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Abstract: The aim of the present paper is present a relatively new analytical method, called residual power series 

(RPS) method, for solving system of fuzzy initial value problems under strongly generalized differentiability. The technique 
methodology provides the solution in the form of a rapidly convergent series with easily computable components using 
symbolic computation software. Several computational experiments are given to show the good performance and 
potentiality of the proposed procedure. The results reveal that the present simulated method is very effective, 
straightforward and powerful methodology to solve such fuzzy equations. 
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1. Introduction 

Fuzzy differential equations (FDEs) are extensively used in modeling of complex phenomena arising in applied 
mathematics, physics, and engineering, including fuzzy controltheory, quantum optics, atmosphere, measure theory and 
dynamical systems [1-4]. In many cases, data about these physical phenomena is pervaded under uncertainty, which may 
arise in the experiment part, data collection, measurement process as well as when determining the initial values. Most of 
the uncertain practical problems under the differential sense require the solutions of the corresponding FDEs which satisfy 
the given fuzzy initial conditions; therefore, fuzzy problems should be solved. In general, there exists no method that yields 
an explicit solution for FDEs due to the complexities of uncertain parameters involving these equations. Therefore, an 
efficient reliable computer stimulation is required. To deal with this in more realistic situations, FDEs are commonly solved 
approximately using numerical techniques [5-9].On the other hand, applications for different problems using numerical 
methods can be found in [10-16]. 

Series expansions are very important aids in numerical calculations, especially for quick estimates made in hand 
calculation. Solutions of the FDEs can often be expressed in terms of series expansions. However, the RPS technique is 
an analytical method for solving different types of ordinary and partial differential equations [17-19]. The methodology is 
effectiveand easy to construct power series solution for strongly linear and nonlinear systems of FIVPs without 
linearization, perturbation, or discretization.Different from the classical power series method, the RPS technique does not 
need to compare the coefficients of the corresponding terms and recursion relations are not required, which computes the 
coefficients of its power series by a chain of linear equations of 𝑛-variable, where 𝑛 is number of equations in the given 

system. Thetraditional higher order Taylor series method is computationally expensive for large orders and suited for the 
linear problems, while on the other hand, the proposed method is an alternative procedure for obtaining analytic Taylor 
series solution of systems of FIVPs. By using residual error concept, we get a series solution, in practice a truncated 
series solution [20-22]. More specifically, we discuss and provide numerical approximate solutions for system of FIVP of 
the form 

𝑢𝑖
′  𝑡 = 𝐹𝑖 𝑡, 𝑢𝑖 𝑡  , 𝑖 = 1,2,… , 𝑛, (1) 

subject to the initial conditions 

𝑢𝑖 𝑡0 = 𝜉𝑖 , 𝑖 = 1,2,… , 𝑛, (2) 

where𝑡 ∈  𝑡0, 𝑡0 + 𝑎 ,𝑡0, 𝜉𝑖 ∈ ℝ, 𝐹𝑖 :  𝑡0, 𝑡0 + 𝑎 × ℝ𝑛 → ℝ are nonlinear continuous functions in term of 𝑢𝑖 .The unknown 

functions 𝑢𝑖 𝑡 , 𝑖 = 1,2, … , 𝑛, of independent variable 𝑡to be determined.Throughout thispaper, we assume that 𝐹𝑖 , 𝑖 =
1,2,… , 𝑛,are analytic functionsand satisfies all the necessary requirements for the existence of a unique solution. 

This article is organized as follows. In the next section, we revisit brieflysome necessary definitions and preliminary 
results from the fuzzy calculus theory including the strongly generalized differentiability. Formulation for solving the system 
of FIVPs is presented in Section 3.Numerical experiments and simulation results are presented inSection 4. This article 
ends in Section 5 with some concluding remarks. 

2.Fuzzy Analysis Theory 

In this section, we present some necessary definitions and notations from fuzzy calculus theory which be used throughout 
the paper. 

Definition 2.1. [23] A fuzzy number𝑢 is a fuzzy subset of the real line with a normal, convex, and upper 

semicontinuous membership function of bounded support. 

Theorem 2.1.[23] Suppose that 𝑢:  0,1 → ℝand𝑢:  0,1 → ℝsatisfy the following conditions: First, 𝑢is a bounded 

increasing function and 𝑢 is a bounded decreasing function with 𝑢 1 ≤ 𝑢 1 ; second, for each𝛼 ∈ (0,1], 𝑢 and𝑢 are left-

hand continuous functions at 𝛼 = 𝑟; third, 𝑢 and𝑢 are right-hand continuous functions at 𝑟 = 0. Then,𝑢: ℝ →  0,1  defined 

by𝑢 𝑠 = sup 𝑟: 𝑢 𝑟 ≤ 𝑠 ≤ 𝑢 𝑟  is a fuzzy number with parameterization  𝑢 𝑟 , 𝑢 𝑟  . Furthermore, if 𝑢: ℝ →  0,1  is a 

fuzzy number with parameterization  𝑢 𝑟 , 𝑢 𝑟  ,then the functions𝑢and𝑢 satisfy the aforementioned conditions. 
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In general, we can represent an arbitrary fuzzy number 𝑢 by an order pair of functions  𝑢, 𝑢 based upon 

therequirements mentionedin Theorem 2.1. On the other hand, for arbitrary fuzzy numbers𝑢 = (𝑢(𝑟), 𝑢(𝑟)), 𝑣 =

(𝑣(𝑟), 𝑣(𝑟)) and 𝜆 ∈ ℝ,we define the addition and scalar multiplication by 𝜆 as  𝑢 + 𝑣 𝑟 =  𝑢 𝑟 +  𝑣 𝑟 =  𝑢(𝑟) + 𝑣(𝑟), 𝑢(𝑟) +

𝑣(𝑟) and 𝜆𝑢𝑟=𝜆𝑢𝑟=[𝑚𝑖𝑛{𝜆𝑢(𝑟),𝜆𝑢(𝑟)},𝑚𝑎𝑥{𝜆𝑢(𝑟),𝜆𝑢(𝑟)}]. Moreover, any two fuzzy numbers 𝑢 and 𝑣 are equal, if 𝑢𝑟=𝑣𝑟 for 

each 𝑟 ∈  0,1 , that is, 𝑢 𝑟 = 𝑣(𝑟) and 𝑢 𝑟 = 𝑣(𝑟). 

The metric structure on ℝ𝐹 is given by the Hausdorff distance𝐷: ℝ𝐹 × ℝ𝐹 → ℝ+ ∪  0  such that 

𝐷 𝑢, 𝑣 = sup
0≤𝑟≤1

max  𝑢(𝑟) − 𝑣(𝑟) ,  𝑢 𝑟 − 𝑣(𝑟)   for arbitrary fuzzy numbers 𝑢 and 𝑣. 

Definition 2.2. [24]Let 𝑢, 𝑣 ∈ ℝ𝐹. If there exists 𝑤 ∈ ℝ𝐹 such that 𝑢 = 𝑣 + 𝑤, then 𝑤is called the H-difference 

(Hukuhara difference) of 𝑢 and 𝑣, and is denoted by 𝑢 ⊖ 𝑣.  

Definition 2.3. [24] Let 𝑢:  𝑎, 𝑏 → ℝ𝐹 and 𝑡0 ∈  𝑎, 𝑏 . We say that 𝑥 is strongly generalized differentiable at 𝑡0, if there 

exists an element 𝑢′ 𝑡0 ∈ ℝ𝐹 such that either 

i) for eachℎ > 0 sufficiently close to 0, the H-differences𝑢 𝑡0 + ℎ ⊖ 𝑢 𝑡0 , 𝑢 𝑡0 ⊖ 𝑢 𝑡0 − ℎ  exist and 

lim
ℎ→0+

𝑢 𝑡0 + ℎ ⊖ 𝑢 𝑡0 

ℎ
= lim

ℎ→0+

𝑢 𝑡0 ⊖ 𝑢 𝑡0 − ℎ 

ℎ
= 𝑢′ 𝑡0 , 

ii) for eachℎ > 0 sufficiently close to 0, the H-differences𝑢 𝑡0 ⊖ 𝑢 𝑡0 + ℎ , 𝑢 𝑡0 − ℎ ⊖ 𝑢 𝑡0  exist and 

lim
ℎ→0+

𝑢 𝑡0 ⊖ 𝑢 𝑡0 + ℎ 

−ℎ
= lim

ℎ→0+

𝑢 𝑡0 − ℎ ⊖ 𝑢 𝑡0 

−ℎ
= 𝑢′ 𝑡0 . 

Here, the limit is taken in the metric space  ℝ𝐹 , 𝐷  and at the endpoints of  𝑎, 𝑏 , we consider only one-sided 

derivatives. If 𝑢is differentiable at any point𝑡 ∈  𝑎, 𝑏 , then we say that𝑢is differentiable on  𝑎, 𝑏 .Furthermore, we say that 𝑢 

is(1)-differentiableon  𝑎, 𝑏 , if 𝑢is differentiable in the sense of(𝑖) and its derivative is denoted𝐷1𝑢, while 𝑢is (2)-

differentiableon  𝑎, 𝑏 , if 𝑢is differentiable in the sense of(𝑖𝑖) and its derivative is denoted𝐷2𝑢.Frequently, we will write 

simply 𝑢1𝑟  and 𝑢2𝑟  instead of 𝑢 𝑟  and 𝑢 𝑟 , respectively, for each 𝑟 ∈  0,1 . 

Theorem 2.2. [23] Let 𝑢:  𝑎, 𝑏 → ℝ𝐹 and put  𝑢 𝑡  𝑟 =  𝑢1𝑟 𝑡 , 𝑢2𝑟 𝑡   for each 𝑟 ∈  0,1 .  

i) If 𝑢 is (1)-differentiable, then 𝑢1𝑟  and 𝑢2𝑟  are differentiable functions and  𝐷1𝑢 𝑡  
𝑟 =  𝑢′1𝑟 𝑡 , 𝑢′2𝑟 𝑡  , 

ii) If 𝑢 is (2)-differentiable, then 𝑢1𝑟  and 𝑢2𝑟  are differentiable functions and  𝐷2𝑢 𝑡  
𝑟 =  𝑢′2𝑟 𝑡 , 𝑢′1𝑟 𝑡  . 

Definition 2.4. Let 𝑢:  𝑎, 𝑏 → ℝ𝐹. Then, we say that 𝑥 is continuous at 𝑡₀ ∈  𝑎, 𝑏  if for every 𝜀 > 0, there exists𝛿 =
𝛿(𝑡₀, 𝜀) > 0 such that 𝐷(𝑢(𝑡), 𝑢(𝑡₀)) < 𝜀, for each𝑡 ∈  𝑎, 𝑏 ,whenever  𝑡 − 𝑡₀ < 𝛿. 

Here, we say that𝑢 is continuous on  𝑎, 𝑏 , if 𝑢 is continuous at each𝑡₀ ∈  𝑎, 𝑏 such that the continuity is one-sided at 

endpoints of 𝑎, 𝑏 , that is, 𝑢 is continuous on  𝑎, 𝑏  if and only if 𝑢1𝑟  and 𝑢2𝑟  arecontinuous on  𝑎, 𝑏 . 

3. Fuzzy System Initial Value Problems 

In this section, we study the system ofFIVPs under the concept of strongly generalized differentiability in which the fuzzy 
differential equation is converted into equivalent system of crisp system of IVPs for each type of differentiability. These can 
be done if the initial value is fuzzy number, the solution is fuzzy function, and consequently the derivative must be 
considered as fuzzy derivative. 

Prior to construct approximate possible fuzzy solutions of fuzzy system (1) and (2), we write the fuzzy 

functions𝑢𝑖 𝑡 , 𝑖 = 1,2,… , 𝑛, in terms of its 𝑟-cut representation form to get that 𝑢𝑖 𝑡  
𝑟 =  𝑢(𝑖)1𝑟 𝑡 , 𝑢(𝑖)2𝑟 𝑡   and  𝑢𝑖 𝑡0  

𝑟 =

 𝛼(𝑖)1𝑟 , 𝛼(𝑖)2𝑟  , 𝑖 = 1,2, … , 𝑛.Thus, by considering the parametric form for both sides of system (1) and (2), one can write 

 𝑢𝑖 𝑡  
𝑟 =  𝐹𝑖 𝑡, 𝑢𝑘 𝑡   

𝑟
, 𝑘 = 1,2,… , 𝑛,  (3) 

subject to the initial conditions 

 𝑢𝑖 𝑡0  
𝑟 =  𝜉𝑖 

𝑟 , 𝑖 = 1,2,… , 𝑛, (4) 

where  

 𝐹𝑖 𝑡, 𝑢𝑘 𝑡   
𝑟

=  𝐹(𝑖)1𝑟 𝑡, 𝑢𝑘 𝑡  , 𝐹(𝑖)2𝑟 𝑡, 𝑢𝑘 𝑡   =  𝐹(𝑖)1𝑟  𝑡, 𝑢(𝑘)1𝑟 𝑡 , 𝑢(𝑘)2𝑟 𝑡  , 𝐹(𝑖)2𝑟  𝑡, 𝑢(𝑘)1𝑟 𝑡 , 𝑢(𝑘)2𝑟 𝑡   . 

Definition 3.1. [24] Let 𝑢:  𝑎, 𝑏 → ℝ𝐹such that𝐷1𝑢 and 𝐷2𝑢exists. If 𝑢 with 𝐷1𝑢satisfy the fuzzy system (1) and (2), 

then we say that𝑢is a (1)-solution of FIVPs (1) and (2). Similarly, if𝑥 with 𝐷2𝑢satisfy the fuzzy system (1) and (2), then we 

say that𝑢is a (2)-solution of FIVPs (1) and (2). 

Let 𝑥 be a (𝑛)-solution, then by utilizing Theorems 2.2, we can thus translate the fuzzy system (1) and (2) into system 

of crisp DEs, hereafter, called the corresponding (𝑛)-system. In some cases, we can’t decompose the membership 
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function of the fuzzy solution  𝑢 𝑡  𝑟  as a function defined on ℝ for each 𝑡 ∈ [𝑎, 𝑏]. Then, we can leave the (𝑛)-solution in 
terms of its 𝑟-cut representation form. 

The RPSM consists in expressing the solutions of system (1) and (2) as a power series expansion about the initial 
point 𝑡 = 𝑡0.To achieve our goal, we suppose that these solutions take the form 

𝑢𝑖 𝑡 =  𝑢𝑖,𝑚  𝑡 ,

∞

𝑚=0

𝑖 = 1,2,… , 𝑛, (5) 

where 𝑢𝑖,𝑚  𝑡 = 𝑎𝑖,𝑚  𝑡 − 𝑡0 
𝑚 . 

Notice that in writing out the term corresponding to 𝑚 = 0 in PS (5), we have adopted the convention that  𝑡 − 𝑡0 
0 = 1 

even when 𝑡 = 𝑡0. If 𝑡 = 𝑡0, then all terms of the PS (5)are vanishing for 𝑚 ≥ 1 and so.Anyhow, let 𝑢𝑖,0 𝑡 be the initial 

guesses approximations of𝑢𝑖 𝑡 , 𝑖 = 1,2,… , 𝑛. Then, since theysatisfy the initial conditions (2), we have𝑢𝑖,0 𝑡0 = 𝑢𝑖 𝑡0 =

𝜉𝑖 , 𝑖 = 1,2, … , 𝑛. Thus, after choosing𝑢𝑖,0 𝑡 = 𝑢𝑖 𝑡0  as initial approximations of 𝑢𝑖(𝑡) andcalculating𝑢𝑖,𝑚  𝑡 for 𝑚 =

1,2,… , 𝑘,thenthe solutions 𝑢𝑖(𝑡) of system (1) and (2)can be approximated by the following𝑘th-truncated series 

𝑢𝑖
𝑘 𝑡 =  𝑎𝑖,𝑚  𝑡 − 𝑡0 

𝑚

𝑘

𝑚=0

, 𝑖 = 1,2,… , 𝑛.  

To applying the RPSM, we rewrite the system such that 

𝑢𝑖
′  𝑡 − 𝐹𝑖 𝑡, 𝑢𝑖 𝑡  = 0, 𝑖 = 1,2,… , 𝑛. (6) 

The subsisting of 𝑘th-truncated series into system (6) leads to the following definition of𝑘th-residual functions 

Res𝑖
𝑘 𝑡 =  𝑚𝑎𝑖,𝑚  𝑡 − 𝑡0 

𝑚−1

𝑘

𝑚=1

 

−𝐹𝑖  𝑡,  𝑎1,𝑚  𝑡 − 𝑡0 
𝑚

𝑘

𝑚=0

,  𝑎2,𝑚  𝑡 − 𝑡0 
𝑚

𝑘

𝑚=0

, … ,  𝑎𝑛,𝑚  𝑡 − 𝑡0 
𝑚

𝑘

𝑚=0

 , 

(7) 

while the ∞th-residual functions is given byRes𝑖
∞ 𝑡 = lim𝑘→∞ Res𝑖

𝑘 𝑡 , 𝑖 = 1,2,… , 𝑛. 

Clear that Res𝑖
∞ 𝑡 = 0 for each 𝑡 ∈  𝑡0, 𝑡0 + 𝑎 .This show that Res𝑖

∞ 𝑡  are infinitely many times differentiable at 𝑡 = 𝑡0. 

On the other hand, 
𝑑𝑛

𝑑𝑡𝑛 Res𝑖
∞ 𝑡0 =

𝑑𝑛

𝑑𝑡𝑛 Res𝑖
𝑘 𝑡0 = 0, for each 𝑛 = 1,2, … , 𝑘.To obtain the values of the coefficients𝑐𝑖,𝑚 , we 

need to solve the following algebraic system
𝑑 (𝑛−1)

𝑑𝑡 (𝑛−1)
Res𝑖

𝑛 𝑡0 = 0, 𝑛 = 1,2, … , 𝑘. 

Todetermine the first unknown coefficient, 𝑎𝑖,1,we defined the 1st-residual function as  

Res𝑖
1 𝑡 =  𝑚𝑎𝑖,𝑚  𝑡 − 𝑡0 

𝑚−11
𝑚=1 − 𝐹𝑖 𝑡,  𝑎1,𝑚  𝑡 − 𝑡0 

𝑚1
𝑚=0 , … ,  𝑎𝑛,𝑚  𝑡 − 𝑡0 

𝑚1
𝑚=0  . Substituting𝑡 = 𝑡0 into the 1st-

residual function and then using the fact Res𝑖
∞ 𝑡0 = Res𝑖

1 𝑡0 = 0, we have 

𝑎𝑖,1 = 𝐹𝑖 𝑡0, 𝑎1.0, 𝑎2.0 , … , 𝑎𝑛.0 = 𝑓𝑖 𝑡0, 𝑢1 𝑡0 , 𝑢2 𝑡0 , … , 𝑢𝑛 𝑡0  , 𝑖 = 1,2,… , 𝑛. Thus, by using the1st-truncated series, the 1st-

approximate solutions can be written as 

𝑢𝑖
1 𝑡 = 𝑢𝑖 𝑡0 + 𝐹𝑖 𝑡0, 𝑢𝑖 𝑡0   𝑡 − 𝑡0 , 𝑖 = 1,2, … , 𝑛.  

Forsecond unknown coefficient, 𝑎𝑖,2,differentiate both sides of formula(7) with respect to 𝑡,put 𝑘 = 2,and then substitute 

𝑡 = 𝑡0 to get that 

𝑑

𝑑𝑡
Res𝑖

2 𝑡0 = 2𝑎𝑖,2 −
𝜕

𝜕𝑡
𝐹𝑖 𝑡0, 𝑎1.0 , 𝑎2.0, … , 𝑎𝑛.0  

− 𝑎𝑗 ,1

𝜕

𝜕𝑥𝑗
2

𝑛

𝑗 =1

𝐹𝑖 𝑡0, 𝑎1,0 , 𝑎2,0 , … , 𝑎𝑛,0 , 𝑖 = 1,2,… , 𝑛. 

 

Similarly, by using the fact 
𝑑

𝑑𝑡
Res𝑖

2 𝑡0 =
𝑑

𝑑𝑡
Res𝑖

∞ 𝑡0 = 0, we have 

𝑎𝑖,2 =
1

2
 
𝜕

𝜕𝑡
𝐹𝑖 𝑡0, 𝑢1 𝑡0 , 𝑢2 𝑡0 , … , 𝑢𝑛 𝑡0  +  𝑎𝑗 ,1

𝜕

𝜕𝑥𝑗
2

𝑛

𝑗 =1

𝐹𝑖 𝑡0, 𝑢1 𝑡0 , 𝑢2 𝑡0 , … , 𝑢𝑛 𝑡0   , 𝑖

= 1,2, … , 𝑛. 

 

Now, by using the2nd-truncated series, the2nd-approximate solutions can be written as 
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𝑢𝑖
2 𝑡 = 𝑢𝑖 𝑡0 + 𝐹𝑖 𝑡0, 𝑢1 𝑡0 , 𝑢2 𝑡0 , … , 𝑢𝑛 𝑡0   𝑡 − 𝑡0 +

1

2
 
𝜕

𝜕𝑡
𝐹𝑖 𝑡0, 𝑢1 𝑡0 , 𝑢2 𝑡0 , … , 𝑢𝑛 𝑡0   

+   𝑎𝑗 ,1

𝜕

𝜕𝑥𝑗
2

𝑛

𝑗 =1

𝐹𝑖 𝑡0, 𝑢1 𝑡0 , 𝑢2 𝑡0 , … , 𝑢𝑛 𝑡0    𝑡 − 𝑡0 
2, 𝑖 = 1,2,… , 𝑛. 

 

This procedure can be repeated till the arbitrary order coefficients of RPS solutionsare obtained. 

Here, we will let Rem𝑖
𝑘 𝑡  denote the difference between 𝑥𝑖 𝑡 and its 𝑘th Taylor polynomial; that is, 

Rem𝑖
𝑘 𝑡 = 𝑢𝑖 𝑡 − 𝑢𝑖

𝑘 𝑡 =  
𝑢𝑖

 𝑚  𝑡0 

𝑚!
 𝑡 − 𝑡0 

𝑚

∞

𝑚=𝑘+1

, 𝑖 = 1,2,… , 𝑛,  

where the functionsRem𝑖
𝑘 𝑡  are called the 𝑘th-remainder for the Taylor series of 𝑢𝑖 𝑡 . 

4. Numerical Experiments 

To show the simplicity and effectiveness of the proposed algorithm, semi-analytical solutions for a class of both linear and 
nonlinear inhomogeneous fuzzu IVPs is constructed using the RPS approach. The method is applied in a direct way 
without using linearization, transformation, or restrictive assumptions. The results reveal that the method is highly 
accurate, rapidly converge, and convenient to handle a various engineering problems in fuzzy calculus.  

Example 4.1Consider the linear fuzzy IVPs in the form 

𝑢1
′  𝑡 − 𝑢1 𝑡 − 𝑢2 𝑡 = 0, 𝑡 ∈  0,1 , 

𝑢2
′  𝑡 + 𝑢1 𝑡 − 𝑢2 𝑡 = 0, 

(17) 

subject to the fuzzy initial conditions 

𝑢1 0 = 𝜇1 , 𝑢2 0 = 𝜇2 , (18) 

where  𝜇1 𝑠 =  
𝑠 − 1, 1 ≤ 𝑠 ≤ 2,
4 − 𝑠, 2 ≤ 𝑠 ≤ 3,

 and𝜇2 𝑠 =  
𝑠, 0 ≤ 𝑠 ≤ 1,

3 − 𝑠, 1 ≤ 𝑠 ≤ 2.
  

If we put  𝑟 = 𝑠 − 1, and𝑟 = 4 − 𝑠,  then, [ 𝜇1]𝑟 = [𝑟 − 1,4 − 𝑟] and[𝜇2  ]𝑟 = [𝑟, 3 − 𝑟].Using the RPSM, we have that 

𝑢1𝑟
′  𝑡 − 𝑢1𝑟 𝑡 − 𝑢3𝑟 𝑡 = 0, 

𝑢2𝑟
′  𝑡 − 𝑢2𝑟 𝑡 − 𝑢4𝑟 𝑡 = 0, 

𝑢3𝑟
′  𝑡 + 𝑢2𝑟 𝑡 − 𝑢3𝑟 𝑡 = 0, 

𝑢4𝑟
′  𝑡 + 𝑢1𝑟 𝑡 − 𝑢4𝑟 𝑡 = 0, 

(19) 

subject to the fuzzy initial conditions 

𝑢1𝑟 0 = 𝑟 − 1, 𝑢2𝑟 0 = 4 − 𝑟, 𝑢3𝑟 0 = 𝑟, 𝑢4𝑟 0 = 3 − 𝑟. (20) 

Starting with𝑎1,0 = 𝑟 − 1, 𝑎2,0 = 4 − 𝑟, 𝑎3,0 = 𝑟, and 𝑎4,0 = 3 − 𝑟, the PSsolutions are 

𝑢1𝑟 𝑡 = 𝑟 − 1 +  𝑎1,𝑚 𝑡𝑚 ,

∞

𝑚=1

𝑢2𝑟 𝑡 = 4 − 𝑟 +  𝑎2,𝑚 𝑡𝑚 ,

∞

𝑚=1

𝑢3𝑟 𝑡 = 𝑟 +  𝑎3,𝑚 𝑡𝑚 ,

∞

𝑚=1

𝑢4𝑟 𝑡 = 3 − 𝑟 +  𝑎4,𝑚 𝑡𝑚 .

∞

𝑚=1

  

The𝑘th residual functions are given as 



I S S N  2 3 4 7 - 1 9 2 1 

V o l u m e  1 2  N u m b e r  0 8 

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s 
 

6557 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h 
S e p t e m b e r  2 0 1 6                                            w w w . c i r w o r l d . c o m 

 

Res1,𝑟
𝑘  𝑡 =  𝑚𝑎1,𝑚 𝑡𝑚−1

𝑘

𝑚=1

−   𝑟 − 1 +  𝑎1,𝑚 𝑡𝑚
𝑘

𝑚=1

 +  𝑟 +  𝑎3,𝑚 𝑡𝑚
𝑘

𝑚=1

  ,

Res2,𝑟
𝑘  𝑡 =  𝑚𝑎1,𝑚 𝑡𝑚−1

𝑘

𝑚=1

−   4 − 𝑟 +  𝑎2,𝑚 𝑡𝑚
𝑘

𝑚=1

 +  4 − 𝑟 +  𝑎4,𝑚 𝑡𝑚
𝑘

𝑚=1

  ,

Res3,𝑟
𝑘  𝑡 =  𝑚𝑎3,𝑚 𝑡𝑚−1

𝑘

𝑚=1

−  − 4 − 𝑟 +  𝑎2,𝑚 𝑡𝑚
𝑘

𝑚=1

 +  𝑟 +  𝑎3,𝑚 𝑡𝑚
𝑘

𝑚=1

  ,

Res4,𝑟
𝑘  𝑡 =  𝑚𝑎4,𝑚 𝑡𝑚−1

𝑘

𝑚=1

−  − 1 − 𝑟 +  𝑎1,𝑚 𝑡𝑚
𝑘

𝑚=1

 +  4 − 𝑟 +  𝑎4,𝑚 𝑡𝑚
𝑘

𝑚=1

  .

  

Using𝑁 = 10,the RPS solutions are given by  

𝑢1𝑟 𝑡 =  𝑟 − 1  1 + 2𝑡 + 22
𝑡2

2!
+ 23

𝑡3

3!
+ 24

𝑡4

4!
+ 25

𝑡5

5!
 

+  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  t −

t3

3!
+

t5

5!
 

+ 2  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  1 −

𝑡2

2!
+

𝑡4

4!
 , 

𝑢2𝑟 𝑡 =  1 − 𝑟  1 + 2𝑡 + 22
𝑡2

2!
+ 23

𝑡3

3!
+ 24

𝑡4

4!
+ 25

𝑡5

5!
 

+  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  𝑡 −

𝑡3

3!
+

𝑡5

5!
 

+ 2  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  1 −

𝑡2

2!
+

𝑡4

4!
 , 

𝑢3𝑟 𝑡 =  𝑟 − 1  1 + 2𝑡 + 22
𝑡2

2!
+ 23

𝑡3

3!
+ 24

𝑡4

4!
+ 25

𝑡5

5!
 

+  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  1 −

𝑡2

2!
+

𝑡4

4!
 

− 2  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  𝑡 −

𝑡3

3!
+

𝑡5

5!
 , 

𝑢4𝑟 𝑡 =  1 − 𝑟  1 + 2𝑡 + 22
𝑡2

2!
+ 23

𝑡3

3!
+ 24

𝑡4

4!
+ 25

𝑡5

5!
 

+  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  1 −

𝑡2

2!
+

𝑡4

4!
 

− 2  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+

𝑡5

5!
  𝑡 −

𝑡3

3!
+

𝑡5

5!
 . 

 

Example 4.2 Consider the nonlinear system of fuzzy IVPs 

𝑢1
′  𝑡 − 𝑒𝑢2 𝑡 = 𝜇, 𝑡 ∈  0,1 , 

𝑢2
′  𝑡 −  𝑢1 𝑡  

3
= 0, 

(21) 

subject to the fuzzy initial conditions 

𝑢1 0 = 0, 𝑢2 0 = 𝜂, (22) 

where𝜇 𝑠 = max𝑠∈ℝ  0,1 −  4𝑠 
2

3  and 𝜂 𝑠 = max𝑠∈ℝ 0.1 −  5𝑠 2 . 

Now, weput 𝑢1𝑟 𝑡 =  𝑢1𝑟 𝑡 , 𝑢2𝑟 𝑡   and𝑢2𝑟(𝑡) =  𝑢3𝑟 𝑡 , 𝑢4𝑟 𝑡  , then, we have 

that𝑢1𝑟
3  𝑡 =  𝑢1𝑟

3  𝑡 , 𝑢2𝑟
3  𝑡  and 𝑒𝑢2(𝑡) 

𝑟
=  𝑒𝑢3𝑟 𝑡 , 𝑒𝑢4𝑟 𝑡  .Thus, if  𝑟 = 1 − (4𝑠)

2

3, then𝑠 = −
1

4
(1 − 𝑟)

3

2 or𝑠 =
1

4
(1 − 𝑟 )

3

2; 

Therefore, 𝜇 𝑟 =  −
1

4
  1 − 𝑟  3,

1

4
  1 − 𝑟  3 ;and 𝜂 𝑟 =  −

1

5
 1 − 𝑟   ,

1

5
 1 − 𝑟   . 

Starting with the initial data𝑎 1,0 = −
1

4
  1 − 𝑟  3, 𝑎 2,0 =

1

4
  1 − 𝑟  3, 𝑎 3,0 = [−

1

5
 1 − 𝑟 , and 𝑎 4,0 =

1

5
 1 − 𝑟   . 

Then,regarding the RPSM, the10th-truncated PSsolutions have to be in the form 
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𝑢 1𝑟
10  𝑡  =  𝑒 −

1

5
 1−𝑟 −

1

4
  1 − 𝑟  3 𝑡 +  

1

20
𝑒 −

1

5
 1−𝑟  𝑒  −

1

5
 1−𝑟  

−
1

4
  1 − 𝑟  3 

3

 𝑡 5

+  
1

288
𝑒 −

1

5
 1−𝑟  𝑒 −

1

5
 1−𝑟 −

1

4
  1 − 𝑟  3 

6

+
1

480
𝑒 −

2

5
 1−𝑟  𝑒 −

1

5
 1−𝑟 −

1

4
  1 − 𝑟  3 

5

 𝑡 9, 

𝑢 2𝑟
10  𝑡  =  𝑒 −

1

5
 1−𝑟 +

1

4
  1 − 𝑟  3 𝑡 +  

1

20
𝑒 −

1

5
 1−𝑟  𝑒  −

1

5
 1−𝑟  

+
1

4
  1 − 𝑟  3 

3

 𝑡 5

+  
1

288
𝑒 −

1

5
 1−𝑟  𝑒 −

1

5
 1−𝑟 −

1

4
  1 − 𝑟  3 

6

+
1

480
𝑒 −

2

5
 1−𝑟  𝑒 −

1

5
 1−𝑟 −

1

4
  1 − 𝑟  3 

5

 𝑡 9, 

𝑢 3𝑟
10  𝑡  = −

1

5
 1 − 𝑟 +

1

4
 𝑒 −

1

5
 1−𝑟 −

1

4
  1 − 𝑟  3 

3

𝑡 4

+
3

160
 𝑒 −

1

5
 1−𝑟  𝑒  −

1

5
 1−𝑟  

−
1

4
  1 − 𝑟  3 

5

 𝑡 8,, 

𝑢 4𝑟
10  𝑡  =

1

5
 1 − 𝑟 +

1

4
 𝑒 −

1

5
 1−𝑟 +

1

4
  1 − 𝑟  3 

3

𝑡 4

+
3

160
 𝑒 −

1

5
 1−𝑟  𝑒  −

1

5
 1−𝑟  

+
1

4
  1 − 𝑟  3 

5

 𝑡 8. 

 

5. Conclusion 

In this paper, a new analytic-numeric method, so-called RPSM, is proposed and applied to handle the both linear and 
nonlinear fuzzy system of IVPs. Numerical results reveal the complete reliability and efficiency of the proposed method 
with a great potential in scientific applications. It may be concluded that the RPSM is very powerful, straightforward, and 
promising technique in finding analytic approximate solution for wide classes of fuzzy IVPs. 
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