unbounded (see, for

instance, [6]). Then we have @ € H such that : sup<y, a> =o0. Define TX= PK (X + a) and by (3) in Lemma 2.1,
yeK

then T is a fixed point free F-firmly nonexpansive self mappingon K . m

Theorem 2.2. ( G-firmly version of Ray’s theorem) Let K be a nonempty closed convex of a Hilbert space H . If the
following fixed point property (E) hold then K is bounded.

(E) If every G-firmly nonexpansive mapping T : K — K has a fixed point.
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