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ABSTRACT.

We consider nonlocal boundary value problems which includes discontinuous coefficients elliptic differential operator
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prove coerciveness and Fredholmness for these nonlocal boundary value problems.
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1. Introduction

We investigated nonlocal boundary value problem with discontinuous operator coefficients for the second order elliptic
differential-operator equation and boundary conditions which have transmission conditions in a Hilbert space H :

L(D)u :=—-u"(x)+ Au(x) + e(x)u(x) = g(x), xe[-10)u(0,1] (1.
Lu=a,u™ (1) +8u™ (-0)+nu™ #0)+yu™ @)= f 1.2)
v=1234k=12

where M, 6{0,1}; a,, B, n, 7, f, are complex numbers; g(X)=0,(X), A=A, @p=¢, for
xe[-1,0)andg(x)=0,(X), A=A,, ¢ =¢, for Xe(0,1]; A are unbounded operators in H and ¢ is a

measurable function on [—1,0)\(0,1]. Problems of such type arise in heat and mass transfer in various physical

transfer problems and in diffraction problems (see, for example, A. V. Likov [10]; A. A. Shkalikov [17] and references cited
therein). Elliptic functional differential equations are closely associated with differential equations with nonlocal boundary
conditions, which arises plasma theory, and boundary value problems with elliptic differential equations have some
important applications such as to elasticity theory, control theory and diffusion processes (see, for example, A. L.
Skubachevskii [16]). There are many papers that the spektral properties of such problem are investigated ( see, [1], [2],
[4], [14], [17]). Some boundary value problems with discontinuous coefficient and eigenvalue parameter in both the
differential equation and boundary conditions have been studied by O. Sh. Mukhtarov, M. Kandemir and others (see, [5]-
[8], [8], [11]-[13]). In this study, we investigated coerciveness and Fredholmness of nonlocal boundary value problem with
discontinuous operator coefficients and transmission conditions at point zero in [-1,1] for elliptic differential-operator
equations on which S. Yakubov, G. Dore and S. Yakubov have suggestion results for nonlocal boundary value problems
with elliptic differential equation in [0,1] (see, [3],[19]). Besides, we have considered methods of solution of boundary value
problems for elliptic differential-operator equations, which are suggested by S. G. Krein (see, [9]).

2. Preliminaries

In this section, we give some definitions and auxiliary results which are used through the paper.

Lemma 2.1. (18, section 1.2) Let {A), A1} be an interpolation couple. Hence, Ay A and A, + A are Banach
spaces. It holds that

ANAcA cA+A, =01,
where A, and A are Banach spaces continuously embedded into the Banach space A : A)cA , A cA andthe

space A, + A is defined as

Ab+A1::{a|aeA,Elaj eAj,j=0,l, where a=a0+a1},
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8l = Inf (oll,, +lail,)-

a=ag+a,
a; eA]-

Theorem 2.2. (18, Theorem 1.8.2) Let {A), Al} be an interpolation couple. Further, let j and M be
integer,0 < j <m—1, 7, and 7, are real numbers with 77, + J >0, 77, + J <M. Also, let 1< py, p, <0 or

Py, = P, =00. Then (in the sense of equivalent norms)
ij(p01770’ APt A) = (A A

m+i  1_1-0 06
m+m,—m P Py P

holds, where @ =

Theorem 2.3. (9, Theorem 14.1) Each operator A=U " +T , where U is a bounded operator from F into E and
T is a compact operator from E into F , is Fredholm. Each Fredholm operator A can be represented in the form
A=U"+T, T is a finite dimensional operator.

The K -Functional and K -Method are expressed by H. Triebel ([18], section 1.3) in the following forms.

Definition 2.1. The K -Functional: If {A), Ai} is an interpolation couple, the functional

K(t,a) =K(t,a; A, A) = inf (||a0||A0 +t||a1||A1) ,ue Aj+ A, (O<t <o0),is an equivalent norm in the
a=ag+a

ajeAj

space A, + A and continuous on (0,0) . Further, if (0 <t <) it can be obtained in the form
min(],t)||a||AO+A1 <K(t,a) < max(l,t)||a||A0+A1 ]

The K-Method:

Let { A, A} be an interpolation couple and 0 <@ <1.1f 1< <o, then

(A Ao =telac A+ A fal, . =([ K@) %q@o},

Definition 2.2. (Direct sum) The Banach spacquk (-1,0) +qu (0,1), an integer k>0, areal q>1, is defined

as

O sl
{ul(x) or xe( )ulequ(—l,O),UZGqu(O’l)’

u,(x), for xe(0,1)

W, (~1,0)+W,(0,1) = {u =

=l el |
W (-1.0) wi (0.1)
For convenience below, the direct sum qu (-10) +qu (0,1) is denoted by qu (-10,1).
Obviously, qu (-10)=L,(-10)=L,(-11).

Definition 2.3. Let H, and H, be Hilbert spaces. The set

1
H,®H, = {(u,v)|u eH, ve H2;||(u,v)||Hl®Hz = (||u||'f|1 +||v||2H2)2},
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with coordinatewise linear operations is a Hilbert space which is called the ortogonal sum of H1 and H2 Hilbert spaces.

Let A be a closed operator in Hilbert space H . The domain of definition D(A) of the operator A is turned into a Hilbert
space with respect to the norm

1
[ul = Gl + [ Aul)=.

W; ((<L0,2);H), pe[L ), | -integer, denotes a Banach space of functions U(X) with values from H which have

generalized derivatives up to the | -th order inclusive on (—1,0) '\ (0,1) and the
| 1 1
Jul = ST 0] d)® + ([ Ju® o] d)? ] is
norm W) ((-101);H) ! 0 is finite.

sz (L0,1;H(A), H) =L, ((-L1);H(A) F\sz ((<1,0,1); H) is a Banach space with the norm

S —.

||u||sz ((-1,02);H (A),H) Ly (F11);H) Lo (F11H)

Theorem 2.4. [3] Let E be a complex Banach space, A be a closed operator in E of type ¢ with bound L and m

. 1 1 . .
be a positive integer, p=1, a € (2—, m +2—) . Then there exists C > 0 (dependingonlyonL ,, M, & and p)
p

p
such that for every U € (E, E(Am))gfi y and 1e> = {ﬂ el |farg A< o, p e (O,ﬂ)}U{O} :
m 2mp’
: p o
s e oy, o
m 2mp’

This theorem has been proved in ([20], Theorem 5.4.2/1).
3. Homogeneous problem of transmission-boundary value problem

We will consider in this section a boundary value problem

L, (ADu=—u"(xX)+(A+A1)u(x)=0, xe[-1,0)w(0,1] (3.2)
LoU = u™ (=) + S u™ (-0) +,u™ (+0) +y, u™ (@), v=12,3,4, (32

where A is a complex parameter.

Denote:

el 5 o ™ (i
0= D™p, o (D™n, 7,
D™B as (D" 7,
=)™ B a, =)™ My Va4

2) U(X) is a solution of equation (3.1) where U(X) = U,(X) +U,(X); U,(X) =u,(X)+U, (X) for xe[-1,0),
U, (X) =U,, (X) +U,(X) for x € (0,1].

1)

3) R(A,A) =(Al —A)™" isthe resolvent of the operator A , k =1,2.
We will assume that A< is a closed densely defined operator in a Hilbert space H .

Theorem 3.1. Let the following conditions be satisfied:

0=0, |[R(A,A)<CA+|A) " |argA|z7z—¢p, k=12, 0<p<7x.
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Then problem (3.1)-3.2) for f, € (H(A),H), , where 6, :=%+2i, v=1234. pe(l,©), |arg /1| <@
’ p

and A — 00, has a unique solution that belongs to the space sz ((-1,0,2);H(A,),H) and for these A the
following coercive estimate holds for the solution of problem (3.1)-(3.2) :

2

S (12l capen +I0h e +IAG, i)

k=1
fu Hj , (3.3)

2 2
< czz(u R
where, 6, =6,,6,,=6,,6,=6,.0,,=0,, f, =1, 1, =1, f,=1,1,="1,.

j=1 k=1

1 1
Proof. In view of the condition (1) and Theorem 2.4 f0r|arg ﬂ,| < @, there exist semigroups g X(Ara)? , g (At A)?

which are the holomorphic and strongly continuous for X <0 and X > O, respectively. By virtue of S. G. Krein ([9], p 252)
and ([20], section 5.4.3), an arbitrary solution of equation (3.1) in the space

sz((—]-,O,l); H(A),H), k=12, has the form

u(x) =, (X) +U, (X)

d e—x(AlM.I )2 h1 o e(1+x)(A1+/1I)2 h2 L e—x(AQM.I )2 h3 i e—(l—x)(Aer/II )2 h4 ’ (3.4)

where

1 1 1 1
Ul(X) - e—X(Aﬁ—AI )2 h1 L e(l+x)(A1+Zl )2 h2 , u2 (X) — e—X(A2+/1I )2 h3 + e—(l—x)(A2+/1I )2 h4 :

h,h,e(H(A),H), andh,h,e(H(A)H), .Letu EWPZ((—]., 0,1); H(A ), H) be a solution of
pr,P Tp’p
equation (3.1). So, from (3.1) we have

[D—(A +M)%][D+(Ak +M)%]uk(x):0, k=12.

Denote:

1

6 (X)=[D+(A +A1)2Ju (X). k=12. (35)
Therefore, T, esz ((-1,0,1);H (A(%), H) and

1
[D— (A + A1), (X) =0.

So, we have

X) = €0 (1) an 1, () =& A 1) @

1 1

where, in view of the Theorem 2.2. I,(-=1) € (H(A?),H), and ,(1) e(H(A?),H), .
=p =p
p

p

From (3.5) and (3.6) we have
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1 1 1 1
) =& AU (-0)-+ (A + A1) [T IR g ),

2 1 1 1
u,(x) =e "y, (+0) +%(A2 + A1) 2[e A _ gm0ttt p (1),

Hence, we can write

u(x) = e Ay (=0) +e XAy (+0)]

RN, > :
+2 e I(A AL 26 (D)~ (A A1) e A 0]

1 L 'l !
+%e‘“’[(A2+/1I) 2et D ()] = (A+AL) 26 A0 (-], 3.7)

where, by Theorem 2.2. (see also, [20], Theorem 1.7.7/1) U,(—0) e (H(A),H) , and u,(+0) e (H(A,),H), .
T 25"
1 1
By virtue of ([18], Theorem 1.15.2), the operator A? is an isomorphism from (H (A ),H); onto (H(A?),H), .
2p’ P
Hence, (3.7) has form (3.4). Let us prove that the function (3.6) belongs to the space sz ((-10,2;H(A).H).In
view of Theorem 2.4, from (3.4) we have

||U|LN§ (CLOAYH (A)H) < (A_L(A.L + Al )‘1 -I-:|_)[(J‘701H(/A\_L + Al )e*X(PaJr/II)Jth1 p dX)B

+([°] (A +anetos 7]
(A (A, + A1)+ (A + A0 % | 007

+([;oa, + anyer o, | 0071

2 1
< C[;(Ilhk "(H(Al),H)iyp +4 70 [n])

4 i)
1- -
2 (”hk”(Hmz),H) . +[2] 20 | )1 (3.8)
k=3 TPrP
Let us now write (3.4) the function U(X) in (3.2) boundary conditions.
1 My
: m
(D)™ (o, 2 + B)A+A) 2 N
: m
+(a, + B YA+ A1) 2 h,

+H=D)™ (1, +7Ue"A2”'>%)(A2 +M)%h3
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My

1
+,e B Ly YA+ A1) 2 h = (39)
v=1234,k=12,m, e{O,l}.
This system can be written as a matrix in the form
(_1)rra(ale(Ai+M)“ +ﬂ1)e(’w')% (a1+,[:’1e("1*")w)e"w”%
™ (azewzl)“ +ﬁ2)e(/wl>¥ (a, +ﬂ2e(a+u)ﬂ)e(a+u)¥

m

m
(_1)ml(aae</x+zl)“ +ﬂ3)e</wl)2 (a3+ﬂ3e("l*")w)e"w”z

2

m m
(_1)m2 (a4e(A1+lI +ﬂ4)e(/-\+ll)2 (a4+ﬂ4e(/-\1+ll)1/z)e(Ai+M)2

L E L (L LA h) (f
m my 1
O A e N R R i L% I
(O S (et e || B
3 mp h4 f4
(OE@, + 7 ) e A e R
m 2
Denote: W, =(A +Al1)2h, w, =(A+4l)%h,,
pul un
w, = (A, +4l)2h,, w, :=(A,+4l)2h,,
where M = Max {ml, mz} . Therefore, from system (3.9) we have
1 m,—m
(D™ (@™ + YA +A1) 2w,
1 m,—m
e
+(au +ﬂue(Ai+ ) )(A‘_I._'—ﬁ’l) 3 W2
1 m,—m
o 2 rF B
D™ (@, + 7,8 N A+ AL 2w,
+( i ) 7w, =
1,8 +r ) (A +AD) 2w, =1, (3.10)
System (3.10) has the form
™8 o (D™ m o W
D™B, ay (D™n, 1, +R(A) W,
D™B, ay (D™ 14 Wy
(D™ B, a, D™ My Vs W,
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m-m

(A+Al) 2 0 0 0

—h
iy

0 (A+Al) 2 0 0
m—m

0 0 (A, +A1) 2 0

2 | (3.11)

|
— —h —h
w

m,—-m

0 0 0 (A, +A1) 2

where, R(A) can be written as a matrix in the form

12 1/2 _ 12 _ 12
(—1)"110(16(/5‘”") ﬂle(/\Ml) (_1)rnlyle (Ag+Al) n,e (Ag+Al)
12 12 _ 1/2 _ 12
(_]_)m2 aze(A1+/1l) ﬂze(AiJrM) (_:L)m2 72e (A +Al) 7723 (A +Al)
(A+21)¥? (A+21)¥? ~(Ay+21)"?
(_1)"‘1a3e A ﬁse A (_]-)m1 Vs€ el 7€

12 1/2 4 12 _ 12
(_1)m2 a4e(Ai+/u) ﬂAe(AiJJ.I) (_:L)m2 V48 (A+A1) 7€ (A +A1)

R(A) =

~(Ap+a)?

Hence, from (3.10), we obtain the system
(R(A)W)l = (_1)mlale(Al+M)]/2W1 +ﬂle(A1+,1l)1/2W2

_ V2 o 12
HED™ e S g 4 e

(RAAW), = (D)™ cr,e® " w, + e+ w,

- Y2 - Y2
-"_(_:I')m2 72e g W3 +772e - W4’

(R(AYW), = (—1)"‘*a3e“‘1”')wwl +'836(A1+/1|)J/2W2

E y2 & 2
+H=D)™ e B g e A

m +A1)Y2 FAIV2
(ROW), = (=)™ a, @A+ W + geA "\,

— /2 - 12
+H=D)™ V4 il W, +177,€ e W, -

By virtue of (20, Lemma 5.4.2/6) for |arg ﬂ| <@ and |/1| —>

IR, e, 0. RO 0. 6.12)

B(HI(A)T)

Therefore, by € # 0 and Neumann identity for |arg ﬂ,| <@ and|2,| — 0,

-1 -1

DB o (Dm n DA o (D"m oy
D)™B, a (D™n, 7, +R()| = D)™B, a (D™n, 7,
D™B a5 (D™ 7 (D™B a5 (D)™ 7
D™B ap (D™ 7, ™8 ay (D™n 7,
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(_1)ml ﬂl a, (_:I-)m1 h n
S D™B, a (D™n, 7,

x» | =R(4

kz=c; ) (D™B, oy (-D)"n 7

D™p, a, (D™n, 7,

(3.13)

So, system (3.11) has a unique solution for |arg /1| <@ and |ﬂ| —> 0, and the solution can be expressed in the form of

m—mj

Wj:zz:[cjk"'Rjk(l)](Ai"'M) 2 f,-, j=12,

m—m,

Wj:i[cjk"‘Rjk(l)](Az"‘/“) 2 fj, j=3,4,

where C;,are complex numbers and in view of (3.12) for |arg ﬂ| <@ and |ﬂ| — 0

Ry

Therefore, we have

=0, [R, (4] —0, k=12 forevery j, j=1,2,3,4. (3.14)

B(H) B(H(A))

—my

= IC, +R DIA+A) £, =12,

—my

2 A
k=1
Substituting (3.15) into (3.4) we have

u(x) = ZZ:[(Cm +Ry (ﬂ«))('i‘_x(ﬁ‘w)u2 +(C,, +R,, (1))(:3(1”)(5““)”](,5& nyy )‘% f,

k=1
2 —X(Apg+A1)Y2 (x)(Ay 4112 iy
+2 I(Csy + Ry (A))e +(Cy + Ry (1)) DTY(A, + A1) 2 f,,, . (3.16)
k=1
Hence, for |arg ﬂ| < @ and for |/1| —> 0, we get
2
;qﬂ ”uk”Lp((—l,l);H) o uk L, (FL1;H) +||A<uk||Lp((,l’1);H))
<CZZ:{]/1|[(IOH(Al ALY ™/2g XA ¢ de )%
< + e X
k=1 -1 k
0 Y p 1
_ _ + 2 _
+||R1k(l)”(J‘_lH(A1 A1) ™2 XA ka dx)?
1
oy g
0 y p 1
. 1
+||R2k(/1)||(_|._lH(A&+M)—mk/ze(1+x)(A1+u) . H iX)"]
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LA + 20 P o a1y e s g | o
+ﬂadim(ﬁMU¥+iDlWﬂgﬂ%ﬂﬂqdrd@;
+d1k&+ﬂ]fﬁﬂéﬁmﬁmwwdrdw:

+[Re (D] (ﬁH(A1 A1) gl ¢ Hp dx)%]}

P 1
dx)?

SO 21y~
k=1

1
T S T

L
1 p 2
([ A+ any et g g

AR A~ o

+(1+HA2(A2 + A1 )71“)[(-[:”(,6‘2 + 21 )1—mk/ze_x(A2+M)J/z fk+l p dX)B

£
+||R3k (ﬂ)” (J‘olH(A2 + Al )1—mk/Ze—x(A2+M)uz fk+1 p dx)?

1
1 p =
HLW&+10“W%*”W”W%H1d@p

1
Ry AN (A + 20 2e 020 )Py (3.17)

In view of the inequality (3.8) or Theorem 2.4, for the terms of the right-hand side of inequality (3.17)

we get the following inequalities. We have for the first term

oA + 21y ze e g P g
<C |ﬂ,| H(Ai + Al )*1” (J-_OlH(Ai + A1 )Lmk/z e—X(Al-f—ﬂ_l)]/z fk HP dx)%

2
= Cé(” fkl”(H(Ao,H),M +|}“|l " ” fk”)' (3.18)

for the second term

|ﬂ“|||R1k (l)” (J'_OlH(Al + Al )—mk/Ze—x(AﬁM)l/Z kap dx)%
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<ClAl[(A + 41 IRy ([ (A + a1y e g, Hp dx)®

2
= CZ;(” fkl”(H(Ai),H)QK,p +|/1|1 " (A1) (3.19)

for the ninth term

1
AL A, + a1y ™ze e | gy
0 AZ k+1

o+ YA+ e | g

2
<C2 (el A ) (3:20)

for the tenth term

1
|ﬂ|||R3k (ﬂ’)” (I:H(AZ + A1 )_mk/zefx(AQJrM)l/Z fk+l p dx) ;
B ] 1-m /2 (A +A1 /2 p i
< Sl el (o 17~
2
< Cz(“ fk2||(H(A2)!H)0k +|ﬁ|1*9k+1 fkﬂ”) . (3.21)
k=1 H.P

Therefore, we can obtain the same result for all the other terms in the right-hand side of inequality

(3.17), and the inequality (3.3) has been proved too.
4. Nonhomogeneous transmission-boundary value problem

In this section, we will consider the boundary value problem which has the nonhomogeneous equation with a parameter
and transmission conditions

L,(A)u =—u"(X)+(A+ANu(x)=g(x), xe[-1,0)wu(0,1], (4.1)
LU = a,u™ (1) + B U™ (=0) +7,u™ (+0) + y,u™ (1) = f,, (4.2)
v=1234, k=12

Theorem 4.1. Let the following conditions be satisfied:
DR, AN SCA+|A)" |argA|z27—¢, k=12,0<p<x
where R(4, A1) = (1+]A])™ is the resolvent of the operator A, ,
2) 0=0,
Then the operator Lo (4) :u — Ly (A)u = (Ly(A)u, Ly, L,, L, L,) , for |[arg A| < ¢ and sufficiently large|4|, is an
isomorphism from W ((—1,0,2); H(A,), H) onto
(L,(-12);H) +(H(A),H), , +(H(A).H),, , +(H(A). H),, , +(H(A). H),, ) .6, = 2 " 2p

v=12,34, k=12, pe(l,o),andforthese A the following coercive estimation holds for the solution of the
problem (1.1)-(1.2):

m, 1
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2
éqﬂ“muk |||_p (-12);H) +||ulg|||_p (-12);H) +||Akuk ||Lp ((—1,1);H))

2 2 2
= C[;” fil, crm) +§§(H i H(HW),H)U,W A £ (4-3)

where, 6, =6,,0,,=6,,0,=6,,0,, =06, f, =1, 1, =1, f, =1, f,="1,.
Proof. We have proved the uniqueness in Theorem 3.1. Let us define f(x):=f,(x)=f(x). at
xe[-1,0); f(x):="f,(x)="f,(x), at xe(0,1],

f(x)=f,(x):=0, atx¢[-1,0); f(x)=f,(x)=0, at X ¢ (0,1].

We will show that a solution of the problem (4.1)-(4.2) which belongs to sz ((-1,0,);H(A,),H) asasuminthe
following form

u(x) =u,(x)+u,(x)
= Uy, (X) + Uy, (X) + U, (X) + U, (X),
where
U, (X) =uy, (X) +u, (X) for xe[-1,0),
U, (X) = Uy, (X) +u,,(X) for xe(0,1],
besides,
Uyo (X) =y, (X) + Uy, (X),
Uy, (X) =0, (X) + U, (X)
U,y (X) = Uy, (X) +U,,(X),

where Uy, (X) and Uy, (X) are the restriction on [-1,0) and (0,1], respectively, of the solutions Uy, (X) and 0y, (X) of
the equation

L, (A)d, = f(x), xel, (4.4)
and U, (X) is a solution of the problem
Ly (Auy, =0,
Lo MUy = f =L o(AUy, v=1for k=12 and v=2for k=12. (45)

A solution of equation (4.4) is given by the formula
~ 13 i . e F
Ui (X) = EZJ‘D "Ly (A, igs )" F f (14)d . (4.6)
k=1

where F, f, is the Fourier transform of the function f, (X), and L;(4,1,)is a characteristic pencil of equation (4.4),

thatis, Ly(4,t,)=—t71+A +Al, k=12 itfollows from (4.6) that
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Z(Mmulk”l_ (0:H) +||u1k||vv 2(0; H(Ak)H))

k=1

=Sy TGy 1 )
<SR Gin) R,
HFAAL i) Rl @],
R ) Lo (i) TR ) @)
Then, by using (4.7) we obtain
Z(M”Mk”L L) +”ulk”w 2 (AH)) ZH 1kHL By g A|< o (4.8)

k=1
and, therefore, Uy, (X) GWZ((—:L 0,1);H(A.), H) . In view of ([18], Theorem 1.8.2) and inequality (4.8), we have
U™ (-0) eW((-1,0); H(A), H),, LU (+0) eWZ((0,1);H(A),H),, , . Therefore,
P
) 2 )

p’ 2p
Liwolyo € (H(A), H),_ - Hence, by virtue of Theorem 3.1, problem (4.5) has a unique solution U,,(X) that belongs

to sz ((-10,2);H(A). H) as |arg /1| <@ and |/1| — 0. Also, for a solution of problem (4.5), for |arg ﬂ| <@ and

|/1| —> 00 we have

Z(M'”uzk“L ((-L1;H) +||A<u2k||L o (F1); H) L (= 11)H))
<cy > (f H N D
< L jk = JkO Uy (H (A H Do o jkO Uy
<cS ST A
i R GICRE J
g(me) =
3 4.9
(‘ C{[-1.0)U(0AT;(H (A).H) gy ) | | s C([—1|0)U(0|1]:H))] “9)
From (4.8) for [arg.A| < ¢ it follows that
Z(|/1|”ulk”|_ ((-11);H) +||u WP ((— 101)H(Ak)H)) CZ”gk”L ((-L1:H) -~ (4.10)
Therefore, from Theorem 2.2 and inequality (4.10) we have
(my) H ‘ (my)
Hu 0) (H(A)H)g, =G|t WZ (-LOANH(ALH) <Cllai, p (L)
(my) (my)
Hul? (+ )H(H(AQ)H)Q( ‘ulz \w 2(~LOANH (AVH) — ||gzl|L (-1H) (4.11)
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In view of ([20], Theorem 1.7.7/2), for g4, €[] , U €W,”((=1,0,2); H(A ), H) it holds that

|2—mk

1 2
|4 U(mk)(—O)H <C(ealp ”u"W,?((—l,o,l);H) * " ”u”Lp((*l'l)?H)) ’

|2—m|<

m) 1 2:2
u™ (+0)] < C(lee|e Jul P u

(4.12)

4 W2 (-1.0a5H) T |1t Ly (o)

1 1
If the inequalities in (4.12) divided by |,LL1|P and |,u2|p , respectively, and substitute A = ,ukz for Aell,
2 .
ueW; ((-1,0,1);H), we have

| ﬂ|1*9k1

u™ (o) <C(lu] Al

WZ ((-1,02);H) L, ((_1’0‘1);,4)) ,

H

UV GO <l sy P a9

Therefore, from (4.10) and (4.13) we get

A7 |ulf (<0)| < C(u

|l—6k1

A

WP ((~1,0,1):H (A).H) Ly ((—l,l);H))

<C ” g1|||_p (-12)H)

A7 Jus® (+0)| < CJu, |

A Ju |

W, ((~1,0,1);H (A)),H) Ly ((11);H) )

= ”ngLp iy 940 (4.14)

From (4.9), (4.11), and (4.14) for [arg A| < ¢ and || — o we have

2
éqﬂ ”qu ”l_p ((-1,);H) +||A<u2k |||_p ((=1.1);H) +||ng ”Lp ((—l,l);H))

2 2 2 10,
21293 [ NS 35 LN NN

Hence, from (4.14) and (4.15) we can obtain (4.3). This completed the proof.

i 1. (4.15)

5. Coerciveness and Fredholmness for transmission-boundary value problem

In this section, we will consider the following boundary value problem
Lu:=—-u"(X)+ Au(x) + e(x)u(x) =g(x), xe[-1,0)u(0,1] (5.1)

Lu=a,u™ (=1)+ B u™ (=0) +7,u™ (+0) + y,u™ (1) = f, (5.2)
v=12,34, k=12
where, U, (X) =U,; (X)+U,,(X) for xe[-10), u,(X) =u,,(X)+U,,(X) for x e (0,1],
u(x) =u, (X) +U,(X) =uy, (X) + Uy (X) + U, (X) + Uy (X).

Theorem 5.1. We assume that the following conditions be satisfied:
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1) R(A, AN <CA+|A)?, argi=7, |2 >, k=12,
2) the embedding H (A, ) < H is compact,
3) 0=0,
4) for any & >0 and for aimost all X €[-1,0)w(0,1],
lo Ou || < &|Auc]+C@)|ud|. u, eD(A). k=12,
for u, € (H(A), H)El and @, (X)u, are measurable on [-1,0) U (0,1] in H .
>

Then

a) for U, esz ((-10,1); H(A,),H), the coercive estimate

>

"
u k

L, (F11):H) 4 ||A<uk ||Lp ((—l,l);H))

2 2 2
< C[kzll (”LUk ”Lp ((-L1);H) + ”uk ”Lp ((—l,l);H)) . Z;;H Likuk H(H(Ak);H)ij i ] (5-3)
- = ‘

where 6, ::%4—%, v=12,34,k=12,pe(l,x),holds;

p
b) the operator L,(4):u, = L,(A)u, =(L(D)u,, Lu,, Lu,, Lu,Lu,) from
sz ((-1,0,2;H(A),H) into
L, ((11;H)+(H(A). H), , +(H(A), H),, , +(H(A). H), , +(H(A),H), ,

is bounded and Fredholm.

Proof. Assume that condition (1) is satisfied for arg A = 7z . The general case is a reduced to the latter if the operator
A + 4,1 for some A, > 0 sufficiently large, is considered instead of the operator A, , and the operator ¢, (X) — A, is
considered instead of the operator ¢, (X), k=1,2.

a) Let U, (X) eWp2 ((-1,0,2); H(A,), H) be a solution of problem (5.1)-(5.2). Then U, (X) is a solution of the problem
—U; () + (A + AN, (X) = f, () + Au, (X) — g (XU, (X), k=12
Lou =f, 0v=1234 k=12

where LkuO are defined by equalities (3.2). By Theorem 4.1 for 4 —> o0 we have the estimate

2

"
u k

L, (-L1)H) + ||A<uk ”Lp ((—l,l);H))

2
v=1 k=1

2 2
< C(Z”gk (X) + /wk — % (X)Uk (X)”Lp ((-11);H) + ZZ” fuk ||(H(Ak),H)9 )
k=1 vk, p

2
< C[; (”gk ||Lp ((-L1);H) +||uk ||Lp ((-L1);H) + ||¢kuk ”Lp ((—1,1);H))
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2
+ZZ” ka”(H(Ak),H),,Ukm 1 (5.4)

2
v=1 k=1

where, 6, =6,,6,,=6,,6,=6,.0,,=0,, f, =1, 1, =1, f,=1,1,="f1,.

In view of condition (4) and ([13], Theorem 4), for U, (X) eWp2 ((-13,0,1);H(A).H),

”(pkuk ||Lp((—l,l);H) = g”uk|W;((—l,0,1);H(Ak),H) +C(8)||uk ||Lp((—1,1);H)’ k=12. (55
By S. and Y. Yakubov ([20], Lemma 1.7.7/2), for Uy (X) eW?((-1,0,1); H),
||¢kuk||Lp((—l,l);H) < 5||uk ”sz((—l,o,l);H(Ak),H) +C(g)||uk||Lp((—l,l);H) K =12. (56)
Substituting (5.6) into (5.4) we have (5.3).
b) The operator Lk can be written in the form
L, =L,(4)+L,, k=12 (5.7)

where L (A)u; := Ly (A, = (L, (Au, Ly, Lu, L, uLu,),
L, (1), L. L,, L;, L, are defined by equalities (3.1)-(3.2), and
L,u, = (—Au, (X) + @ (X)u, (x),0,0)
L,u, = (—Au,(x) + ¢, (X)u,(x),0,0) .

We can conclude from Theorem 4.1 that L, (4, ) from sz ((-1,0,2);H(A.),H) onto

L, ((-11;H) +(H(A),H )Hll,p +(H(A), H)gﬂ,p +(H(A), H)gu’p +(H(A),H )sz,p) has an inverse. From
(5.7), (5.9) it follows that the operator L, from sz ((-10,1); H(A.),H) into

L, (CLD;H)+(H(A). H)g, , +(H(A). H),, , +(H(A). H),, , +(H(A). H),, ,
is compact. The proof of the theorem is completed in view of application by Theorem 2.3 to operator (5.7).
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