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ABSTRACT: This paper, deals with. introduce and study the notions of characterized fuzzy R , spaces and of
2
characterized fuzzy T, spaces by using the notion of fuzzy function family presented in [21] and the notion of
2

gomq,bu - fuzzy continuous mappings presented in [5] as a generalization of all the weaker and stronger forms of the fuzzy

completely regular spaces introduced in [11,24,26,29]. We denote by characterized fuzzy T , space or characterized
2
fuzzy Tychonoff space to the characterized fuzzy space that is characterized fuzzy T, and characterized fuzzy Rzl space
2
in this sense. The relations between the characterized fuzzy T,, spaces, the characterized fuzzy T, spaces and the
2

characterized fuzzy T, spaces are introduced. When the given fuzzy topological space is normal, then the related
characterized fuzzy space is finer than the associated characterized fuzzy proximity space that is presented in [1].
Moreover, the associated characterized fuzzy proximity spaces and the characterized fuzzy T, spaces are identical with
help of the complementarily symmetric fuzzy topogenous structure, that is, identified with the fuzzy proximity 6 . More
generally, the fuzzy function family of all ¢, ¥, , - fuzzy continuous mappings are applied to show that the characterized

fuzzy R, spaces and the associated characterized fuzzy proximity spaces are identical.
2

KEYWORDS: fuzzy filter. Fuzzy; topological space; fuzzy proximity; fuzzy topogenous structure;
operations; characterized fuzzy space; ¢, ,é - fuzzy neighborhood; fuzzy topogenous order, fuzzy function

family; characterized fuzzy proximity space; characterized fuzzy R, space, characterized fuzzy R, spaces for
2

k €{0,1,2,23,3}, characterized fuzzy T_spaces for s €{0,1,2,25.3,35.4}.

1. INTRODUCTION

The notion of fuzzy filter has been introduced by Eklund et al. ([16]). By means of this notion a point-based approach to
the fuzzy topology related to usual points has been developed. The more general concept for the fuzzy filter introduced by
W. Gabhler in [18] and the fuzzy filters are classified by types. However, because of the specific type of the fuzzy filter the
approach of Eklund is related only to the fuzzy topologies which are stratified, that is, all constant fuzzy sets are open. The
more specific fuzzy filters are considered in the former papers to be homogeneous now.

The notion of fuzzy real numbers are introduced by S. Gahler and W. Gabhler in [21], as a convex, normal, compactly
supported and upper semi-continuous fuzzy subsets of the set of all real numbers R . The set of all fuzzy real numbers is

called the fuzzy real line and will be denoted by R, , where L is complete chain. On the ordinary topological space

(X ,T), the operation has been defined by Kasahara ([27]) as the mapping ¢ from T into 2° such that A C A, for all
A €T . Abd EI-Monsef et al. in [8], extend Kasahara operation to the power set P (X ) of the set X Kandil et al.([25l)
extended Kasahars’s and Abd El-Monsef's Operations by introducing an operation on the class of all fuzzy subsets
endowed with an fuzzy topology 7 as a mapping ¢ : L — L* such that intp < /ﬁ’ forall p e L , Where ,u*g denotes
the value of ¢ at . The notions of the fuzzy filters and the Operations on the class of all fuzzy sets on X endowed with
the fuzzy topology 7 are applied in [5] to introduce a more general theory including all the weaker and stronger forms of
the fuzzy topology. By means of these notions the notion of ¢, , - fuzzy interior of the fuzzy set, ¢, , - fuzzy convergence

and ¢, , - fuzzy neighborhood filters are defined. The notion of ¢, , - fuzzy interior operator for the fuzzy sets is also
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defined as a mapping <pl’2.int : L>< — LX which fulfill (11) to (15). Since there is a one-to-one correspondence between
the class of all ¢,, -open fuzzy subsets of X and these operators, then the class ¢, ,OF (X )of all ¢, - open fuzzy
subsets of X is characterized by these operators. Hence, the triple (X 0, ,0F (X)) as will as the triple (X ’@1,2‘int) will
be called characterized fuzzy space of all ¢, , - open fuzzy subsets. For each characterized fuzzy space (X ,gplzint) the
mapping which assigns to each point x of X the ¢, , - fuzzy neighborhood filter at x is called the ¢, - fuzzy filter pre
topology ([5]). It can be identified itself with the characterized fuzzy space (X ,cpl’z.int). The characterized fuzzy spaces
are characterized by many of characterizing notions in [6]. for example by: ¢, , - fuzzy neighborhood filters, ,, - fuzzy
interior of the fuzzy filters and by the set of all ¢, , - inner points of the fuzzy filters. Moreover, the notions of closeness and
compactness in characterized fuzzy spaces are introduced and studied in [7].

In this paper, we applied the operations on the fuzzy topological space (I L ,3) , where I is the fuzzy unit interval
presented in [21] and  is the fuzzy topology defined on |, , to introduce and study the notions of characterized fuzzy
R% space and of characterized fuzzy T% space. The characterized fuzzy R% space is defined similar to the
characterized fuzzy R, spaces for k €{0,1,2,3} ({2,3l), by using the ordinary points and the usual subset as a
generalization of the existence weaker and stronger forms of the completely regular fuzzy topological spaces, such as, the
notions defined by Bayoumi and Abedou in [11], by Hutton in [24], by Katsars in [29] and by Kandil and El-Shafee in [26].
The characterized fuzzy space which is characterized fuzzy T, and characterized fuzzy R% space will be called
characterized fuzzy TS% space or characterized Tychonofi fuzzy space. For the characterized Tychonoff fuzzy space, the
Urysohn’s Lemma is proved and hence it shown that every characterized fuzzy T, space is characterized fuzzy T%

space, but the inverse is not true in general. Moreover, every characterized fuzzy T, space is characterized fuzzy T,
2

space, but the inverse is not true in general. The implications between all the characterized fuzzy T_ spaces and of all

characterized fuzzy R, spaces are listed in Diagrams 3.1 and 4.1 for all s €{0,1, 2,2%,3,3%,4} and k €{0,1, 2,2%,3}.

For each case counter examples will be given. Finally, in Section 5, we shall study the relation between characterized

fuzzy T, space and the characterized fuzzy proximity spaces which is presented by Abd-Allah in [1]. We applied
2

Urysohn’s Lemma and other results which are proved in Sections 2 and 3 to show many results joining the characterized
fuzzy R,, spaces in our sense and the characterized fuzzy proximity spaces in sense of Abd-Allah. Specially, we show
2

that the associated characterized fuzzy proximity space is characterized fuzzy R, space in our sense. Moreover, we
2

show that every characterized fuzzy R,, space is compatible with a fuzzy proximity space defined by the ®-separated for
2

the fuzzy sets in the characterized fuzzy spaces.

2. PRELIMINARIES

We begin by recalling some facts on fuzzy filters. Let L be a completely distributive complete lattice with different least
and last elements 0 and 1, respectively. Sometimes we will assume more specially that L is complete chain, thatis, L is
a complete lattice whose partial ordering is a linear one. The closed unit interval 1 =[0,1] is the standard example for the

completely distributive complete lattice L . Consider, Ly =L \{0}, L, =L \{and 1, =1\{0,1}. Foraset X , let LX
be the set of all fuzzy subsets of X , that is, of all mappings ©: X — L. Assume that an order-reversing involution
a — o'is fixed. For each fuzzy set u, let cou denote the complement of u defined by: (cou)(x) = co u(x) for all

x €X. Forall x eX and a €Ly, the fuzzy subset of X hose the value o at x and O otherwise is said to be fuzzy

pointin X . The set of all fuzzy pointin a set X will be denoted by S (X ). sup u means the supremum of the set of values
of 1. Denote by a the constant fuzzy subset of X with value or a € L.

The fuzzy filter on X ([18]) is a mapping . : L — L such that the following conditions are fulfilled:

(F1) M(@)<a forall a e Land H(1)=1.
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(F2) M(u~1) =M () A M(n)forall u,pel”.
The fuzzy filter ./ is said to be homogeneous ([18]) if #(a) = afor all @ €L . For each x € X , the mapping
X 1" > L defined by X (1) = p(x)forall e Xisa homogeneous fuzzy filter on X . The homogeneous fuzzy filter
at a fuzzy set is defined by the same way as follows, for each ue L , the mapping ,a:LX — L defined by

(o) = /\( )cr(x) for all o e L* is also homogeneous fuzzy filter on X , called homogenous fuzzy filter at the fuzzy
O<o(x

subset u e LY. Let & X and F X will be denote the sets of all fuzzy filters and of all homogeneous fuzzy filters on a
set X , respectively. If A and 4 are fuzzy filters on a set X , then ./ is said to be finer than .#° and will be denoted
by M < A, provided A (u)> A (1) holds for all e L. Noting that if L is a complete chain then . is not finer
than .# and will be denoted by 4 £ .4, provided there exists u € L* such that M (1) <A (1) holds.

Lemma2.1[4] If #, & and .£ are fuzzy filters on a set X . Then the following sentences are fulfilled:

M=L >N impliesthat M= A and M >.L = A impliesthat M = N
Proposition 2.1 [13] For each u, p € L* , we have i < p ifandonlyif i < p.

The coarsest fuzzy filter is a fuzzy filter .4 on X has the value 1 at 1 and O otherwise. The supremum and the
infimum of sets of fuzzy filters are meant with respect to the finer relation. An fuzzy filter # on X is said to be ultra fuzzy

filter ([18]) if it does not have a properly finer fuzzy filter. For each fuzzy filter ./ € £ X there exists a finer ultra fuzzy
filter % € £X such that % X . . Moreover, for each non-empty set 4 of the fuzzy filters on X the supremum

V' M exists ([15]) and it given b NV M = N M for all L* . Will the infimum A . of the set
Py ([15D) e] y (N A0w) = N M) ue A
A does not exists, in general. As shown in [18], the infimum ,,4/\%‘/” of the set _4 with respect to the finer relation for

fuzzy filters exists if and only if A4 (1) Ao "M (11,) <SUP (14 Ao A g,) holds for all finite subset { A, ..., M }of A
and 44,., 14, € L*. In this case, the infimum /A . of the set _4 with respect to the finer relation for fuzzy filters is

Me A

given by:
(N AOW= N () o I (11))

Hn

for all e L* . On other hand the homogeneous fuzzy filter 4 at the fuzzy set ue L* is characterized by the
homogeneous fuzzy filter X at the point X € X in [1], in the form:

£(n7) =, (X/)\ZOX' (m) (2.2

Forall n € L.

i . The family (% of non-empty subsets o is called a valued fuzzy filter base ([18]) if the
Fuzzy filter bases. The famil B, ael, f b ks lled lued fi filter b f th

following conditions are fulfilled:

(V1) e B, implies o < sup .

(V2) Forall a,felywithan fel, and all ue .2, and ne€ By thereare y >a A f and o< puAn such that

O'Ej);.

Proposition 2.2 [18] Each valued fuzzy filter base (Z,) defines a fuzzy fiter 4 on X by

acly

M(u)= ﬂV a forall ye L. Conversely, each fuzzy filter 4 can be generated by a valued fuzzy filter base, e.g.
neB, nu

by (a-pr ), . with a-pr M ={u e " | o < M(u)}.
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The family (a-pr /I/l)ael_o is a family of pre filters on X and is called the large valued base of . . Recall that a pre filter
on X ([31]) is a non-empty proper subset F of L* such that: (1) u, meF implies uaneF and (2) from u e F and
u<nitfollows neF .
A subset % of LX is said to be superior fuzzy filter base ([18]) if the following conditions are fulfilled:
(S1) o € Zforeverya e L.

(S2) Forall u,n € £, thereis a fuzzy set o € £ such that o < i, o < pand sUp o =sup i A sup 7.

Each superior fuzzy filter base % generated a homogeneous fuzzy filter 4 on X by M (x)= V supn for all
neBnu

U E L* and each homogeneous fuzzy filter 4 can be generated by a superior fuzzy filter base. e.g. by base . =

{ue L | A (r)=supy={un My | ue L }. where base . will be called the large superior fuzzy filter base of

M . 1f X isanon-empty setand u is a fuzzy subset of X ,then & ={ur a| a e L}u{a| a € L}is a superior fuzzy
filter base of a homogeneous fuzzy filter on X , called superior principal fuzzy filter generated by x and will be denoted

by [u] . As shown in [15], for each u e L*  the superior principal fuzzy filter [ ] is given by:
=V swpura)v V a
una <n as<n

for all 77 e L*. Incase Lis a complete chain and uis not constant, we have [u](77)=supu, when g <7 and

[d(n) = ( )/\ ( )n(x)otherwise for all e L* . For each ordinary subset M of X , we have w1 =V X,
n(x) < u(x X eM

where y,, is the characteristic function of M .

Fuzzy topogenous order and fuzzy topogenous structure. The binary relation << on L is said

to be fuzzy topogenous order on the set X ([29]) if the following conditions are fulfilled:

(1) @ << & holds for all « €{0,1}.
2 If w<<n,then y<npholdsforall u, ne L.
B yy<u<<n<mn, then gy << n holds.

@I gy <<my and p, << 1,, then gy Ap, <<man, and g4V, <<n vn, are hold for all 4, n; € L , Where
i,j (1,2}
The fuzzy topogenous order << is said to be fuzzy topogenous structure if it fulfilled the following additional condition:

(5) If 4 << n,.thenthereis o € L such that U << ocand o << nareholdforall u, ne L.

The fuzzy topogenous structure << is said to be fuzzy topogenous complementarily symmetric if it fulfilled the condition:

(6) If 1 << n,then CO7 << co wholds forall u, 17 € L.

Fuzzy topologies. By the fuzzy topology on a set X ([15,23]), we mean a subset T of L* which is closed with

respect to all suprema and all finite infima and contains the constant fuzzy sets 6 and I The set X equipped with a
fuzzy topology 7 on X is called fuzzy topological space. For each fuzzy topological space (X ,7), the elements of T

are called open fuzzy subsets of this space. If 7; and 7, are fuzzy topologies on a set X , then 7, is said to be finer
than 7, and 7, is said to be coarser than 7, provided 7, C 7, holds. The fuzzy topological space (X ,7) and also 7
are said to be stratified provided & € 7 holds for all € L, that is, all constant fuzzy sets are open ([30]). For each fuzzy

set ue L*, the strong & -cut and the weak ¢ - cut of 4 are the ordinary subsets S_(u)={x eX | u(x)>a} and
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W, (1)={x eX | u(x)=a}of X, respectively. For each complete chain, L the « -level topology and the initial
topology ([30]) of the fuzzy topology 7 on the set X are defined as follows:

Ta:{Sa(y)eP(XH uet}and i(T):inf{Ta | a ey},

respectively. where inf is the infimum with respect to the finer relation for topologies. On other hand if (X ,T )is an
ordinary topological space. then the induced fuzzy topology on X is given by Lowen in [30] as the following:

X
o )={uel” | S, (u) T foralla e L}

The fuzzy unit interval. The fuzzy unit interval will be denoted by |, and it is defined in [21] as the fuzzy subset:
I ={x eR | x <},

Where, 1=[0,1]is the closed unit interval and ]RT_:{X eR | x(0)=1and 0<x} is the set of all positive fuzzy real

numbers. Note that, the binary relation < is defined on R, as follows:
XY <X, <Y, and X, <y, forallx,y eR,

Where, X , =inf{x eR | x(z)>a}and X, =sup{x eR | x(z)>a}forall x eR, and a € L, . Note that the family Q
which is defined by:

Q={R; |1 | 5 eFU{R’ |1 | sebu{0]1}

~

is a base for a fuzzy topology <5 on I ([21]), where R, and R® are the fuzzy subsets of R, defined by

Ry(x)= V x(a)and R°(x) = (Vﬁx () for all x eR,_and & € R. The restrictions of R, and R°on I_ are the
a>o a>
fuzzy subsets R | I, and R® | 1., respectively. Recall that:
R°(X) AR7(Y) <R%7(x +vy), (2.2)

Where, X +Y is the fuzzy real number defined by the rule (x +y )(&) = ; R\/ ; ée(x () AY(S)) forall & eR.
g6 eR,g+o=

The fuzzy function family. Let X be non-empty set. By the fuzzy function family ® on X , we mean the set
of all fuzzy real functions f : X — 1, ([21]). Consider u, 17 € L ,then the fuzzy real function f : X — 1 is said to be
separate x and 7 if O <f(x) <71holds for all x eX ,X, < impliesthatf (x)=1and y, <n implies that
f (y)=0, where X1, Y, €S (X). Moreover, if @ is an fuzzy function family on X, then the fuzzy subsets u, 17 € L*

are called @ -separable or @ - separated if there exists an fuzzy real function h € @ separating them.

The operation on fuzzy Ssets. In the sequel, let a fuzzy topological space (X ,7)be fixed. By the operation
([25]) on a set X we mean a mapping @ : L* — L* such that int < ¥ holds, forall u L , where, 1” denotes the

value of ¢ at u . The class of all operations on X will be denoted by O(LX . By the identity operation on O(LX , we

7)

mean the operation 1LX LY —L* such that 1Lx (W)=p, foral ue L and the constant operation on O(LX 7 is the

operation e x - L* —L" such that C x (u) = 1, for all HE L* . Consider the binary relation < is a partially ordered

relation on O, _, defined as follows: ¢ <¢, < 1 < u” forall wel”, then the ordered pair (O(LX " <) isa

completely distributive lattice. As a directly application on this completely distributive lattice, the operation ¢ : RO
is said to be:

(i) Isotone if u <7 implies x? <n? forall unel”.
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(i) Weakly finite intersection preserving (wfip, for short) with respect to 4 L* if nAa ,u(p <A ,u)"’ holds, for all

ne4and ue L.
(iii) Idempotent if x? = (u”)? forall xel” .

The operations @, y €O, are said to be dual if ¥ =co((co w)? or equivalently z* =co((co )" forall uel”,

\7)

where co u denotes the complementation of x4 . The dual operation of the operation ¢ : L* — L* will be denoted by
Q! L* >L*. In the classical case ofL ={0,1}, by the operaton on a set X , we mean the mapping
@:P(X)—>P(X)such that intA < A”for all Ain the power set P(X ). The identity operation on the class of all
ordinary operations Oy yyy on X will be denoted by iP(X ) Where iP(X )(A) =Aforall AeP(X).

@-open fuzzy sets. Let a fuzzy topological space (X ,7)be fixed and ¢)eO(LX Then the fuzzy set

7))’
1:X —Lis called ¢-open fuzzy set if 1< u” holds. We will denote the class of all ¢ -open fuzzy sets on X by

¢OF (X ). The fuzzy set u is called ¢ -closed if its complement co i is ¢ -open. The two operations ¢, i € O(LX

\7)
are equivalent and written @~ y if and only if gOF (X ) = wOF (X ).
¢, -interiors fuzzy sets. Let a fuzzy topological space (X ,7) be fixed and ¢, @, €0 x - Then the ¢, ,-

interior of the fuzzy set x: X — L is a mapping (pl’z.inty : X — L defined by:

@y p-int u= V n (2.3)
nepOF (X ),n"? <u

As Shown in [5], ¢)1’2.int,u is the greatest ¢, -open fuzzy set  such that n” less than or equal to z . The fuzzy set
u is said to be ¢, ,-openif u < ¢, ,.intu. The class of all ¢, , -open fuzzy sets of X will be denoted by ¢, ,OF (X).
The complement co u of a ¢, ,-open fuzzy subset x will be called ¢, ,-closed. The class of all ¢, , -closed fuzzy
subsets of X will be denoted by ¢, ,CF(X'). In the classical case of L ={0,1}, the fuzzy topological space (X ,7) is
up to an identification by the ordinary topological space (X ,T ) and golyz.inty is the classical one. Hence, in this case the
ordinary subset A of X is ¢y ,-0penif A < ¢)112.intA . The complement of a ¢, , -open subset A of X will be called
¢, , closed. The classes of all ¢, ,-open and of all ¢, ,-closed subsets of X will be denoted by ¢ ,0 (X) and

@ ,C (X'), respectively. Clearly, the ordinary subset F is ¢, , -closed if and only if ¢, ,.ck, F =F .

Proposition 2.3 [5]. If (X ,7)is a fuzzy topological space and ¢, ¢, €0, x - Then, for each u,n € L*, the

)
mapping ¢1’2.inty : X — L fulfills the following axioms:

(i) If @, 21 x , then @y -int < 1 holds.

(ii) ¢ ,.int isisotone, thatis, if x <n then ¢ ,.intu < ¢ ,.intn holds .

(iii) @ ,.int1=1.

(iv) If @, 2 1|_X is isotone and ¢, is wfip with respect to @OF (X ), then ¢, ,.int(uAn)=g@,,.intu A @ ,.intn.
(v) If ¢, is isotone and idempotent operation, then ¢, ,.int 1 < @, ,.int (¢, ,.int 1) holds.

(Vi) @ ,.int (i\e/I yn ):i\e/I @ ,-inty forall 44 € ¢ OF(X).
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Proposition 2.4 [5]. Let (X ,7) be a fuzzy topological space and ¢, ¢, eO(LX .- Then, the following statements

)
are fulfilled:

@) If o, 2 1LX , then the class ¢, ;,OF (X')of all ¢, , -open fuzzy subsets of X forms extended fuzzy topology on X ,
denoted by 72 ([19)).
(i) If @, 2 1|_X , then the class ¢, ,OF (X)of all ¢y, -open fuzzy subsets of X forms a supra fuzzy topology on X ,
denoted by 7 ™2 ([19)).
(iii) If o, Zle is isotone and ¢, is wfip with respect to @OF (X ), then ¢, ,OF (X )is a fuzzy pre topology on X ,

denoted by T¢’1,2 ([29.

(iv) If @, Zle is isotone and idempotent operation and ¢, is wfip with respect to @OF (X ), then ¢, ,OF (X') forms a

fuzzy topology on X , denoted by Ty, ([15,23)).

From Propositions 2.3 and 2.4, if the fuzzy topological space (X ,T) be fixed and ¢,, @, eO(LX o Then

X .
P OF(X)={uel” | u<qg,.intu} (2.4)
and the following conditions are fulfilled:

(1) If @, 21, , then ¢, ,.intz <y holds for all e L™ .
(12) If <7 then @ ,.intu < @, ,.inty holds forall x,7 L.
(13) @ ,.int1=1.

(14) If @, Zle is isotone and ¢, is wfip with respect to @OF (X ), then ¢, ,.int(uAn)=g@, ,.int 1 A @ ,.int7y for all
Hne L.
(15) If @, = 1LX is isotone and idempotent operation, then ¢, ,.int (¢ ,.iNt 1) =g, ,.int  forall 1 e L.

The characterized fuzzy spaces. Independently on the fuzzy topologies, the notion of ¢, , -interior operator for
the fuzzy sets can be defined as a mapping (plyz.int | RO , which fulfills (11), to (15). It is well-known that (2.3) and
(2.4) give a one-to-one correspondence between the class of all ¢, ,-open fuzzy sets and these operators, that is,
¢ ,OF (X ) can be characterized by ¢, , -interior operators. In this case (X ,¢,,.int) as well as (X , ¢, ;,OF (X)) will be
called characterized fuzzy space ([5]) of all the ¢, ,-open fuzzy subsets of X . The characterized fuzzy space
(X, ¢, ,.int) is said to be stratified if and only if ¢, ,.int @ =a for all @ € L . As shown in [5], the characterized fuzzy
space (X '¢1,2-int) is stratified if the related fuzzy topological space (X ,2') is stratified. Moreover, the characterized
fuzzy space (X, ,.int)is said to have the weak infimum property ([19]), provided that ¢ ,.int(ura)=
@ o intu A g ,.inta for all ue L* and all @ € L. The characterized fuzzy space (X, ,.int)is said to be strongly
stratified ([19]) , provided ¢, ,.int is stratified and have the weak infimum property. If (X, ¢, ,.int)and (X ,y ,.int) are
two characterized fuzzy spaces, then (X ,¢,,.int) is said to be finer than (X ,y;,.int) and denoted by
@y it <y ,.0nt provided @ ,.iNt x>y, ,.int 2 holds for all u e L*. If 7 is a fuzzy topology on a set X and
, then by the « -level characterized space and the initial characterized space of the fuzzy topological

92 €O,

7)

7054 |Page
March 2017 www.cirworld.com



Volume 13 Number

m ISSN 2347-1921
01

Journal of Advances in Mathematics
space (X ,7), we mean the characterized spaces (X, (¢, ,0F (X)),) and (X ,i (¢ OF(X))), respectively where
(¢, OF (X)), and i(¢ OF (X)) are defined as follows:

(¢, 20F (X)), ={s, (1) P | 1 € ¢ OF (X)} and i (¢ OF (X)) = inf {(¢ ,OF (X)), | @ € L}.

Sometimes, we denote to the & -level characterized space and the initial characterized space of the fuzzy topological
space (X ,7)by (X,¢ ,.int,) and (X, ¢ ,.int;), respectively. On other hand if (X ,T )is an ordinary topological

space and ¢, @, EO(P(X yTy» then the induced characterized fuzzy space will be denoted by (X (g 0 (X ))) or by
(X', ¢, ,.int ) and it defined by:

(o O(X) ={uel” | S, (W ep OX)forallacl}

If ¢, =intand ¢, =1y , then the class ¢, ,OF (X )of all ¢, ,-open fuzzy subset of X coincide with the fuzzy topology
7 and hence the characterized fuzzy space (X ,(ol’z.int) coincide with the fuzzy topological space (X ,7) presented in

[15,23]. Another special choices for the operations ¢, and ¢, are obtained in Table (1).
The ¢, ,-fuzzy neighborhood filters. An important notion in the characterized fuzzy space (X ,¢, ,.int) is

that of the ¢, , -fuzzy neighborhood filter at the point and at the ordinary subset in this space. Let (X ,T) be a fuzzy

topological space and ¢, @, eO(LX - As follows by (I11) to (I15) for each, X € X the mapping ./I/@12 x): X S

)
which is defined by:

A, (0)(42) = gy it 206 (25)

forall ue X isa fuzzy filter on X , called ¢, , -fuzzy neighborhood filter at X ([5]). Moreover, if ¢ # F < P(X), then

the ?10 -fuzzy neighborhood filter at the ordinary subset F will be denoted by ‘/an,z (F) and it will be defined by:
./t/%2 (F)= X\E/F ./t/(plv2 x).

Since /I/m(x) is a fuzzy filter for all Xx € X , then ./Vm(F)is also fuzzy filter on X . Moreover, because of

[ 2] :X\E/F X , then we have ./I/(/)L2 (F) > [ x¢] holds.

More generally, if the related ¢, ,-interior operator fulfill the axioms (I1) and (12) only, then the mapping
‘/Vm x): RN L, which is defined by (2.5) is a fuzzy stack ([19]), called golyz-fuzzy neighborhood stack at X .
Moreover, if the ¢, , -interior operator fulfill the axioms (11), (12) and (14) such that in (14) instead of, 77 € L we take a,
then the mapping ‘/Vm x): X L , is a fuzzy stack with the cutting property, called P10 -fuzzy neighborhood stack

with the cutting property at X . Obviously, the ¢, , -fuzzy neighborhood filters fulfill the following axioms:
(N1) X S‘/I/q)ly2 (x) holds for all x € X .

(N2) A, (x)(1) < A, (X)) holds for all u,7 L* and u<n.

(N3) A, ()Y P>, (V)() =, (x)(u), forall x €X and u e L.

Clearly, vy '_)‘/tha,z (Y )(1) is the fuzzy set ¢, ,.int 1.

The characterized fuzzy space (X ’(01,2-”“) of all ¢, , -open fuzzy subsets of a set X is characterized as a fuzzy filter

pre topology ([5]), that is, as a mapping ./Vw12 (x): X — & X such that the axioms (N1) to (N3) are fulfilled.
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The valued ¢, ,-fuzzy neighborhoods. Let (X,7) be a fuzzy topological space and ¢, @, €O x 4
Then the fuzzy subset 4 of X will be called ¢, ,& -fuzzy neighborhood at the point x € X if

a < (@ ,-int p)(x) (2.6)

holds for some o € L, ([5]). Because of Proposition 2.2. the fuzzy subset u of X is @0 -fuzzy neighborhood at X if
and only if 1 € a-pr (./I/(/,L2 (x)) holds, where 4, ,(x) is givenby (2.5). By avalued ¢, , -fuzzy neighborhood at X,
we mean an ¢, ,a -fuzzy neighborhood at X for some « € L. Foreach a e Ljand x € X, let N, (x) be the set of all
¢, ,a -fuzzy neighborhood at X , thatis, N (x) ={u € L | a< (¢ ,-int 11)(x)}. Then the family (N, (x ))ae,_O is the

large valued base of ‘/Vm (x) at the point x € X . The @, ,-open fuzzy sets is characterized by the valued @10 -fuzzy

neighborhood at X as follows:
UE L is @ ,-open < for allx e X with x(x) > 0 there is an ¢, ,.(x )-fuzzy neighborhood 7 at x with 77 < . (2.7)
Remark 2.11f ¢, = intand @, = 1 x , then the notion of the valued ¢, , -fuzzy neighborhood at the ordinary point X is

closely related to that of fuzzy neighborhood at the fuzzy point, used in the fuzzy topology (cp. [32]). If X , €S(X )isa

fuzzy point, then the fuzzy neighborhood at X , is nothing else than the « -fuzzy neighborhood at X .

The ¢,,-fuzzy convergence. Let a topological L-spaces (X ,7)be fixed and ¢, ¢, €0 x .- If X'is a point

in the characterized fuzzy space (X ,¢, ,.int), F < X and ./ is a fuzzy filter on X . Then J is said to be ¢, , -fuzzy
convergence ([2]) to X and written ./I/IW)X , provided  is finer than the ¢)l'2-fuzzy neighborhood filter
/I/m (x). Moreover, J is said to be ¢, ,-convergence to the ordinary subset F and written ./I/ZW—)F ,
provided . is finer than the ¢, , -fuzzy neighborhood filter ./I/%2 (x) forall X € F ,thatis, J is finer than the Pro-

fuzzy neighborhood filter ./V(p12 (F).

- i - . Let a fuzzy topological space
The ¢,,-closure operator and internal ¢,,-closure of fuzzy sets f logical
(X,7) be fixed and ¢, @, eO(LX e The internal ¢, , -closure ([7]) of the fuzzy set x:X — L is the mapping

@ 5-Cl 12X — L defined by:

(Ao )=, V() (28)

<Ay, (x

for all x e X . In (2.8), the fuzzy filters # my have additional properties, e.g, we my assume that they are

homogeneous or even that they are ultra fuzzy filters. Obviously, ‘/’1,2-C|ﬂ = u holds for all ue L* The mapping

@ pCli £X > X which assigns ¢, ,.cl / to each fuzzy filter ./ on X, thatis,

(o Cl )= N M(p) (2.9)

@2.Clpsu

is called golyz-closure operator ([7]) of the characterized fuzzy space (X ,golyz.int) with respect to the related fuzzy

topology 7 . Obviously, the ¢, , -closure operator (01’2.C| is isotone hull operator, that is, for all #, 4 € £ X we have
M< N implies @ ,ClM< ¢ ,cl N and that M < ¢, ,.clHM holds.

Lemma 2.2 [2]. Let (X ,7)be a fuzzy topological space and ¢, @, eO(LX 0 Then for each x € X , we have that

@ ,.CIX =X implies ¢, ,.cl{X}={x}.

7056 |Page
March 2017 www.cirworld.com



& ISSN 2347-1921

Volume 13 Number 01

Journal of Advances in Mathematics
The ¢, v,,- fuzzy continuity. Let now the fuzzy topological spaces (X ,7;) and (Y ,7,) are fixed,
o, 9, eO(LX ) and v, v, eO(LY ) Then the mapping f : (X, ,.int) > (Y ,p,,.int) is said to be ¢, v ,-
Ty \Ty , , , ,
fuzzy continuous ([5]) if and only if

(yyo-intm)of <@ ,.int(nof) (2.10)

holds for all 7 L". If an order reversing involution > «'of L is given, then we have that f is Py, Yy, -fuzzy
continuous if and only if ¢ ,.cl(70f) < (yy,.cly)of foral ne L", where ¢ ,cl and w,,.cl are the closure
operators related to (plvz.int and y/lyz.int, respectively. Obviously if f is @) y/lvz-fuzzy continuity mapping, then the
inverse  mapping £ (Y ,yp,.int) > (X, ,.int)  is ¢, yy,-fuzzy continuous mapping, that s,
(¢ p-intpr) of < wy o-int(pof 71) holds for all u e L* . By means of the @, , -fuzzy neighborhood filter ./I/(pl’2 (x) of
@ ,-int at x and the v, , -fuzzy neighborhood filter /I/lez (x) of yy,.int at x , the ¢, , v, ,-fuzzy continuity of f is
also characterized as follows:

The mapping f : (X, ¢, ,.int) = (Y ,y ,.int) is ¢, , v, ,-fuzzy continuous if for each x € X , the inequality
‘/I/WL2 Ffx)N=&f (‘/I/(/lez (x)) (2.11)

holds. Obviously, in case of L ={0,1}, ¢y =y, =int, ¢, =1 and y, =1, ,thenthe ¢, , y, ,-fuzzy continuity of f is

LY ’
coincides with the usual continuity.

The characterized fuzzy R, and Ts spaces. The notions of characterized fuzzy R, and characterized

fuzzy Ts spaces are investigated and studied in [2,3,4] for all k €{0,1,2,3} and s €{0,1,2,2 % ,3,4}. These
characterized fuzzy spaces depend only on the usual points and the operation defined on the class of all fuzzy subsets of

X endowed with a fuzzy topological space (X ,7). The characterized fuzzy R, and the characterized fuzzy TS spaces

will be denoted by characterized FRk and characterized I——I'S , respectively for short. Let a fuzzy topological space

(X,7) befixedand ¢, ¢, eO(LX - Then the characterized fuzzy space (X , ¢, ,.int) is said to be:

)

(1) Characterized FRospace (resp. FR, space), if for all X,y € X such that X #y and X'ﬁq)lyz.cly implies

y £ ,ClX (resp. ./I/(p12 x) A ‘/Vm (y) does not exists). The related fuzzy topological space (X ,7) is said to be

Fo,,-R, (resp. Foy 5-R)), if for all x,y € X such that x =y and X £¢,,.cly,We have @ ClX £y (resp.
X £, (A, (v)) and Y ¢y, (A, (x))).

(2) Characterized FR,space (resp. FR,space), if for all xeX, FegC (X )such that Xx ¢ F (resp.

F.F, € ¢ ,C (X )such that F,NF, =¢), the infimum ./I/@L2 x) A ./I/@L2 (F) (resp. ./I/@L2 (F) A ./I/(plv2 (F,)) does not
exists). The related fuzzy topological space (X ,7) is said to be F(pl’2 -R, (resp. Fq’l,Z -R,)ifforall x € X, (resp.
Fep C(X))and M e FX such that '/”W_)X (resp. ///lWF ) we have ¢, ,.cl ‘/”WX

(resp. ¢1,2'C| MWF )

(3) Characterized I-—I'O space (resp. I-—I'1 space), if for all X,y € X such that X # Yy, there exists 1,7 e L* and

a,p el such that u(x) <a <(@,.intu)(y) or (resp. and) n(y) < B < (¢, ,.intr7)(x) are hold. The related fuzzy
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topological space (X ,2') is said to be F(pl Z-T0 (resp. Fgol 2-T1) if forall X,y € X such that X #Y,we have

X £ ./I/@l‘2 (y)or (resp.and) y £ ‘/le.z (x) are hold.

(4) Characterized I——I'2 space (resp. l——l'zl space), if for all X,Y e X such that X ZY , the infimum
2
/’/m xX) A /Vm (y) (resp. ¢ ,.cl /’/fm (X) A @ cl ./I/(/)L2 (y)) does not exists. The related fuzzy topological space

(X ,7) is said to be Foyo-T, (resp. F¢112-T2%), when M ——>X,Y (resp. ¢’1,2-C|'/”WX’V)

implies x =y forall #/ e £X andall x,y eX.

(5) Characterized I——I'3 space (resp. I——I'4 space), i if and only if it Characterized Fstpace (resp. FRSSpace) and
Characterized I——I'1 space. The related fuzzy topological space (X ,7) is said to be Fgol 2 -T3 (resp. F(ol 2-T4) if and

only ifitis Fgy 5-R, (resp. Fy 5-R;)and Fey o-T .

Proposition 2.5 [4]. Let (X ,7) be a fuzzy topological space and ¢, @, eO(LX .- Then the characterized fuzzy

)

space (X , ¢, ,.int)is characterized FT, space if and only if ¢, ,.cIX =X forall x € X .

3. THE NOTIONS OF CHARACTERIZED FUZZY R,, AND T,, SPACES

The notion of P Vio -fuzzy continuity between the characterized fuzzy spaces is applied to introduce and study the

notion of characterized fuzzy Rzi spaces or the characterized FR oL for short. However, the related notion for the fuzzy
2 2

topological space is introduce as a generalization to the weaker and stronger forms of the fuzzy completely regular
introduced in [11, 24, 26, 29].

Let a fuzzy topological space (X ,7)be fixed and ¢,, @, eO(LX iy Then the characterized fuzzy space (X ,¢, ,.int)is

said to be characterized fuzzy Rzl space or (characterized FR ,1 Space, for short) ifforall x e X , F eq)leC (X') such
2 2

that X ¢ F, there exists a ¢, , y; ,-fuzzy continuous mapping f : (X, ¢, ,.int)— (1 .y, ,.int5) such that f (x) =1

and f (y)=0 forall y e F. The related fuzzy topological space (X ,7)is said to be completely regular fuzzy Pro-

space or (F§”1,2'R2% space, for short) if and only if (X '("1,2-int) is characterized FR ,1 Space. The characterized fuzzy
2

space (X ,golyz.int) is said to be characterized fuzzy T3; or (characterized I——I'sl space, for short) if and only if it is
2 2

characterized FR ,1 Space and characterized FT, space.
2

In the classical case of L ={0,1}, ¢, =int_,y; =int-, @, :1LX and v, :lL, . the @ , y; , -fuzzy continuity of f is

up to an identification the usual fuzzy continuity of f . Then, in this case the notion of characterized FR ,1 Space is
2

coincide with the notion of fuzzy completely regular space defined in [11]. Another special chooses for the operations

o, ¥;, @, and 7, obtained in Table (1).

1n the following proposition we give an equivalent characterization for the characterized FR21 spaces.
2

Proposition 3.1 Let (X ,7)be a fuzzy topological space, ¢,, ¢, eO(LX - and Q is a subbase for the characterized
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fuzzy space (X, ¢, ,.int). Then, the characterized fuzzy space (X ,@, ,.int)is characterized FR,, space if and only if
' ' 2

for al FeQ' and xeX such that x ¢F, there exists a @15 Yy ,-fuzzy continuous mapping
f (X, @ ,.int) > (1w ,.int5) such that f (x) =1 and f(y)=0 forally eF.

Proof. Let (X, ¢, ,.int)is a characterized FR,, space, Q is a subbase for (X, ,.int) and F €)', x €X such
: 1 ,

that x ¢ F, then obviously there exists a ¢, , y; ,-fuzzy continuous mapping f : (X, ¢, ,.int)— (1 .y, ,.int5) such

that f (x)=1 and f (y)=0 forally eF.

Conversely. let x e X , F e ,C (X )suchthat X ¢ F. Then, x e F' with F’e ¢ ;0(X )and therefore there are
VoV, €Q such that x eV, n...NV cQ, thatis, x; €V, for all i €{l,2,...,,n}. Hence. x; ¢V." for all
i €{L,2, ...,n}and therefore there is a ¢, , y; ,-fuzzy continuous mappings f; : (X, ¢, ,.int) > (1_.yy ,.int5) such that
f.(x)=1and f,(y)=0 forally eV, and ie{l2 ..,n}, which implies that f,(x)=1 and f,(y)=0
forally e, W, U...\NV)cF . Taking any one of the functions f,, gives the required ¢, y, ,-fuzzy

continuous mapping f : (X, ¢, ,.int)—>(1_ .y, ,.int5) for which f (x) =1 and f (y)=0 forall y € F . Consequently.

(X', ¢, ,.Int) is characterized FR,, space. =
2

Corollary 3.1 Let (X ,7) be a fuzzy topological space, ¢, @, eO(LX i and Q is a subbase for the characterized

fuzzy space (X ,¢,,.int). Then, (X ,7) is Fg,,-R,, space if and only if for all F € Q)" and x € X suchthat x ¢ F,
’ ’ 3

there exists a ¢, , y, , -fuzzy continuous mapping f : (X ,¢, ,.int)—> (1w, ,.inty)such that f (x) =1 and f (y)=0

forally eF.

Proof. Immediate from Proposition 3.1 and the definition of the F ¢, »"R,ispaces. m
' 2

The following example is an example of characterized FR ,1 Space and characterized I-—I'l space, that is, an example of
2

characterized ”3; space.
2

Example 3.1 Let L :{O,%,l}, X ={x,y} and 7={1,0,x,,y,} is a fuzzy topology on X. Choose
@ =int_,y, = int5, @, =cl_andy, =cl;. Hence, x #yand there is only two cases, the first is

X ¢F ={y}eq ,C(X) and the secondis y ¢ F ={x} € ¢ ,C (X ) . We shall consider the first case and the second

case is similar.

Consider the mapping f : (X', ¢, ,.int) > (1 .y ,.int5) defined by f (x) =1 and f (y) = 0, thenf is @5 Wy, fuzzy

continuous and therefore (X , ¢, ,.int,) is characterized FRz% space and obviously (X ,¢, ,.int_)is also characterized

FT, space, thatis, (X ,¢, ,.int )is characterized I——I'% space. =m

In the following proposition, we give the relation between the class of all characterized I-—I'0 spaces introduced in [2] and

our class of all characterized I——I'31 spaces.
2

Proposition 3.2 Let (X ,7)is a fuzzy topological space and ¢;, ¢, eO(LX . Then, every characterized

\7)

I——I'3l space is characterized FT, space.
2
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Proof. Let (X /¢y ,-int) is characterized I——I's% space, X € X , F €g ,C(X) suchthat x ¢ F. Hence, (X ,¢,,.int)is
characterized l—_l'land characterized FR ,1 Space, therefore there exists a @12 ://l‘z-fuzzy continuous mapping
2

f (X, ,.int)>(1 .y ,.int5) such that f(x)=1 and f (y)=0 forally eF. Consider R,,R? ey, ,0(l,),
: 2- 1Mt 1 ,

1
2

then we have (R, of )(x) =R, (1)= Vlf(a) =land (R?of)(y) :R%(ﬁ):( V) 0(ar)) =1 forall y € F . Hence,
2 2 a>§ ZZ>§

1
2

#=R,of and 7=R?of are two fuzzy subsets of X such that ./Vm(x () A ./Vm(F)(n) =1. On other hand
2 + >

because of A f (s)> V f (r)holds forall s,r € X , thenforall z € X, we have that
s<t r>t

1
2

(unm(@) =Ry o) AR 1 ))(2)
v f @)@ A (VY @))

IA

1
<1
ass;

AT @)@) A AT @E)a) <1

Hence, sup(uan) <A, (X)) A A\ A (y)(n)and therefore the 4 (x) A A (F) does not exists, that is,
A2 yeF A2 P2 P2

(X', ,.int) is characterized FR, space. Using that (X , ¢, ,.int) is characterized FT,, we getthat (X ,¢, ,.int)is

characterized FT, space. m

Corollary 3.2 Let a fuzzy topological space (X ,7)be fixed and ¢, ¢, eO(LX oy Then, every F¢, ,-T,, topological
; < 3

space is F ¢, ,-T;topological space and every F(plyz-Rz%topological space is F¢, ,-R, topological space.

Proof. Follows immediately from Proposition 3.2. m

Because of the Theorems 3.2 and 4.2 in [3], Propositions 4.1 and 4.2 and Corollary 4.1 in [2] and Proposition 3.2 and
Corollary 3.2, we have the following diagram of implications:

U U U U
FTyn FRyy = FT A FR,= T < FT AR,

Diagram 3.1

The following examples shows that the inverse of the implications in Diagram 3.1 are not true in general.

Example 3.2 Let L :{0,%,1}, X ={x,y} and 7={1,0,4} is a fuzzy topology on X, where u:X —L is the
fuzzy subset defined by u(x)=1and u(y)=0. Choose, ¢, =cl_cint_ and ¢, =cl_, then the characterized fuzzy
space (X ,q)l’Z.int) is characterized FR, space and characterized FT, space, but it is neither characterized FR, space
nor characterized FT, space. Hence. (X ,¢1’2.int) is not characterized FT, space. Indeed for x =y in X, we have

y(p) = ./I/(P12 (X)(p) holds for all p e L , that is, the infimum ./Vw12 xX) A ./Vw12 (y) does not exists. m

Example 3.3 Let L :{O’%'}Z’%'l}’ X ={x,y}and 7={1, 0, y,,y,,X; VYy,,X, vy} is a fuzzy topology on

X . Choose ¢ =int_and ¢, =int_ocl_, then the characterized fuzzy space (X, ,.int )is characterized FT,,
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because there is only the case of y € X and F ={x}e ¢, ,C (X )suchthat y ¢ F and there exists x,7 € L* defined

/J:X%Vy%’ n=y, and

oy, 0N) AN, (Y1) =@y 5 it (X)) Ay 5.int (Y )
=2 >3 =sup(u An).
Hence, the ./I/(p12 (y) A ./I/(p12 (F) does not exists and therefore (X, ¢ ,.int_)is characterized FR,space. Obviously, the

characterized fuzzy space (X, ¢, ,.int_)is characterized FT space and therefore, (X ,¢,,.int,)is characterized FT,

space. On other hand (X , ¢, ,.int_)is not characterized FR ,1 space. Indeed for y € X and F ={x}e ¢ LC (X )such
2

that y ¢ F all the mappings f; : (X, ,.int.)—(1_ .y, ,.int5) which fulfilled that f; (y)=1 and f;(x) =0 for all

X € Fare not ¢, , v, ,-fuzzy continuous for i €{1,2, ...,n}, y; =intyand y, =int5o cly. Therefore, (X , ¢, ,.int) is

neither characterized "—rgi space nor characterized I——I'0 space. m
2

4. NEW RELATIONS BETWEEN CHARACTERIZED FR,,, CHARACTERIZED FT,, AND
SOME CHARACTERIZED FUZZY SPACES

In this section. we are going to introduce and study difference relations between the characterized FR21 and the
2

characterized I——I'3 1 with other characterized FR, and characterized FT spaces which are listed in Section 2 for some
2

special choices of k and s . To find these relations, we try to introduce generalization to the Urysohn's Lemma for the
characterized FR3 spaces with help of the characterized fuzzy proximity spaces presented in [1]. So, we at first applied
the relation between the farness and the finer relation on the fuzzy sets to introduce the notions of ¢, ,6- fuzzy

neighborhood at the point X in the characterized fuzzy proximity space and of ¢1,2V’1,25‘ fuzzy continuity between the

characterized fuzzy proximity spaces. The concepts of fuzzy function family and the ®-separable are applied to introduce
important properties for the concept of the ¢, ,; ,J- continuity. Moreover, we show that the ¢, ,y, ,- fuzzy continuity of

the mapping f between characterized fuzzy spaces is more general than of the (/)1’21//1'25— fuzzy continuity of f between
the characterized fuzzy proximity spaces. An important result., we show that if the fixed fuzzy topological space (X ,7)is

normal, then the characterized fuzzy space (X ,(plyz.intr) is finer than the associated characterized fuzzy proximity space

(X', ,.int ;) and they identical if (X , ¢, ,.int,) is characterized FT 4 space.
The binary relation 6 on L is said to be fuzzy proximity on a set X ([28]), provided it fulfill the following conditions:
(P1) 1 5 p implies p & u forall u, pe L, where & is the negation of & .
(P2) (v p) & nitandonlyif £ 57 and p &7 forall u, p,pel”.
(P3) =0 or p=0 implies 3 p forall u,pel” .
(P4) 115 p implies p < p' forall u,pel”.
(PS)If 1 S p,thenthereisan e L* suchthat x 85 and 1 3 p.

The set X equipped with a fuzzy proximity 6 on X is called a fuzzy proximity space and will be denoted by (X ,9) .
Every fuzzy proximity & on a set X is associated a fuzzy topology on X denoted by 7. The fuzzy proximity 5 on a set

X is said to be separated if and only if for all X,y € X such that X =y we have X, gyﬂ forall a, B € L.
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As shown in [1], the fuzzy proximity will be identified with the finer relation on the fuzzy filters, especially with the finer
relation on the ¢, , - fuzzy neighborhood filters in the characterized fuzzy space (X , ¢, ,.int).

Proposition 4.1[1] Let (X ,7)be a fuzzy topological space and ¢, ¢, eO(LX o Then the binary relation & on

L™ which is defined by 1 & p if and only if A, (p) < gl forall y,pe L* is fuzzy proximity on X .

Consider the fuzzy topological space (X ,7)be fixed and ¢, @, eO(LX e Then each fuzzy proximity & on X is

)
associated a set of all @, , -open fuzzy subsets of X with respect to ¢ denoted by ¢’1,20F (X )5. In this case, the triple
(X', ¢, OF (X)) as will as the triple (X, ¢, ,.inty) is said to be characterized fuzzy proximity space ([1]). The related

P10 -interior and P10 -closure operators will be denoted by (/Jl’z.int& and gol’z.clg , respectively and they are given by:
@ity = \[ p and @ ,clsu= A 0 4.1
Hop pou

forall e L* . Consider the characterized fuzzy proximity space (X ,¢ ,.int;) be fixed and u e L* , then M is said to

be ¢, ,6- fuzzy neighborhood at the point X € X if and only if xlgy’.

Moreover, the mapping f : (X, ¢, ,.int5)—>( x‘/’l,z-i”t[,«) is said to be ¢,y ,0-fuzzy continuous, provided

n o pimplies (nof) & (pof)foral n,pe L. Obviously, there is an identification between the fuzzy proximity &
and the complementarily symmetric fuzzy topogenous structure << on the same set X given by:

u<<n < udn (4.2)

forall u,n e L.

o0

Now. let {<<,},_, is a sequence of fuzzy topogenous structure on a set X and {<, },_;is a sequence of fuzzy
topogenous structure on | . Then, the fuzzy real function f :X — | is said to be associated with the sequence

{<<, ¥, ifandonlyif 7 < p impliesthat (7of)<<,,, (pof) holdsforall 7,pel" and neZ", where Z" is

n
the set of all positive integer numbers.

o0

Remark 4.1. Given that {<<, }._and {<} _ are two sequence of complementarily symmetric fuzzy topogenous
structures << and < on X and I _, respectively. If 6 and 8" are two fuzzy proximities on X and I, identified with
5 and & by the equation (4.2), then the associated fuzzy real function f : (X vy - int5) —> (Y ‘l//l,Z'intg*) with the
complementarily symmetric fuzzy topogenous structures << is (plyzl/ll’zé‘- fuzzy continuous, because from (4.2) we get
that 73 " pimplies (7of ) 3 (pof Yforall 5, pe L' .
Lemma 4.1 [11] Consider <<, for n €{0,1, ...,o0} are complementarily symmetric fuzzy topogenous structures on a
set X . Then, for each F,G € P(X) such that y <<, xg . there exists a fuzzy real function f :X — I associated
with the sequence {<<, },_,for which f (x)=0forall x e Fand f (y)=1foral y €G".

Because of equation (4.2), Remark 4.1 and Lemma 4.1, we can easily deduce the following proposition.
Proposition 4.2 Let (X, ¢, ,.int)is a characterized fuzzy proximity space and F,G e P (X )such that . S xs - I
@ is the family of all ¢, ,y; ,6-fuzzy continuous mappings f : (X, ¢, ,.ints)—>( "/’1,2-int5*) for which x € X implies
0<f (x)<I,then yr and y, are ®-separable.
Proof. Let << be a complementarily symmetric fuzzy topogenous structure identified with & . Because of (4.2),

Xr 5_;(G implies that y- <<, x5 .Since f e ® is @ 5y ,0-fuzzy continuous, then because of Remark 4.1, we have
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that f is associated with <<. Hence, Lemma 4.1 implies that y. and y; are separated by f . Therefore, . and

X are @-separable. m

Proposition 4.3 Let (X vy p-ints) and (Y ,y/lvz.intg*)are characterized fuzzy proximity spaces. If the mapping
f (X, ,.ints)—>( ,y/l’z.inté‘*) is @,y ,0-fuzzy continuous, then the mapping f : (X, ¢ ,.int)—>( .y ,.int) is
@y 5¥q o~ fuzzy continuous.

Proof. Similar to the proof of Proposition 11.2 in [20]. m

Proposition 4.4 [1] Let (X ,7) be a fuzzy topological space and ¢,, ¢, eO(LX such that @, >1  is isotone and

\7)
¢, is wfip with respect to @,OF (X ). If (X ,7) is a fuzzy normal space and L is a complete chain, then the binary relation
o on X which is defined by:

HS p o M, (g0l u) < (gl p) (4.3)
forall u,pe L is a fuzzy proximity on X and (X ,9) is a fuzzy proximity space. On other hand, if (X ,0) is a fuzzy
proximity space and & fulfills (4.3.), then the associated characterized fuzzy proximity space (X ,galyz.int&) is
characterized FR ,space.

In the following, we are going to show an important relation between the associated fuzzy proximity space
(X', ¢, ,.int ;) by the fuzzy proximity 6 defined by (4.3) and the associated characterized fuzzy space (X ¢, ,.int) that

introduced form the fuzzy normal topological space (X , 7).

Proposition 4.5 Let (X ,7) is a fuzzy normal topological space and ¢, @, eO(LX 5 such that ¢, =1 4 is isotone
and ¢, is wfip with respect to @OF (X'). If & is a fuzzy proximity on X defined by (4.3) and L is a complete chain,
then (X, ¢, ,.int) is finer than (X, ¢, ,.ints). Moreover, (X, ¢, ,.int )=(X, ¢, ,.int;) if and only if (X ,¢, ,.int.) is

characterized FT 4 Space.

Proof. Let (X ,7) is fuzzy normal topological space and u is ¢, ,0-fuzzy neighborhood for the point x € X, then
Xlgy’ and because of (4.3), we have ‘/V%,z (@5l (X1) S((alvz.cir,u')'. Therefore, X < ./V(/)L2 x) < ‘/V(/a,z (¢ cl X}
= ./V(plv2 (@5l (Xp) £(¢l’2.ci1y’)'£ﬂ.. Because of Proposition 2.1, we get X; <(¢,.cl &) <pand (¢ ,.cl )€
@ OF (X ). Then wis ¢, ,-fuzzy neighborhood of X and therefore the family (("1,20': (X ))5 is coarser than the family
(¢, 0F (X)), thatis, (X ¢, ,.int_)is finer than (X , ¢, ,.int ).

Now, let (X, ¢, ,.int_)is characterized FT, space, ./Vm(x) and ./I/(/f2 (x) denote for the ¢, ,- fuzzy neighborhood
filters at X in the characterized fuzzy space (X ,(pl’z.intr)and in the associated characterized fuzzy proximity space
(X', ¢, ,.ints), respectively. Then, (X ,¢,,.int.) is characterized FR,and FT; space. Therefore, ((/DLZOF (X ))5 c
(¢, ,0F (X)) and A, (x)£Y holds for all y #xin X. Hence, ., (X)S./V(;2 (x) holds for all x € X and then
/I/(/f2 (X)Z./I/(/)12 (x)Zy holds for all y #x in X . Because of Lemma 2.1, we have that ./I/(:2 (x) £y holds for all
y # X in X and therefore (X ,(ol’z.intg) is characterized I——I'lspace. Because of Proposition 2.5 and Lemma 2.2, we get
@ oCl (X)) =X, forall x € X and therefore X € (901,2(:': (X ))5for all x € X. Consider uis ¢, ,-fuzzy neighborhood
of X in (X, ,.int.), then x'<x;and since X; € (¢ OF(X))s. then X; is ¢ ,-fuzzy neighborhood for every

y € X such that y,< . Thus, ,u'gxl and hence uis ¢, ,0-fuzzy neighborhood of X in (X, ¢ ,.ints). Thus,
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(¢ 0F (X)) < (¢, OF (X)), , that is, ./I/(/:i2 (x)<A, ,(x) holds for all x X and therefore (X, ,.int;)is finer
than the characterized fuzzy space (X, ¢, ,.int ). Consequently, (X , ¢, ,.int) is characterized FT, space implies that,
(X @ ,.int )=(X , ¢ ,.int ).

Conversely, let ((X,¢,.int )=(X,¢,.int;),x € X and uis ¢ ,-fuzzy neighborhood of x in the characterized

fuzzy space (X ,¢, ,.int.). Then, 1€ (¢ OF (X))s and X, < u, this means that

(o0l (X)) < A, (@50, (%) < (@, ¢ 1) < o
Because of Proposition 2.1, we get (olvz.clr(xl)g,uand therefore (Dl,z-ClT(Xl)SXl holds for all x € X. Thus,
@ 5.l (X)) =x, forall x e X . Hence. Proposition 2.5, implies that, (X ,¢, ,.int_)is characterized FT; space. Because
of Proposition 4.3, (X ,¢, ,.ints) is characterized FR, space and the hypothesis that (X, ¢ ,.int )=(X, ¢, ,.int)

implies that (X , ¢, ,.int ) is characterized FR, space, Consequently, (X , ¢, ,.int_)is characterized FT, space. m

Now. we are going to introduce and study a generalization of Urysohn’s Lemma for the characterized FR3 spaces to

prove the relation between the characterized FR, spaces and the characterized FR ,1 Spaces in general case. The
2

relation between the characterized I——I'3 % spaces and the characterized FT gspaces is also introduced by the
generalization of Urysohn’s Lemma.

Lemma 4.2 (Generalized Urysohn’s Lemma) Let a fuzzy topological space (X ,7) be fixed and ¢,, @, eO(LX ) such
that ¢, Zle is isotone and ¢, is wfip with respect to @OF (X ). If L is a complete chain, then (X, ¢, ,.int.) is
characterized FR, space if and only if for all F,F, € ¢, ,C(X)such that F; NF, = ¢, there exists a ¢, , v, , -fuzzy
continuous mapping f : (X, ,.int.) > (1. ,.int5)such that f (x) =0 forall x eF and f (y)=1 for all

y eF,.

Proof. Let (X @y -t ) is characterized FR, space, then the infimum ‘/Ifgp12 (F) A '/V‘ﬂl , (F,) = ¢ does not exists for
all F,F, € ¢, ,C(X)such that F; " F, = ¢. Therefore, ./I/(/,12 (F) < Ifz’. Consider ¢ is a fuzzy proximity on X defined
by (4.3), then we have XF, 5;(,:2. Because of Proposition 4.2, there exists ¢)1’2y/1'25-fuzzy continuous mapping
f (X ,(olyz.intg)—>(||_,1//1‘2.int5*) forwhich ¢ and y are ®- separated by f , where & is a fuzzy proximity on I
defined by (4.3). Hence, because of Proposition 4.3, we have that f : (X, ¢, ,.int,) > (1 .y, ,.int5)is ¢, vy, -fuzzy
continuous mapping and from Proposition 4.5, the characterized fuzzy space (X v¢71,2-i”tr) is finer than the associated
characterized fuzzy proximity space (X, ,.ints). Therefore, the mapping f : (X, ¢ ,.int)) > (1 .yy,.int5) is

9, , W , -fuzzy continuous such that f (x) =0 forall x eF and f (y)=1 for all y eF,
Conversely, let there exists a ¢, v, ,-fuzzy continuous mapping f : (X, ¢, ,.int.) —>(1 .y ,.int5) such that
f(x)=0 forall xe F and f (y) =1 for all ye F,, where F,F, € ,C(X)and F,NF, =¢. Consider

1 1
R, and R? are the restricted of Fand F, on | . Then, £ =R?of and 7=R, of are ¢, ,-open fuzzy sets on X
2 2 '

such that

P (Fl)(ﬂ)=x/€>1 p(x) = X/€>1 RE (f (x) = x/e>1(a\z/%f (x)(@) =1,
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and

Ay, FX0= A\ 1) = ARy () = AV F 0)@) =1
Therefore, '/V‘/’l,z (F)A '/Vf/’l,z (F,)=1. Since

(unm)(z) = w\/;f (Z)(“)’\(a\z/;f @)@)'< a/>\;f (Z)(a)/\a/z\lf (z)a) <1

for all z € X . Hence, the infimum ./I/(p12 (F)A ./I/(p12 (F,) does not exists and therefore (X ,¢, ,.int_)is characterized
FR, space. m

Corollary 4.1 Let a fuzzy topological space (X ,7) be fixed and ¢, @, eO(Lx .

)such that ¢, Zle is isotone and

¢, is wfip with respect to @OF (X ). If L is a complete chain, then every characterized FR3 space is characterized

FR_, space.
%

Proof. Follows directly from Lemma 4.2. =
In the following proposition, we show that the characterized I——I':‘,,l spaces are more general than the characterized l—_l'4
2
spaces.

Proposition 4.6 Let a fuzzy topological space (X ,7)be fixed and ¢, @, eO(LX Y such that ¢, 21 , is isotone and

@ is wiip with respect to @OF (X'). If L is a complete chain, then every characterized FT, space is characterized

I——I's% space.

Proof. Let (X ¢y -t )is characterized FT, space and let x e X, F eg ,C(X)such that x ¢F.Then,
(X', ,.int) is characterized FRj and FT, space. Because of Proposition 4.5, we have {Xx}e ¢ ,C(X)and
{X}F = ¢, therefore because of Generalized Urysohn’s Lemma, there is a @y oWy - fuzzy continuous mapping
f 1 (X,¢,.int,.) >(1 .y ,.int5) such that f(x)=1 and f(y)=0 for al y eF. Hence, (X,g,.int) is

characterized FR,; space. Consequently, (X, ¢, ,.int )is characterized I—‘I'Si space. m
2 2

Because of the Theorems 3.2 and 4.2 and Proposition 4.1 in [3], Propositions 2.1 and 4.3 and Corollary 4.1 in [2] and
Proposition 4.5 and Corollary 4.1, we have the following diagram of implications:

= l-—|'3 :>|——|'2%:> I——I'2 :>I——I'1 = l——I'0

U U U U U U
FR,AFT, = FRz% AFT = FR, AFT) = FR, = FR, = FR; = any chara. fuzzy space

Diagram 4.1

The inverse of the implication in Diagram 4.1 are not true in general as shown in Examples 3.2, 3.3 and 4.3 in [2] and
the following example.

Example 4.1. Let X ={(x,y) e R? | y>0}c R?,L is a complete chain and 7 is the fuzzy topology on X defined
as follows:

For each p e{(x,y)e]R2 | y >0}, the basic fuzzy neighborhoods will be the usual open disks and at

7065 |Page
March 2017 www.cirworld.com



g

ISSN 2347-1921

Volume 13 Number 01

Journal of Advances in Mathematics

geX \{()(,y)e]R2 | y >0}, the basic fuzzy neighborhoods will be the sets {q}u O, where O is the open disk in
{(x,y)eR? | y >0} and tangent to the X-axis at q. Consider ¢, ¢, €0 x , for which ¢, =int ocl_and

@, =1 x. Hence, (X ,¢,,.int_ )is characterized FT space, because forall p =(r,0), g =(s,0)e X with p =q for all
reQand seQ, there exist u=Q,n=Q'e L*  such that u(p) <a <(g,.int_u)(@)and () < p<
(@y,-int_n)(p)are hold for some «,fely, but (X,¢,.int)) is not characterized FR, space. Therefore,

(X, ,.int )is not characterized FT, space. Moreover, (X ,q ,.int )is characterized FRz% space, because if

p e X and Q is the gol'z-fuzzy neighborhood of p , then Q is either @, open fuzzy disk has centered at p or else
p together with an gol'z-fuzzy open tangent to p and depending on the placement of p . Consider

f 1 (X ,¢,.int,) >(1 .y, ,.int5) is the mapping defined by: f (p) = 1and f (q) = Ofor all g ¢ Q and let f is
linearly along the straight line passing through the point p and the points on the boundary of Q, where

y, =intgecl;and w, =1, . Then, f is @, ,-fuzzy continuous such that f (p) = 1and f (q) = Ofor all q € .

Therefore, (X, ¢, ,.int )is characterized FR; space. Hence, (X , ¢ ,.int )is characterized I——Fgl space, but it is not
2 2

characterized FT, space. m

5. NEW CHARACTERIZATIONS FOR THE CHARACTERIZED FUZZY PROXIMITY
SPACES BY CHARACTERIZED FR,, SPACES

In this section, we are going to introduce and study some important relations joining and characterized the characterized

fuzzy proximity spaces introduced by, Abd-Allah in [1] and our characterized FR ,1 Spaces and the characterized
2

I——I'Sl spaces, which are present in Section 3.
2

One of these relations at the beginning, we shall prove that the associated characterized fuzzy proximity space

(X', @, ,.Int ;) is characterized FR ,1 Space in our sense.
2

Proposition 5.1 Let (X ,7)be a fuzzy topological space and ¢, ¢, eO(LX ., - If &is a fuzzy proximity on X, then

)

the associated characterized fuzzy proximity space (X o 2.int5) is characterized FR21 space.
' 2

Proof. Let x e X and F € ¢ ,C (X )such that X ¢ F. Since yp. is ¢, ,0-fuzzy neighborhood of X, then XlglF-
Because of Proposition 4.1, we get that X; and y. are ®-separated by the ¢1'2y/l’25-fuzzy continuous mapping

f (X, @ ints) >0 p,.int.) for which 0<f (x) <1 that is, f(x)=1and f(y)=0for al yeF.

Consequently, (X , ¢, ,.int;) is characterized FR,, space. =
2

To examine for a given characterized fuzzy space (X ,(ol’z.int) , when the fuzzy proximity 6 on X is compatible with

the @, ,-interior operator (/)1’2.int, we need the following proposition. It will be shown that, this happens if and only if

(X', ¢, ,.int) is characterized FR,; space.
2

Proposition 5.2 Let (X ,7)be a fuzzy topological space and ¢, @, eO(LX o If @ is the fuzzy function family of the

@ oWy 5~ fuzzy continuous mappings  f, 1 (X, ¢ ,.int, ) > (1 yy,.int5), ke K, where K is any class, then
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(X', ¢, ,.Int) is characterized FR 24 space if and only if ¢, ,.int coincide with the coarsest o, ,- interior operator &, ,.int

ontheset X forwhich each member of @ is &, Ly, ,-fuzzy continuous.

Proof. Let (X ¢y ,-iNt)is a characterized FRZ% space. Then, there exists a ¢, ,y; ,-fuzzy continuous mapping

f 1 (X, ,.int) > (1w ,.int5) such that f (x)=1and f(y)=0 for all y e F, where F eg¢ ,C(X)and
XeF.If 51’2.int is the coarsest 5112-interi0r operator on X for which each member of @ is 51'2y/l’2-fuzzy continuous,
then (X ¢, ,.ints)is one of the family ((X ¢, ,.int,)), ,x and therefore &, ,.int > @, ,.int, that is, &, ,0F (X )<
@, OF (X ). Consider x € X and u € ¢ ,OF (X )such that x; <u. Then, there exists a ¢, ,y, ,-fuzzy continuous
mapping f (X, ,.int) >(1_ . ,.int5) such that f (x)=1and f(y)=0 for all y eS (x). From the
hypothesis that 51‘2.int is the coarsest o ,-interior operator on X for which each member of ® is 6,y ,-fuzzy
continuous mapping, we get that f is ¢, ,p; ,-fuzzy continuous mapping and therefore 77 = f _1(R%)e 6, OF (X') such
that 7(x) = R%(f (x))= R%(T) =1 and n(y)= R%(f (y)= R%(ﬁ) =0for ally, <;. This means that X, <7 and
' <n', thatis, x; <mpand ne 5 OF (X) with X, <57 < s Hence, ue 6, ,0F (X') and then ¢, ,.int >, ,.int, that is,

@ OF (X') < 6, ,0F (X'). Thus, ¢, ,.int coincide with the coarsest J, , - interior operator &, ,.int on the set X .
Conversely, let galvz.int coincide with the coarsest 51’2- interior operator 5112.int on X for which each member of @ is

0y oYy 5~ fuzzy continuous, then each member of @ is ¢, Ly, ,- fuzzy continuous. Since Q:{Ra of |f ed,xel}u

{RY of |f e ®, e l}u{0,I} is a base for the characterized fuzzy space (X /@1 ,-iNt), then we can define the

mapping g : (X, ,.int) > (1 .y ,.int5) by: g(y)(s)=1-f (y)L-s)foral f e ®,s el and y e X. Hence,
gfl(Ra) =f *R")and g '(RY)=f 71(R1_a) , therefore the base Q for (X , ¢, ,.int) is in the form:

Q={f (R)If ed,ael }U{01}

Now, let x € Q and x € X such that x € x. Then, there exists f € ® and « € | such that X, = f 71(Ra0).
On other hand for each y € X, define the mapping g(y):1 =L by: g(y)a)=f (y)eoy+al-ay)), then
g_l(Ra) =f _1(Ra0+a(1_ao))and g_l(Ra) =f _l(R %m(l*a")), therefore g : (X, ¢ ,.int) >(1_.py,.INt5)is @ Ly ,-
fuzzy continuous. Since R,(g(y)) = Ra0 (f(y)=f1 _l(Ra0 )y) = ;(ﬂ(y)for alyeX, a,el, andf e ®, then
Ro(g(x))=1land Ry(g(y))=0forall y €/, thatis, g(y)=0forall y € ' and g(x)(a)=1for some « < lop

Thus, there exists y eI, such that R7(g(x))= k/\ (g (x)(k)) =1holds. Hence, we define the mapping
2y

h: (X, @ ,.int) > (1 .yy ,.int5) as follows h(z)(s)=g(z)(rs)for all zeX and s €1, ,then his ¢y ,-fuzzy
continuous and R,(h(y)) =R,(g(y)) =0for all y e z'and R,(h(x)) =R,(g(x)) =1. Moreover, since Rl(h x)) =
R”(g(x)) =1, then we have h(x)=1and h(y)=0for all y € 4 . Hence, because of Proposition 3.1, we get that

(X', ¢, ,.int) is characterized FR,, space. m
2

From Diagram 4.1, we note that, every characterized I——I'3l space is characterized I——I'1 space and because of
2
Propositions 2. 5 and 5. 2, we can deduce the following result.

Corollary 5.1 Let a fuzzy topological space (X ,7) be fixed and ¢, ¢, eO(LX o If (X, ¢ ,.int,)is characterized

)
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FFS% space and @ is the fuzzy function family of all the (plyzr//lvz-fuzzy continuous  mappings,
f (X, ,.0nt.) > (1 .y ,.int5), then every two distinct points in X are ®- separated.
Proof. Easily seen. m

We should notice that Proposition 4.3 gives us fuzzy proximity J that is compatible with the characterized I——I'4 space

from Proposition 4.4. Now, we have the following important result, which shows that there is also other fuzzy proximity

sonLl” , which is compatible with the characterized FR ,1 Space.
2

Proposition 5.3 Let a fuzzy topological space (X ,7)be fixed and ¢, @, eO(LX o If (X, ¢, ,.int_)is characterized
FR ,1 Space and @ is a fuzzy function family of all ¢, ,i, ,-fuzzy continuous mappings, then the binary relation J on
1 271,

L* which is defied by:

1S p<puand p are O-separated,

forall u,pe L isa fuzzy proximity on X compatible with the family of all ¢, ,- open fuzzy subsets ¢, ,OF (X ), that is,

(X @ ,.0nt) = (X, ¢ ,.int5) .

Proof. Let u,pel* suchthat 4 & p, then there exists g e @ such that g(x) = 1 for all x, <mand g(y)=0
forall y, <p. Consider f :(X,¢,,.int.) >(1_.yy,.Inty)is the mapping defied by: f (x)(s) =1-g(x)(L—s)for all
x eX and s el,then f is ¢y, ,-fuzzy continuous such that f (x )(s) = Oforall x, <zand f (y)(s) =1 for
all y, <p, thatis, p J 1. Hence, condition (P1) is fulfilled. Consider v nand p are ®-separated, then u,pand
n,p are ®-separated. Hence, (v 77) 5 p impliesthat 12 & p and 17 5 p. Onotherhand & p and 17 & p means
that there exist f , g, € ® such that f (x) = Lforall x, <x and f (y) =0 forall y, <p and g (x) = Lfor all
X, <n and g,(y)= 0 for ally, <p. Consider h:(X,¢ ,.int)) —>(1_ .y ,.int5)is the mapping defied by:
h(x)(s) =max{f,(x)(s),9,(x)(s)} for all x e X and s el,then h is ¢, ,-fuzzy continuous such that
h(x) =1forall x, <uor x, <nand h(y) =0forall y, <p.Then, (uv )5 pand therefore (P2) is fulfilled. To
prove (P3), let k : (X, ¢ ,.int.) —>(1_ .y ,.int5) is the mapping defined by k (x)(s) = Ofor all x e X and s e,
then we get k(x)=0for all x € X and therefore K is @1 oY o~ fuzzy continuous. So, we can easily say that
k(x)=1for all X, < Oand k(y) =0for all 77e L* and y, <n. That s, 0 and 7 are ®@-separated for all
ne L and hence 1 =0 or n =0implies that x & n7. Thus, (P3) is fulfilled. Obviously, from the definition of &, it is
clear to see that u é_‘p implies that u é_‘p' and therefore (P4) is fulfilled. Consider u, o € L* such that 7] é_‘p, then
there exists a mapping f, e ® such that f,(x) =1 for all x, <u and f,(y) =10 for all y, <p. Consider
g,1 : (X, ¢ ,.int) > (1 .y ,.int5) are the mappings defined by:

90)6) = 2 1,00) and 10x)(s) = 5, )

forall x e X and s €1,. Since f, e ®, then g and | are ¢, ,-fuzzy continuous and g(x)(s)=1for all
1
x, <wand 1(x)(s)=0for all x, <p. Since R (g(x)) =R (f,(x)) > R2(f,(x) > Ry (1, () = R, (g (x))and

1 % X X -1 % ] -1 % X
R7(1(x)) = R (f, (x)) < R, (f,(x)) = R, (I (x)), then if we consider 77 = (f, (R ?)) where f, (R?) e L, we get
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Ro(g(x)) <7'(x) <R, (I(x))and therefore g(x)(s)=0for all x <pand s el and I(x)(s)=1for all

x, <n'and s e l,. Thatis, g(x)=1forall x, <uand g(y) =0 forall y, <7and moreover |(x) = 1for all

x, <n' and I(y)=0forall y, <p.Hence, 55 and 5’ S p, therefore (P5) is fulfilled. Consequently, & is a

fuzzy proximity on X .

Now, let 7 € (¢ CF(X)); and x e X such that 7'(x) =1. Since n(y) =g, ,.clm(y)= /g\ p(y), then there
: 5P
exists p € L* with n 8 p' suchthat p(x)=0.Hence, 17 & p' implies there exists f, € ®such that f o (x) = 1 for all

1 1
x, < and f_(y) =0 forall y, <p' Consider u = f371(R %y, then we get u(y) =R? F,(yN=(R,(F,(y)) =1
1
holds for all y, <#'and then S p' implies that p’ <7'. Moreover, u(y) = R 2 (f3(y))£Rl(f3(y)) <n'(y) holds for.

al 'y eX.Thus, we@ OF(X)with X, <u and u <p'which means that » € ¢ ,OF (X )and therefore
n € ¢, CF(X). Hence, (¢ CF(X)); < ¢ ,CF(X) which implies that ¢ ,OF (X) < (¢, ,OF (X)),. Thus,

@ 5.t < @ ,.int_holds. Consequently, (X, ,.ints)is finer than (X , ¢, ,.int).

Conversely, let 7 € ¢, ,CF (X )and 7 # ¢, ,.Cl;, then there exists X € X such that ¢, ,.cls7(x)>0and 7(x)=0.

Since, x €S n" e ¢, ,0F (X) and (X,¢,.int )is characterized FR ; space, then there exists f, € ® such that
’ ’ 2

T = . X . .
f,x)=1 and f,(y)=0 for al yeS;n Consider uel”is the fuzzy set defined by

u(y) = (Rl(f4(y )))' = \/1f4(y Na)forall y e X, then u(y) <R,(f,(y)) <#'(y)holdsforally e X. This means
that \/1f4(x)(a)=1for all x, <pand \/Of4(y)(s):0for al y, <p, thatis, f,(x)= Tfor all X, <pand
f,(y) =0forall y <. Hence, xand ; are ®-separated which implies that z & . Therefore,

@ oClsn(x) = ng\p,p(x)é H () =R (f,(x)) =0

Hence, ¢, ,.cls77(x) = 0which is a contradiction and therefore we have 7 € ((ol‘ZCF (X))s- Thus, (9, OF (X)), <

¢, ,OF (X'), which implies that @ ,-int, < @ ,.int; holds and therefore (X, ¢ ,.int) is finer than (X, ¢, ,.inty).

Consequently, (X, ¢, ,.int.) = (X, ¢, ,.ints)and then & is compatible with ¢, ,OF (X ). =

Now, we introduce an example of a fuzzy proximity 6 on a set X and show that it is induces a characterized

FR_, space.
%5

Example 5.1 Let L={0,1,1}, X ={x,y}and 7={1,0,x,,y,} is a fuzzy topology on X. Choose
@ =int_, ¢, =cl_, y, =int5 and y, =cl5. Hence,x # Yy and because of Example 3.1, (X ,¢, ,.int ) is characterized

I——I'3l space. Now, consider ¢ is a binary relation on L* defined as follows:
2

1o ne3 @y oY1 o -fuzzy continuous mapping f 1 (X', ¢ ,.int,) —> (1 .y ,.int5) >
f (x)=1 forall x e X withx, <g and f (y)=0 forally, <p,

forall u,n e L. Hence, because of Proposition 5.3, & is a fuzzy proximity on X and it is compatible with ¢, ,OF (X)),
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that is, the associated characterized fuzzy proximity space (X , ¢, 2.int5) with & is characterized FR21 space. m
’ 2

Proposition 5.4 Let (X ,7)be a fuzzy topological space, ¢, @, eO(LX . and & is a fuzzy proximity on X . If
,ugn for some ,u,?]eLX and @ is a fuzzy function family of all (/)lyzylllz-fuzzy continuous mappings
f (X, ¢ ,.inty) —>(|L,t//1'2.int5*), then pand 7 are ®@-separated by the ¢, ,y,,-fuzzy continuous mapping
f (X, ,.0nt) > (1 .y ,.int5)

Proof. Because of (4.2). Lemma 4.1 and Remark 4.1, we can deduce that x and ; are ®-separated and therefore

because of Proposition 4.2, we deduce that they are @-separated by the (plyzt//l’z-fuzzy continuous mapping
f (X, ,0nt) >y, ints). =

Corollary 5.2 Let (X , &) be a fuzzy proximity space, ¢, @, eO(LX ) and u,n e L* such that 1o n.If ® isthe
fuzzy function family of all proximity fuzzy continuous mappings f : (X ,8) =>(1_, (5*) ,then g and  are @-separated
by the ¢, ,y; ,0-fuzzy continuous mapping f : (X, ¢, ,.inty) —>(|L,1//l’2.int§*).

Proof. Immediate from (4.2). Lemma 4.1 and Proposition 5.4. =

As shown in [20], if 5 and &" are two fuzzy proximity on a set X ,then & is finer than &~ or & is coarser than &,

provided 5 n impliesthat u 5 5 forall u,n e L* . Because this fact we can deduce the following result.

Proposition 5.5 Let (X,7)and (X ,o)are two fuzzy topological spaces, ¢, @, eO(LX " andd, o, EO(LX o)

Consider (X ,¢,.int)) and (X ,d,,.int )are characterized FRz% spaces and ¢ is a fuzzy proximity on X
compatible with the class of all ¢, ,- open fuzzy subsets ¢, ,OF (X). If 8" is the fuzzy proximity on X defined by:

u 3" n < uandn are d-separated in (X ,5,,.int,)
forall u,n e L | then Oy -int, < @y ,.int_ implies that 5" isfinerthan & .

Proof. Suppose that u,77 € L* such that 4 3 n . Because of Proposition 5.3, there exists @, ¥ »- fuzzy continuous
mapping f 1 (X ,¢ ,.int,) > (1 .y ,.int ) such that f (x) =1 for all X,<u and f (y)=0 forally, <7. Since
05t < @ ,.int_, then ¢ OF(X) < 6, ,0F (X ) and therefore f is &, ,y; ,-fuzzy continuous, thatis, x and 7 are

®-separated in (X , 5, ,.int_). Hence, x5 n and therefore 5 is finerthan 5. m

6. CONCLUSION
In this paper, we introduced and studied two new types of characterized fuzzy spaces named characterized

FR 2% spaces and characterized I——I':% spaces by using the real fuzzy function family of all ¢71’2y/1’2-fuzzy continuous

mappings presented in [5] as a generalization of all the weaker and stronger forms of the notion of completely regular

fuzzy topological spaces introduced in [11,24 ,26 ,29]. The characterized I—_l'3l space or characterized Tychonoff space
2
is the characterized fuzzy space for which it is characterized I——I'1 and characterized FRZL space in this sense. We
2

introduced and studied many difference relations between the characterized FR ,1 Spaces and the characterized
2
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I——I'Sl spaces with other characterized FRk and characterized l——I'S spaces, which are presented in [2, 3, 4]. To find these
2

relations, we introduced generalization to the Urysohn’s Lemma for the characterized FRSSpaces with help of the
characterized fuzzy proximity spaces presented in [1]. So, we applied the relation between the farness and the finer
relation on the fuzzy sets to introduced the notions of ¢1’25- fuzzy neighborhood at the point X in the characterized fuzzy

proximity space and of (plyzl/ll,25- fuzzy continuity between the characterized fuzzy proximity spaces. Moreover, the

characterized fuzzy space is finer than the associated characterized fuzzy proximity space that is present in [1]. The
concepts of fuzzy function family and of the ®-separable are applied to introduce important properties for the concept of

the ‘Pl,z‘/’1,25' continuity. The (plyzt//l’z-fuzzy continuity of the mapping f between characterized fuzzy spaces is more
general than of the ¢, i, ,0-continuity of f between the characterized fuzzy proximity spaces. An important result, we
show that if the fixed fuzzy topological space (X ,7) is normal, then the characterized fuzzy space (X , ¢ ,.int_)is finer

than the associated characterized fuzzy proximity space (X ,q,,.int5) and they identical if (X, ¢ ,.int )is

characterized I——I'4 space with help of the complementarily symmetric fuzzy topogenous structure that identified with the

fuzzy proximity 6. More generally, the fuzzy function family of all @, oW1 - fuzzy continuous mappings are used to show

that the characterized FR ,1 Spaces and the associated characterized fuzzy proximity spaces are identical. Many new
2

special classes from the ¢, ,-open fuzzy sets, valued ¢, ,-fuzzy neighborhoods, characterized FR21 spaces,
' ’ 2

characterized I——I'1 spaces, characterized I——I'3i spaces and characterized FF4 spaces are listed in Table (1).
2
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. @y ,~open | Valued ¢, ,- Char. FR , Char. FT Char. Fr3; Char. FT
Operations ' ' 2 1 2 4
fuzzy sets Fuzzy neigh. Space space space Space
L g =int_, ¢ =1
1 1 P =4 T Valued fuzzy Fuzzy Rz% Fuzzy T, Fuzzy Ts% Fuzzy T,
i _ 16,19 neighbor.[18]
v, = Ints, v, = lL' [ ] space [11,12] space [14] Space [11,12] space [14]
2 -
@ =int_, ¢, =cl, T Valued 6- Fuzzy ©- Fuzzy 6- Fuzzy 6- Fuzzy 6-
0
: R, space T, space
v, = intS, v, = C|3 [31] Fuzzy neigh. 2 Tl space 3 T4 space
3 . .
@ =int_, @, =int_ocl, T Valued &- Fuzzy &- Fuzzy &- Fuzzy &- Fuzzy &-
5
. . ' R,1 space T, space T, space T, space
y, = |nt3, v, = |nt30 C|3 [22] Fuzzy neigh. 2 1SP 3 4 SP
4 =cl oint =1 i ; Fuzzy semi- i
o =t P T4 x SOF (X)) Valued Semi- Fuzzy semi- Fuzzy semi- Yy Fuzzy semi-
) : R_, space T T, space T
v, =Ints, v, = oy [10] Fuzzy neigh. ’ 1 Space ] 4 SPACE
5 : .
@ =cl cint_, ¢, =cl, Valued 8-semi | Fuzzy ® semi- | Fuzzy 6 semi- Fuzzy @ semi- | Fuzzy 6 semi-
T
) ) : R., space T T, space T
p, =inty, p, =l Fuzzy neigh % 1 Space % 4 Space
6 . . . )
@ = CIT oint_, ¢, =int o cIT Valued 5-semi Fuzzy & semi- Fuzzy 5 semi- Fuzzy & semi- Fuzzy & semi-
T
. . () i R., space T, space T, space T, space
w, =inty, y, =intge Cls Fuzzy neigh. 2 p 1P 3 4 SP
! =int_ocl =1 F
g =t ocCl, @ =1« POF (X ) Valued pre- Fuzzy pre- Fuzzy pre- uzzy pre- Fuzzy pre-
] . R, space T T, space T
w,=Ints, v, = 1|_I [17] Fuzzy neigh. 2  Shace ] 4 SPACE
8 . . )
@ = clr oint_, ¢, =S 'CI, Valued semi 6- Fuzzy semi 6- Fuzzy semi 8- Fuzzy semi 6- Fuzzy semi 6-
T
. .6) i R., space T, space T, space T, space
v, =inty, y, =S.cl, Fuzzy neigh. 4 5P 1P % 4P
9 @ =cl_oint_, ¢ =s.int_oS.cl_ Valued semi 5- | Fuzzy semid- | Fuzzy semid- Fuzzy semid- | Fuzzy semi &-
Tss . R
w, =int5, v, =S.int;oS.cl, -2 Fuzzy neigh. 2 Sspace Tl space T% Space T4 space
10 =cl oint ocl =1 Fuzzy B-
@ =Ccl ot @ =1 SOF (X)) Valued B- Fuzzy Fuzzy - Fuzzy B- y Fuzzy B-
] . R_, space T T.1 space T
l//1 = CIS © |nt~3° CI;: l//z = 1|_| [9] I’IEIgh. 2 1 space 32 4 space
1 =int_ocl oint_, ¢ =1 A
¢ =Nt oCl oint,, @, =1« JOF (X)) valued 1 - Fuzzy A- Fuzzy A - Fuzzy 4 - Fuzzy A -
. . ; R, space T, space
w, =intgecl ointy,w, = 1, [17] Fuzzy neigh. 2 T, space sl P T, space
12 =s.cl oint = Fuzzy feebl
p=Scleint, ¢, =1« Valued feebly- Fuzzy feebly- Fuzzy feebly - uzzy teebly- Fuzzy feebly-
fOF (X)) R
) : , space T T, space T
v, =S .C|3 ointy, v, = 1L| Fuzzy neigh. 24 | Space 3 , Space

Table (1) : Some special classes of ¢, ,= open fuzzy sets, Valued ¢, ,- fuzzy neighborhoods, Char. FR21 spaces, Char. T1 spaces,

Char. T% spaces, Char. T4 spaces.
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