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ABSTRACT: This paper, deals with. introduce and study the notions of characterized fuzzy 12
2

R spaces and of 

characterized fuzzy 13
2

T  spaces by using the notion of fuzzy function family presented in [21] and the notion of 

1,2 1,2
j y fuzzy continuous mappings presented in [5] as a generalization of all the weaker and stronger forms of the fuzzy 

completely regular spaces introduced in [11,24,26,29]. We denote by characterized fuzzy 13
2

T  space or characterized 

fuzzy Tychonoff space to the characterized fuzzy space that is characterized fuzzy 
1

T and characterized fuzzy 12
2

R  space 

in this sense. The relations between the characterized fuzzy 13
2

T  spaces, the characterized fuzzy 
4

T  spaces and the 

characterized fuzzy 
3

T  spaces are introduced. When the given fuzzy topological space is normal, then the related 

characterized fuzzy space is finer than the associated characterized fuzzy proximity space that is presented in [1]. 

Moreover, the associated characterized fuzzy proximity spaces and the characterized fuzzy 
4

T  spaces are identical with 

help of the complementarily symmetric fuzzy topogenous structure, that is, identified with the fuzzy proximity d . More 

generally, the fuzzy function family of all 
1,2 1,2

j y fuzzy continuous mappings are applied to show that the characterized 

fuzzy 12
2

R  spaces and the associated characterized fuzzy proximity spaces are identical. 

KEYWORDS: fuzzy filter. Fuzzy; topological space;  fuzzy proximity; fuzzy topogenous structure; 

operations; characterized fuzzy space; 
1,2

j d fuzzy neighborhood; fuzzy topogenous order, fuzzy function 

family; characterized fuzzy proximity space; characterized fuzzy 12
2

R space, characterized fuzzy 
k

R spaces for 

1
2

{0,1, 2, 2 ,3}k , characterized fuzzy 
s

T spaces for 1 1
, , 4

2 2
{0,1, 2, 2 3,3 }s . 

 

1. INTRODUCTION 

   The notion of fuzzy filter has been introduced by Eklund et al. ([16]). By means of this notion a point-based approach to 
the fuzzy topology related to usual points has been developed. The more general concept for the fuzzy filter introduced by 
W. Gähler in [18] and the fuzzy filters are classified by types. However, because of the specific type of the fuzzy filter the 
approach of Eklund is related only to the fuzzy topologies which are stratified, that is, all constant fuzzy sets are open. The 
more specific fuzzy filters are considered in the former papers to be homogeneous now. 

The notion of fuzzy real numbers are introduced by S. Gähler and W. Gähler in [21], as a convex, normal, compactly 

supported and upper semi-continuous fuzzy subsets of the set of all real numbers . The set of all fuzzy real numbers is 

called the fuzzy real line and will be denoted by L , where L is complete chain. On the ordinary topological space 

( , ),X T  the operation has been defined by Kasahara ([27]) as the mapping j  from T into 2
X

 such that A A
j

, for all 

.A T  Abd El-Monsef et al. in [8], extend Kasahara operation to the power set ( )P X of the set X  Kandil et al.([25l) 

extended Kasahars’s and Abd El-Monsef’s Operations by introducing an operation on the class of all fuzzy subsets 

endowed with an fuzzy topology t  as a mapping :
X X

L Lj such that int
jm m for all ,

X
Lm  where 

jm  denotes 

the value of j  at m . The notions of the fuzzy filters and the Operations on the class of all fuzzy sets on X endowed with 

the fuzzy topology t  are applied in [5] to introduce a more general theory including all the weaker and stronger forms of 

the fuzzy topology. By means of these notions the notion of 
1,2

j fuzzy interior of the fuzzy set, 
1,2

j fuzzy convergence 

and 
1,2

j fuzzy neighborhood filters are defined. The notion of 
1,2

j fuzzy interior operator for the fuzzy sets is also 
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defined as a mapping 1,2 int :. X X
L Lj which fulfill (I1) to (15). Since there is a one-to-one correspondence between 

the class of all 
1,2

j open fuzzy subsets of X and these operators, then the class 
1,2

( )OF Xj of all 
1,2

j open fuzzy 

subsets of X  is characterized by these operators. Hence, the triple 
1,2

( ))( , OF XX j as will as the triple .
1,2

)( , intX j  will 

be called characterized fuzzy space of all 
1,2

j open fuzzy subsets. For each characterized fuzzy space .
1,2

)( , intX j  the 

mapping which assigns to each point x of X the 
1,2

j fuzzy neighborhood filter at x  is called the 
1,2

j fuzzy filter pre 

topology ([5]). It can be identified itself with the characterized fuzzy space .
1,2

)( , intX j . The characterized fuzzy spaces 

are characterized by many of characterizing notions in [6]. for example by: 
1,2

j fuzzy neighborhood filters, 
1,2

j fuzzy 

interior of the fuzzy filters and by the set of all 
1,2

j inner points of the fuzzy filters. Moreover, the notions of closeness and 

compactness in characterized fuzzy spaces are introduced and studied in [7]. 

In this paper, we applied the operations on the fuzzy topological space ( , )LI , where LI  is the fuzzy unit interval 

presented in [21] and  is the fuzzy topology defined on LI , to introduce and study the notions of characterized fuzzy 

12
2

R space and of characterized fuzzy 13
2

T  space. The characterized fuzzy 12
2

R  space is defined similar to the 

characterized fuzzy 
k

R spaces for {0,1, 2,3}k  ({2,3l), by using the ordinary points and the usual subset as a 

generalization of the existence weaker and stronger forms of the completely regular fuzzy topological spaces, such as, the 

notions defined by Bayoumi and Abedou in [11], by Hutton in [24], by Katsars in [29] and by Kandil and El-Shafee in [26]. 

The characterized fuzzy space which is characterized fuzzy 
1

T  and characterized fuzzy 12
2

R space will be called 

characterized fuzzy 13
2

T  space or characterized Tychonofi fuzzy space. For the characterized Tychonoff fuzzy space, the 

Urysohn’s Lemma is proved and hence it shown that every characterized fuzzy 
4

T  space is characterized fuzzy 13
2

T  

space, but the inverse is not true in general. Moreover, every characterized fuzzy 13
2

T  space is characterized fuzzy 
3

T  

space,  but the inverse is not true in general. The implications between all the characterized fuzzy 
s

T  spaces and of all 

characterized fuzzy 
k

R spaces are listed in Diagrams 3.1 and 4.1 for all 
1 1

, , 4
2 2

{0,1, 2, 2 3,3 }s  and 
1
2

{0,1, 2, 2 ,3}k . 

For each case counter examples will be given. Finally, in Section 5, we shall study the relation between characterized 

fuzzy 13
2

T  space and the characterized fuzzy proximity spaces which is presented by Abd-Allah in [1]. We applied 

Urysohn’s Lemma and other results which are proved in Sections 2 and 3 to show many results joining the characterized 

fuzzy 12
2

R  spaces in our sense and the characterized fuzzy proximity spaces in sense of Abd-Allah. Specially, we show 

that the associated characterized fuzzy proximity space is characterized fuzzy 12
2

R  space in our sense. Moreover, we 

show that every characterized fuzzy 12
2

R  space is compatible with a fuzzy proximity space defined by the Ф-separated for 

the fuzzy sets in the characterized fuzzy spaces. 

 

2. PRELIMINARIES 

   We begin by recalling some facts on fuzzy filters. Let L be a completely distributive complete lattice with different least 

and last elements 0 and 1, respectively. Sometimes we will assume more specially that L  is complete chain, that is, L  is 

a complete lattice whose partial ordering is a linear one. The closed unit interval [0,1]I is the standard example for the 

completely distributive complete lattice L . Consider, 
0

\ {0}L L , 
1

\ {1}L L and 
01

\ {0,1}I I . For a set X , let 
X

L  

be the set of all fuzzy subsets of X , that is, of all mappings : X Lm . Assume that an order-reversing involution 

a a is fixed. For each fuzzy set m , let co m  denote the complement of m  defined by: ( )( ) ( )co x co xm m for all 

.x X  For all x X  and 0
La , the fuzzy subset of X hose the value a  at x  and 0 otherwise is said to be fuzzy 

point in .X  The set of all fuzzy point in a set X will be denoted by ( )S X . sup m means the supremum of the set of values 

of m . Denote by a  the constant fuzzy subset of X with value or .La  

   The fuzzy filter on X ([18])  is a mapping 
X

: L LM such that the following conditions are fulfilled: 

(F1) ( ) M  for all L  and ( 1) 1M . 
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(F2) ( ) ( ) ( )     M M M for all ,
X

L   . 

   The fuzzy filter M  is said to be homogeneous ([18]) if ( ) M for all L  . For each ,x X the mapping 

:
X

x L L defined by ( ) ( )x x  for all 
X

L  is a homogeneous fuzzy filter on X . The homogeneous fuzzy filter 

at a fuzzy set is defined by the same way as follows, for each 
X

L  , the mapping :
X

L L  defined by 

0 ( )
( ) ( )

x
x


  


   for all 

X
L  is also homogeneous fuzzy filter on ,X called homogenous fuzzy filter at the fuzzy 

subset  .
X

L   Let L XF and L XF will be denote the sets of all fuzzy filters and of all homogeneous fuzzy filters on a 

set ,X respectively. If  M  and N are fuzzy filters on a set ,X  then M  is said to be finer than N  and will be denoted 

by M N , provided ( ) ( ) M N holds for all .
X

L   Noting that if L  is a complete chain then M is not finer 

than N and will be denoted by M N , provided there exists 
X

L  such that ( ) ( ) M N holds. 

Lemma 2.1 [4]  If M , N  and L are fuzzy filters on a set  .X  Then the following sentences are fulfilled: 

 M L N   implies that M N   and    M L N   implies that  M N  

Proposition 2.1 [13] For each ,
X

L   , we have     if and only if .  

   The coarsest fuzzy filter is a fuzzy filter M  on X  has the value 1 at 1  and 0 otherwise. The supremum and the 

infimum of sets of fuzzy filters are meant with respect to the finer relation. An fuzzy filter M  on X is said to be ultra fuzzy 

filter ([18]) if it does not have a properly finer fuzzy filter. For each fuzzy filter L XM F  there exists a finer ultra fuzzy 

filter L XU F  such that U M . Moreover, for each non-empty set A of the fuzzy filters on X the supremum 




M
M

A
 exists ([15]) and it given by ( )( ) ( ) 

 
 

M M
M M

A A
 for all .

X
L   Will the infimum 




M
M

A
of the set 

A  does not exists, in general. As shown in [18], the infimum 



M
M

A
 of the set A with respect to the finer relation for 

fuzzy filters exists if and only if 1 1 1( ) ... ( ) sup( ... )n n n       M M holds for all finite subset 1{ ,..., }nM M of A  

and ,1 ....,
X

n L    In this case, the infimum 



M
M

A
 of the set A with respect to the finer relation for fuzzy filters is 

given by:  

1

1

1 1

....,

( )( ) ( ( ) ... ( ))
n

n

n n
  

  
   



   
M ... ,

M M

M M M
A

A

 

for all .
X

L   On other hand the homogeneous fuzzy filter   at the fuzzy set 
X

L  is characterized by the 

homogeneous fuzzy filter x at the point  x X in [1], in the form: 

( ) 0
( ) ( ) (2.1)

x
x


  


   

For all .
X

L   

Fuzzy filter bases. The family 
0

( ) L B of non-empty subsets of 
X

L is called a valued fuzzy filter base ([18]) if the 

following conditions are fulfilled: 

(V1) implies sup   B .  

(V2) For all 0 0, withL L       and all and    B B  there are      and       such that 

. B  

Proposition 2.2 [18] Each valued fuzzy filter base 
0

( ) L B defines a fuzzy filter M  on X by 

( ) =
  

 
 


B
M

,
 for all .

X
L   Conversely, each fuzzy filter M  can be generated by a valued fuzzy filter base, e.g. 

by 
0

( -pr ) L M with -pr { | ( )}
X

L     M M . 
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The family 
0

( -pr ) L M is a family of pre filters on X and is called the large valued base of M . Recall that a pre filter 

on X  ([31]) is a non-empty proper subset F of  
X

L such that: (1)   , F  implies   F  and (2) from  F and 

   it follows  F . 

A subset B of 
X

L  is said to be superior fuzzy filter base ([18]) if the following conditions are fulfilled: 

(S1)  B for every L  . 

(S2) For all ,  B , there is a fuzzy set  B such that ,     and sup sup sup .     

   Each superior fuzzy filter base B generated a homogeneous fuzzy filter M  on X by ( ) sup
  

 
 

 
B,

M for all 

X
L  and each homogeneous fuzzy filter M  can be generated by a superior fuzzy filter base. e.g. by base  M  

{ | ( ) sup } { ( ) | },
X X

L L         M M  where base M  will be called the large superior fuzzy filter base of 

M . If X  is a non-empty set and  is a fuzzy subset of X , then { | } { | }L L        B is a superior fuzzy 

filter base of a homogeneous fuzzy filter on X , called superior principal fuzzy filter generated by   and will be denoted 

by [ ] . As shown in [15],  for each 
X

L  , the superior principal fuzzy filter [ ] is given by: 

[ ]( ) = sup( )
    

    
  

    

for all . 
X

L  In case L is a complete chain and  is not constant, we have  [ ]( )=sup ,   when    and 

( ) ( )
[ ]( ) = ( )

 
  




x x
x otherwise for all . 

X
L  For each ordinary subset M of X , we have [ ]( ) = , 


M

x M
x  

where M is the characteristic function of  M . 

Fuzzy topogenous order and fuzzy topogenous structure. The binary relation   on 
X

L  is said 

 

to be fuzzy topogenous order on the set X ([29])  if the following conditions are fulfilled: 

(1)       holds for all {0,1}.   

(2) If   , then   holds for all , .  
X

L  

(3) If 1 1,       then 1 1   holds. 

(4) If 1 1   and 2 2  , then 1 2 1 2       and 1 2 1 2       are ho1d for all , ,  
X

i j L  where 

, {1,2}.i j  

The fuzzy topogenous order   is said to be fuzzy topogenous structure if it fulfilled the following additional condition: 

(5) If ,  . then there is  
X

L such that   and   are hold for all , .  
X

L  

The fuzzy topogenous structure  is said to be fuzzy topogenous complementarily symmetric if it fulfilled the condition: 

(6) If ,  then   coco holds for all , .  
X

L  

Fuzzy topologies. By the fuzzy topology on a set X ([15,23]), we mean a subset  of 
X

L  which is closed with 

respect to all suprema and all finite infima and contains the constant fuzzy sets 0  and  1 . The set X equipped with a 

fuzzy topology   on X is called fuzzy topological space. For each fuzzy topological space ( ),X , the elements of   

are called open fuzzy subsets of this space. If  1  and 2  are fuzzy topologies on a set X , then 2  is said to be finer 

than 1  and 1  is said to be coarser than 2  provided 1 2   holds. The fuzzy topological space ( ),X  and also   

are said to be stratified provided    holds for all  L , that is, all constant fuzzy sets are open ([30]). For each fuzzy 

set , 
X

L  the strong   cut and the weak   cut of   are the ordinary subsets S ( ) { | ( ) }x X x        and 
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W ( ) { | ( ) }x X x      of ,X  respectively. For each complete chain, L  the   level topology and the initial 

topology ([30]) of the fuzzy topology   on the set X are defined as follows: 

S P(X)( ) | }{       and 
1inf | }( ) { Li     , 

respectively. where inf  is the infimum with respect to the finer relation for topologies. On other hand if ( ),X T is an 

ordinary topological space. then the induced fuzzy topology on X  is given by Lowen in [30] as the following: 

1| S ( ) for all( ) { }     
X

T LT L  

The fuzzy unit interval. The fuzzy unit interval will be denoted by 
LI and it is defined in [21] as the fuzzy subset: 

L LI { | 1},


  x x  

Where, I=[0,1] is the closed unit interval and L L{ | (0) 1and 0 }

   x x x  is the set of all positive fuzzy real 

numbers. Note that, the binary relation   is defined on L  as follows: 

1 1 2 2 Land  , for all , ,       y y x yx y x x  

Where, 1 inf{ | ( ) }   x x zx and 2 sup{ | ( ) }   x x zx for all Lx and 0  L . Note that the family   

which is defined by: 

L L L{ | I | I} { | I | I} {0 | I }


       R R  

is a base for a fuzzy topology   on LI  ([21]),  where R  and 


R  are the fuzzy subsets of L  defined by 

( ) ( )
 




 R x x and ( ) ( )( )

 



 R x x for all Lx and .   The restrictions of R  and 


R on LI  are the 

fuzzy subsets L| IR  and 
L| I


R , respectively. Recall that: 

( ) ( ) ( ), (2.2)
   

  R R Rx y x y  

Where,  x y  is the fuzzy real number defined by the rule 
, ,

( )( ) ( ) ( )( )
    

 
  

  x y x y  for all .   

The fuzzy function family. Let X  be non-empty set. By the fuzzy function family   on X , we mean the set 

of all fuzzy real functions LI: f X  ([21]). Consider , ,  
X

L then the fuzzy real function LI: f X  is said to be 

separate   and   if 0 ( ) 1f x  holds for all 1, implies that ( ) 1  x X x f x and 1 implies thaty  

( ) 0f y , where ,1 1 ( ).x y S X  Moreover, if   is an fuzzy function family on ,X  then the fuzzy subsets ,  
X

L  

are called  separable or  separated if there exists an fuzzy real function h   separating them. 

The operation on fuzzy sets. In the sequel, let a fuzzy topological space ( , )X be fixed. By the operation 

([25]) on a set X we mean a mapping : 
X X

L L such that int


   holds, for all  
X

L , where, 


  denotes the 

value of    at  . The class of all operations on X will be denoted by 
, )( XL

O . By the identity operation on 
, )( XL

O , we 

mean the operation 1 : X

X X

L
L L such that 1 ( ) XL

, for all  
X

L and the constant operation on 
, )( XL

O  is the 

operation : X

X X

L
L Lc such that ( ) 1 XL

c , for all  
X

L . Consider the binary relation   is a partially ordered 

relation on 
, )( XL

O defined as follows: 1 2

1 2

 
      for all  

X
L , then the ordered pair 

, )(
,( )


XL

O  is a 

completely distributive lattice. As a directly application on this completely distributive lattice, the operation : 
X X

L L  

is said to be: 

(i)  Isotone if     implies 
 

  , for all , .  
X

L  
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(ii) Weakly finite intersection preserving (wfip, for short) with respect to 
X

LA if  ( )
 

       holds, for all 

 A  and . 
X

L  

(iii) Idempotent  if ( )
  

  , for all  
X

L . 

   The operations 
, )(

,


   XL
O are said to be dual if (( )

 
  co co or equivalently (( )

 
  co co  for all  

X
L , 

where co  denotes the complementation of  . The dual operation of the operation : 
X X

L L  will be denoted by 

: 
X X

L L . In the classical case of {0,1}L , by the operation on a set X , we mean the mapping 

: ( ) ( ) P X P X such that  int


A A for all A in the power set ( )P X . The identity operation on the class of all 

ordinary operations ( ( ), )P X TO  on  X will be denoted by ( )P Xi , where ( ) ( ) P X A Ai for all ( )A P X . 

 -open fuzzy sets. Let a fuzzy topological space ( ),X be fixed and 
, )( 

  XL
O . Then the fuzzy set  

: X L is called  -open fuzzy set if 


   holds. We will denote the class of all  -open fuzzy sets on X by  

( )OF X . The fuzzy set   is called  -closed if its complement co  is  -open. The two operations 
, )(

,


   XL
O  

are equivalent and written    if  and only if ( ) ( ) OF X OF X . 

1,2 -interiors fuzzy sets.  Let a fuzzy topological space ( ),X be fixed and 1 2 , )(
,


   XL

O . Then the 1,2 -

interior of the fuzzy set : X L is a mapping 1,2 int :.  X L defined by: 

2
1

1,2
( ),

int (2.3).
   

  
 

 
OF X

 

   As Shown in [5], 1,2 int.   is the greatest 1 -open fuzzy set   such that 2  less than or equal to  . The fuzzy set 

  is said to be 1,2 -open if  1,2.int   . The class of all 1,2 -open fuzzy sets of X will be denoted by 1,2 ( ) OF X . 

The complement co  of a 1,2 -open fuzzy subset   will be called 1,2 -closed. The class of all 1,2 -closed fuzzy 

subsets of X will be denoted by 1,2 ( ) CF X . In the classical case of {0,1}L , the fuzzy topological space ( ),X  is 

up to an identification by the ordinary topological space ( , )X T and 1,2 int.   is the classical one. Hence, in this case the 

ordinary subset A of X is 1,2 -open if 1,2.intA A . The complement of a 1,2 -open subset A  of X will be called 

1,2 -closed. The classes of all 1,2 -open and of all 1,2 -closed subsets of X will be denoted by 1,2 ( ) O X  and 

1,2 ( ) C X , respectively. Clearly, the ordinary subset F is 1,2 -closed if and only if 1,2.cl T F F . 

Proposition 2.3 [5].  If ( ),X is a fuzzy topological space and 1 2 , )(
,


   XL

O . Then, for each , ,  
X

L the 

mapping 1,2 int :.  X L fulfills the following axioms: 

(i)  If 2 1  XL
, then 1,2 int.    holds. 

(ii)  1,2 int.  is isotone, that is,  if    then  1,2 1,2.int .int     holds . 

(iii) 1,2.int 1 1  . 

(iv) If 2 1  XL
is isotone and 1  is wfip with respect to 1 ( )OF X , then 1,2 1,2 1,2.int ( ) .int .int .           

(v)  If 2  is isotone and idempotent operation, then 1,2 1,2 1,2.int .int ( .int )     holds. 

(vi) 1,2 1,2.int ( ) .int   
 

 i i
i I i I

 for all 1,2 ( ) i OF X . 
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Proposition 2.4 [5].  Let ( , )X  be a fuzzy topological space and 
1 2 , )(
,


   XL

O . Then, the following statements 

are fulfilled: 

(i)  If 2 1  XL
, then the class 1,2 ( ) OF X of all 1,2 -open fuzzy subsets of X forms extended fuzzy topology on X , 

denoted by  
1,2

 ([19]). 

(ii) If 2 1  XL
, then the class 1,2 ( ) OF X of all 1,2 -open fuzzy subsets of X forms a supra fuzzy topology on X , 

denoted by 
1,2

 ([19]). 

(iii) If 2 1  XL
is isotone and 1  is wfip with respect to 1 ( )OF X , then 1,2 ( ) OF X is a fuzzy pre topology on X , 

denoted by 
1,2


([19]). 

(iv) If 2 1  XL
is isotone and idempotent operation and 

1  is wfip with respect to 
1 ( )OF X , then 1,2 ( ) OF X  forms a 

fuzzy topology on X , denoted by 
1,2 ([15,23]). 

   From Propositions 2.3 and 2.4, if the fuzzy topological space ( , )X   be fixed and 
1 2 , )(
,


   XL

O . Then 

1,2 1,2( ) { | int } (2.4).      
X

OF X L  

and the following conditions are fulfilled: 

(I1) If 2 1  XL
, then 1,2 int.    holds for all  

X
L . 

 (I2) If    then  1,2 1,2.int .int     holds for all , .  
X

L  

 (I3) 1,2.int 1 1  . 

(I4) If 2 1  XL
is isotone and 1  is wfip with respect to 1 ( )OF X , then 1,2 1,2 1,2.int ( ) .int .int          for all 

, .  
X

L  

(I5) If 2 1  XL
 is isotone and idempotent operation, then  1,2 1,2 1,2.int ( .int ) .int      for all  

X
L . 

The characterized fuzzy spaces. Independently on the fuzzy topologies, the notion of 1,2 -interior operator for 

the fuzzy sets can be defined as a mapping 1,2.int : 
X X

L L , which fulfills (I1), to (I5). It is well-known that (2.3) and 

(2.4) give a one-to-one correspondence between the class of all 1,2 -open fuzzy sets and these operators, that is, 

1,2 ( ) OF X can be characterized by 1,2 -interior operators. In this case 1,2( , .int)X as well as 1,2( , ( ))X OF X will be 

called characterized fuzzy space ([5]) of all the 1,2 -open fuzzy subsets of .X  The characterized fuzzy space 

1,2( , .int)X  is said to be stratified if and only if 1,2.int    for all  L . As shown in [5], the characterized fuzzy 

space 1,2( , .int)X is stratified if the related fuzzy topological space ( , )X   is stratified. Moreover, the characterized 

fuzzy space 1,2( , .int)X is said to have the weak infimum property ([19]), provided that 1,2.int ( )     

1,2 1,2.int .int    for all  
X

L and all  L . The characterized fuzzy space 1,2( , .int)X is said to be strongly 

stratified ([19]) , provided 1,2 int.  is stratified and have the weak infimum property. If 1,2( , .int)X and 1,2( , .int)X  are 

two characterized fuzzy spaces, then 1,2( , .int)X  is said to be finer than 1,2( , .int)X  and denoted by  

1,2 1,2.int int.   provided 1,2 1,2.int .int     holds for all . 
X

L  If   is a fuzzy topology on a set X and 

1 2 , )(
,


   XL

O , then by the   level characterized space and the initial characterized space of the fuzzy topological 
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space ( , )X , we mean the characterized spaces  1,2, ( ( ))( )X OF X  and 
1,2, ( ( ))( ),X i OF X  respectively where 

1,2( ( )) OF X  and  1,2( ( ))i OF X are defined as follows: 

1,2 1,2S P(X)( ) ( ) | ( )}( ) {OF X OF X       and 1,2 1,2 1( ( )) inf ( ( )) | }.{i OF X OF X L     

Sometimes, we denote to the   level characterized space and the initial characterized space of the fuzzy topological 

space ( , )X by 1,2( , .int )X  and 1,2( , .int ) iX , respectively. On other hand if ( ),X T is an ordinary topological 

space and 1 2 )( ( ),, ,   P X TO  then the induced characterized fuzzy space will be denoted by 1,2, ( ( ))( ) X O X or by 

1,2( , .int )X and it defined by: 

1,2 1,2 1| S ( ) for all( ( )) { ( ) }.       
X

LO X L O X  

If 1 int  and 2 1  XL
, then the class 1,2 ( ) OF X of all 1,2 -open fuzzy subset of  X coincide with the fuzzy topology 

  and hence the characterized fuzzy space 1,2( , .int)X coincide with the fuzzy topological space ( , )X presented in 

[15,23]. Another special choices for the operations 1  and 2  are obtained in Table (1). 

The 1,2 -fuzzy neighborhood filters. An important notion in the characterized fuzzy space 1,2( , .int)X  is 

that of the 1,2 -fuzzy neighborhood filter at the point and at the ordinary subset in this space.  Let ( , )X  be a fuzzy 

topological space and 1 2 , )(
,


   XL

O . As follows by (I1) to (I5) for each, x X  the mapping 
1,2

( ) : 
X

x L LN  

which is defined by: 

1,2 1,2( )( ) ( .int )( ) (2.5)   x xN  

for all  
X

L is a fuzzy filter on X , called 1,2 -fuzzy neighborhood filter at x ([5]). Moreover, if ( )  F P X , then 

the 1,2 -fuzzy neighborhood filter at the ordinary subset F will be denoted by 
1,2

( ) FN and it will be defined by: 

1,2 1,2
( ) ( ). 


 

x F
F xN N  

Since 
1,2

( ) xN  is a fuzzy filter for all  x X , then 
1,2

( ) FN is also fuzzy filter on X . Moreover, because of 

[ ]


 F
x F

x , then we have 
1,2

( ) [ ]  FFN  holds. 

   More generally, if the related 1,2 -interior operator fulfill the axioms (I1) and (I2) only, then the mapping 

1,2
( ) : 

X
x L LN , which is defined by (2.5) is a fuzzy stack ([19]), called  1,2 -fuzzy neighborhood stack at x . 

Moreover, if the 1,2 -interior operator fulfill the axioms (I1), (I2) and (I4) such that in (I4) instead of,  
X

L we take  , 

then the mapping 
1,2

( ) : 
X

x L LN , is a fuzzy stack with the cutting property, called 1,2 -fuzzy neighborhood stack 

with the cutting property at x . Obviously, the 1,2 -fuzzy neighborhood filters fulfill the following axioms: 

(N1) 
1,2

( )x x N holds for all x X . 

(N2) 
1,2 1,2

( )( ) ( )( )  x xN N  holds for all ,  
X

L and  .   

(N3) 
1,2 1,2 1,2

( )( ( )( )) ( )( ),   x y y xN N N  for all x X and  
X

L . 

Clearly,  
1,2

( )( ) y yN is the fuzzy set  1,2.int  . 

   The characterized fuzzy space 1,2( , .int)X of all 1,2 -open fuzzy subsets of a set X is characterized as a fuzzy filter 

pre topology ([5]), that is, as a mapping 
1,2

( ) :  Lx X XN F such that the axioms (N1) to (N3) are fulfilled. 
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The valued 
1,2 -fuzzy neighborhoods. Let ( , )X  be a fuzzy topological space and 

1 2 , )(
,


   XL

O . 

Then the fuzzy subset   of X  will be called 
1,2  -fuzzy neighborhood at the point x X  if 

1,2( .int )( ) (2.6)   x  

holds for some 0  L  ([5]). Because of Proposition 2.2. the fuzzy subset  of X  is 1,2  -fuzzy neighborhood at x  if 

and only if 
1,2

-pr ( )( )  xN  holds,  where 
1,2

( ) xN  is given by (2.5). By a valued 1,2 -fuzzy neighborhood at ,x  

we mean an 1,2  -fuzzy neighborhood at x  for some 0  L . For each 0  L and ,x X let N ( ) x be the set of all 

1,2  -fuzzy neighborhood at ,x  that is, 1,2N ( ) { ( .int )( )}.|      
X

x L x  Then the family 
0

N ( )( ) Lx is the 

large valued base of 
1,2

( ) xN at the point x X . The 1,2 -open fuzzy sets is characterized by the valued 1,2 -fuzzy 

neighborhood at x as follows: 

1,2 1,2is -open for all with ( ) 0 there is an ( )-fuzzy neighborhood at with . (2.7)           
X

L x X x x x

Remark 2.1 If 1 int  and 2 1  XL
, then the notion of the valued 1,2 -fuzzy neighborhood at the ordinary point x is 

closely related to that of fuzzy neighborhood at the fuzzy point, used in the fuzzy topology (cp. [32]).  If ( ) S Xx is a 

fuzzy point, then the fuzzy neighborhood at x is nothing else than the  -fuzzy neighborhood at .x    

The 1,2 -fuzzy convergence. Let a topological L-spaces ( , )X be fixed and 1 2 , )(
,


   XL

O . If  x is a point 

in the characterized fuzzy space 1,2( , .int)X , F X and M  is a fuzzy filter on X . Then M  is said to be 1,2 -fuzzy 

convergence ([2])  to x and written 
1,2 .int

xM , provided M is finer than the 1,2 -fuzzy neighborhood filter 

1,2
( ) xN . Moreover, M  is said to be 1,2 -convergence to the ordinary subset F and written 

1,2 .int
FM , 

provided M  is finer than the 1,2 -fuzzy neighborhood filter 
1,2

( ) xN  for all x F , that is, M  is finer than the 1,2 -

fuzzy neighborhood filter 
1,2

( ) FN . 

The 1,2 -closure operator and internal 1,2 -closure of fuzzy sets. Let a fuzzy topological space 

( , )X  be fixed and 1 2 , )(
,


   XL

O . The internal 1,2 -closure ([7]) of the fuzzy set : X L  is the mapping 

1,2.cl :  X L defined by: 

1,2

1,2
( )

( .cl )( ) ( ) (2.8)


  


 
x

x
M N

M  

 for all x X . In (2.8), the fuzzy filters M  my have additional properties, e.g, we my assume that they are  

homogeneous or even that they are ultra fuzzy filters. Obviously, 1,2.cl     holds for all  
X

L .The mapping 

1,2. :cl  L LX XF F which assigns 1,2.cl  M  to each fuzzy filter M on ,X  that is, 

1,2
1,2

.cl 
( . )( ) = ( ) (2.9)cl 

  
  


M M  

is called 1,2 -closure operator ([7]) of the characterized fuzzy space 1,2( , .int)X  with respect to the related fuzzy 

topology  . Obviously, the 1,2 -closure operator 1,2 . cl is isotone hull operator, that is, for all ,  L XM N F we have 

M N    implies    1,2 1,2. .cl cl  M N and  that  1,2.cl M M holds. 

Lemma 2.2 [2]. Let ( , )X be a fuzzy topological space and 1 2 , )(
,


   XL

O . Then for each x X , we have that 

1,2.cl  x x implies 1,2.cl{x}={x}.  



I S S N  2 3 4 7 - 1 9 2 1  

V o l u m e  1 3  N u m b e r  0 1  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

7057 | P a g e                                         

M a r c h  2 0 1 7                                          w w w . c i r w o r l d . c o m  

The 
1,2 1,2 - fuzzy continuity.  Let now the fuzzy topological spaces 

1( , )X  and 
2( , )Y  are fixed, 

1
1 2 ( , )
,


   XL

O  and 
2

1 2 ( , )
,


   YL

O . Then the mapping 1,2 1,2: ( , .int) ( , .int) f X Y  is said to be 1,2 1,2 -

fuzzy continuous ([5]) if and only if  

1,2 1,2( int ) .int ( ) (2.10).   f f  

holds for all . 
Y

L  If an order reversing involution  of L  is given, then we have that f  is 1,2 1,2 -fuzzy 

continuous  if and only if 1,2 1,2.cl ( ) ( .cl )   f f  for all , 
Y

L  where  1,2.cl  and 1,2.cl  are the closure 

operators related to 1,2.int  and 1,2 int. , respectively. Obviously if f is 1,2 1,2 -fuzzy continuity mapping, then the 

inverse mapping  
1

1,2 1,2: ( , .int) ( , .int) 


f Y X  is 1,2 1,2 -fuzzy continuous mapping, that is,  

1 1

1,2 1,2( .int ) .int ( )   
 
f f  holds for all . 

X
L  By means of the 1,2 -fuzzy neighborhood filter  

1,2
( ) xN  of  

1,2.int  at x and the 1,2 -fuzzy neighborhood filter 
1,2

( ) xN  of 1,2 int.  at x , the 1,2 1,2 -fuzzy continuity of f is 

also characterized as follows: 

   The mapping 1,2 1,2: ( , .int) ( , .int) f X Y  is 1,2 1,2 -fuzzy continuous if for each ,x X the inequality  

1,21,2

( ( )) ( ) (2.11)( )  Lf x f xN F N  

holds. Obviously, in case of {0,1}L , 1 1 2 2int , 1 and 1      X YL L
, then the 1,2 1,2 -fuzzy continuity of f is 

coincides with the usual continuity. 

The characterized fuzzy kR and 
s

T spaces. The notions of characterized fuzzy R
k

and characterized 

fuzzy T
s

spaces are investigated and studied in [2,3,4] for all {0,1, 2, 3}k  and 
1

,2{0,1, 2, 2 3, 4}s  . These 

characterized fuzzy spaces depend only on the usual points and the operation defined on the class of all fuzzy subsets of 

X endowed with a fuzzy topological space ( , )X . The characterized fuzzy R
k

and the characterized fuzzy T
s

spaces 

will be denoted by characterized 
k

FR and characterized 
s

FT , respectively for short. Let a fuzzy topological space 

( , )X  be fixed and  1 2 , )(
,


   XL

O . Then the characterized fuzzy space 1,2( , .int)X  is said to be: 

(1) Characterized 
0

FR space (resp. 
1

FR space), if for all , x y X such that  x y and 1,2.cl x y implies 

1,2.cl y x  (resp. 
1,2 1,2

( ) ( ) x yN N  does not exists).  The related fuzzy topological space ( , )X   is said to be 

1,2F -
0

R  (resp. 1,2F -
1

R ), if for all , x y X such that x y and 1,2. ,cl x y we have 1,2.cl  x y  (resp. 

1,21,2. ( ))cl ( x yN  and 
1,21,2. ( ))cl ( y xN ). 

(2) Characterized 
2

FR space (resp. 
3

FR space), if for all x X , 1,2 ( )F C X such that x F (resp. 

1 2 1,2, ( )F F C X such that 1 2  F F ), the infimum 
1,2 1,2

( ) ( ) x FN N  (resp. 
1,2 1,21 2( ) ( ) F FN N ) does not 

exists). The related fuzzy topological space ( , )X   is said to be 1,2F -
2

R  (resp. 1,2F -
3

R ) if for all ,x X  (resp. 

1,2 ( )F C X ) and   L XM F such that 
1,2 .int

xM  (resp. 
1,2 .int

FM ) we have 
1,2

1,2 .int
.cl 


 xM  

(resp. 
1,2

1,2 .int
.cl 


 FM ). 

(3) Characterized 0FT  space (resp. 1FT  space), if for all , x y X such that  x y , there exists  ,  
X

L and  

0,   L  such that 1,2( ) ( .int )( )    x y  or (resp. and) 1,2( ) ( .int )( )    y x  are hold. The related fuzzy 
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topological space ( , )X   is said to be 
1,2F -

0
T  (resp. 

1,2F -
1

T ) if for all ,x y X such that  ,x y we have  

1,2
( )x yN or (resp. and) 

1,2
( )y xN are hold. 

(4)  Characterized 2FT  space (resp. 1
2

2
FT  space), if for all ,x y X such that  x y , the infimum 

1,2 1,2
( ) ( ) x yN N  (resp. 

1,2 1,21,2 1,2. ( ) . ( )cl cl   x yN N ) does not exists. The related fuzzy topological space 

( , )X   is said to be 1,2F -
2

T  (resp. 1,2F - 1
2

2
T ), when 

1,2 .int
,


x yM (resp. 

1,2
1,2 .int

. ,cl


 x yM ) 

implies x y for all  L XM F  and all , .x y X  

(5)  Characterized 3FT  space (resp. 4FT  space), i if and only if it Characterized 
2

FR space (resp. 
3

FR space) and 

Characterized  1FT  space.  The related fuzzy topological space ( , )X  is said to be 1,2F - 3T  (resp. 1,2F - 4T ( if and 

only if it is 1,2F -
2

R  (resp. 1,2F -
3

R ) and  1,2F -
1

T .  

 

Proposition 2.5 [4]. Let ( , )X  be a fuzzy topological space and  1 2 , )(
,


   XL

O . Then the characterized fuzzy 

space 1,2( , .int)X is characterized 1FT  space if and only if 1,2.cl  x x for all x X . 

 

3. THE NOTIONS OF CHARACTERIZED FUZZY 1
2

2
R  AND 1

2
3

T  SPACES 

   The notion of 1,2 1,2 -fuzzy continuity between the characterized fuzzy spaces is applied to introduce and study the 

notion of characterized fuzzy 12
2

R  spaces or the characterized 12
2

FR , for short. However, the related notion for the fuzzy 

topological space is introduce as a generalization to the weaker and stronger forms of the fuzzy completely regular 
introduced in [11, 24, 26, 29]. 

Let a fuzzy topological space ( , )X be fixed and 1 2 , )(
,


   XL

O . Then the characterized fuzzy space 1,2( , .int)X is 

said to be characterized fuzzy 12
2

R  space or (characterized 12
2

FR  space, for short) if for all x X , 1,2 ( )F C X  such 

that ,x F there exists a 1,2 1,2 -fuzzy continuous mapping 1,2 L 1,2I ,: ( , .int) ( .int )  f X  such that ( ) 1f x  

and ( ) 0f y for all y F . The related fuzzy topological space ( , )X is said to be completely regular fuzzy 1,2 -

space or ( 1
2

1,2 2
-F R space, for short) if and only if 1,2( , .int)X is characterized 12

2

FR space. The characterized fuzzy 

space 1,2( , .int)X  is said to be characterized fuzzy 1
2

3
T  or (characterized 1

2
3

FT  space, for short) if and only if it is 

characterized 12
2

FR space and characterized 1FT  space. 

   In the classical case of {0,1}L , I1 1 2 2int , int , 1 and 1      XL L
. the 1,2 1,2 -fuzzy continuity of f is 

up to an identification the usual fuzzy continuity of f . Then, in this case the notion of characterized 12
2

FR space is 

coincide with the notion of fuzzy completely regular space defined in [11]. Another special chooses for the operations 

1 1 2 2, and,     obtained in Table (1). 

   1n the following proposition we give an equivalent characterization for the characterized 12
2

FR  spaces. 

Proposition 3.1 Let ( , )X be a fuzzy topological space, 1 2 , )(
,


   XL

O and   is a subbase for the characterized 
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fuzzy space 1,2( , .int)X . Then, the characterized fuzzy space 1,2( , .int)X is characterized 12
2

FR  space if and only if 

for all F  and x X  such that x F , there exists a 1,2 1,2 -fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int) ( .int )  f X such that ( ) 1 and ( ) 0 f x f y  for all y F . 

Proof. Let 1,2( , .int)X is a characterized 12
2

FR  space,   is a subbase for 1,2( , .int)X  and F ,  x X  such 

that x F , then obviously there exists a 1,2 1,2 -fuzzy continuous mapping 1,2 L 1,2I ,: ( , .int) ( .int )  f X  such 

that ( ) 1 and ( ) 0 f x f y  for all y F . 

   Conversely. let x X , 1,2 ( )F C X such that x F . Then, x F  with 1,2 ( )F O X and therefore there are 

1 ,..., nV V  such that 1 ...     nx V V , that is, i ix V for all {1,2, ..., }i n . Hence. i ix V  for all 

{1,2, ..., }i n and therefore there is a 1,2 1,2 -fuzzy continuous mappings 1,2 L 1,2I ,: ( , .int) ( .int )  if X  such that 

( ) 1 and ( ) 0 i if x f y  for all  iy V  and {1,2, ..., }i n , which implies that ( ) 1 and ( ) 0 i if x f y  

1 2for all ( )...      ny V V V F . Taking any one of the functions if , gives the required 1,2 1,2 -fuzzy 

continuous mapping 1,2 L 1,2I ,: ( , .int) ( .int )  f X for which ( ) 1 and ( ) 0 f x f y  for all y F . Consequently. 

1,2( , .int)X  is characterized 12
2

FR  space. ■ 

Corollary 3.1 Let ( , )X  be a fuzzy topological space, 1 2 , )(
,


   XL

O and   is a subbase for the characterized 

fuzzy space 1,2( , .int)X . Then, ( , )X  is 1
2

1,2 2
-F R space if and only if for all F  and x X  such that x F , 

there exists a 1,2 1,2 -fuzzy continuous mapping 1,2 L 1,2I ,: ( , .int) ( .int )  f X such that ( ) 1 and ( ) 0 f x f y  

for all y F . 

Proof. Immediate from Proposition 3.1 and the definition of the 1
2

1,2 2
-F R spaces. ■ 

   The following example is an example of characterized 12
2

FR space and characterized 1FT  space, that is, an example of 

characterized 1
2

3
FT space.  

Example 3.1 Let 
1

, 1}
2

{0,L , { , }X x y  and 1 1{1, 0, , }  x y  is a fuzzy topology on .X  Choose 

1 1int ,    int , 2 2cl and cl .     Hence, x y and there is only two cases, the first is 

1,2{ } ( )  x F y C X  and the second is 1,2{ } ( )  y F x C X . We shall consider the first case and the second 

case is similar. 

 Consider the mapping 1,2 L 1,2I ,: ( , .int) ( .int )  f X defined by ( ) 1 and ( ) 0 f x f y ,  then f  is 1,2 1,2 -fuzzy 

continuous and therefore 1,2( , .int )X  is characterized 12
2

FR space and obviously 1,2( , .int )X is also characterized 

1FT  space, that is, 1,2( , .int )X is characterized 1
2

3
FT space.  ■ 

    In the following proposition, we give the relation between the class of all characterized 
0

FT spaces introduced in [2] and 

our class of all characterized 1
2

3
FT spaces. 

Proposition 3.2 Let ( , )X is a fuzzy topological space and .1 2 , )(
,


   XL

O  Then, every characterized 

1
2

3
FT space is characterized 

3
FT  space. 
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Proof. Let 1,2( , .int)X is characterized 1
2

3
FT space, x X , 1,2 ( )F C X  such that .x F  Hence, 1,2( , .int)X is 

characterized 1FT and characterized 12
2

FR  space, therefore there exists a 1,2 1,2 -fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int) ( .int )  f X  such that ( ) 1 and ( ) 0 f x f y  for all y F . Consider 
1
2

1
2

1,2 L(I ),, R R O  

then we have 1 1
12 2
2

 
( )( ) (1) 1( ) 1





  R f x R  and 

1 1
2 2

1
2

 
( )( ) (0) 0( ) 1( )





  R f y R  for all y F . Hence, 

1
2

  R f and 
1
2  R f are two fuzzy subsets of X  such that 

1,2 1,2
( )( ) ( )( ) 1.   x FN N  On other hand 

because of 
 s  r

( ) ( )
 

 
t t
f s f r holds for all , s r X ,  then for all ,z X  we have that 

1
2

1
2

1 1
2 2

1 1
2 2

  

  

( )( )( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( ) 1.

( )

( )
 

 

 

 

 

 

 

  

 

  

 

 

zz R f R f

f z f z

f z f z

 

Hence, 
1,2 1,2

sup( ) ( )( ) ( )( )    


   
y F

x yN N and therefore the 
1,2 1,2

( ) ( ) x FN N  does not exists, that is, 

1,2( , .int)X is characterized 
2

FR  space. Using that 1,2( , .int)X  is characterized 1FT , we get that 1,2( , .int)X is 

characterized 
3

FT  space.  ■ 

Corollary 3.2 Let a fuzzy topological space ( , )X be fixed and .1 2 , )(
,


   XL

O  Then, every 1
2

1,2 3
-F T topological 

space is 1,2 3-F T topological space and every 1
2

1,2 2
-F R topological space is 1,2 2-F R  topological space. 

Proof. Follows immediately from Proposition 3.2. ■ 

 

   Because of the Theorems 3.2 and 4.2 in [3], Propositions 4.1 and 4.2 and Corollary 4.1 in [2] and Proposition 3.2 and 
Corollary 3.2, we have the following diagram of implications: 

1 13 2
2 2

10 0 2 0 02
2

2 13 2

1

    

     

   

FT FT FT FT FT FR

FT FR FT FR FT FT FR

 

                                                                                     Diagram 3.1 

  The following examples shows that the inverse of the implications in Diagram 3.1 are not true in general. 

Example 3.2  Let 
1

, 1}
4

{0,L , { , }X x y  and {1, 0, }   is a fuzzy topology on ,X  where : X L is the 

fuzzy subset defined by ( ) 1 x and ( ) 0 y . Choose, 1 cl int    and 2 cl  , then the characterized fuzzy 

space 1,2( , .int)X is characterized 
0

FR  space and characterized 
0

FT  space, but it is neither characterized 
1

FR space 

nor characterized 
1

FT space. Hence. 1,2( , .int)X  is not characterized 
2

FT  space. Indeed for x y in ,X  we have 

1,2
( ) ( )( ) y xN  holds for all , 

X
L that is, the infimum 

1,2 1,2
( ) ( ) x yN N  does not exists. ■ 

Example 3.3  Let  
31 1

, , , 1}
4 2 4

{0,L , { , }X x y  and 1 3 1 3
2 24 4

1 1{1, 0, , , , }   y y x y x y  is a fuzzy topology on 

.X  Choose 1 int  and 2 int cl ,    then the characterized fuzzy space 1,2( , .int )X is characterized 
3

FT , 
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because there is only the case of  y X and 1,2{ } ( ) F x C X such that y F and there exists ,  
X

L defined 

3 1
24

1,   x y y  and 

1,2 1,2 1,2 1,2

3 1

4 2

( )( ) ( )( ) .int ( ) .int ( )

sup ( ).

        

 

  

  

x y x yN N
 

Hence, the 
1,2 1,2

( ) ( ) y FN N does not exists and therefore 1,2( , .int )X is characterized 
2

FR space. Obviously, the 

characterized fuzzy space 1,2( , .int )X is characterized 
1

FT space and therefore, 1,2( , .int )X is characterized 
3

FT  

space. On other hand 1,2( , .int )X is not characterized 12
2

FR  space. Indeed for y X and 1,2{ } ( ) F x C X such 

that y F  all the mappings 1,2 L 1,2I ,: ( , .int ) ( .int )  if X which fulfilled that ( ) 1 and ( ) 0 i if y f x  for all 

x F are not 1,2 1,2 -fuzzy continuous for 1{1,2, ..., }, int  i n and 2 int cl .    Therefore, 1,2( , .int )X  is 

neither characterized 1
2

3
FT space nor characterized 

0
FT  space.  ■ 

4. NEW RELATIONS BETWEEN CHARACTERIZED 1
2

2
FR , CHARACTERIZED 1

2
3

FT  AND 

SOME CHARACTERIZED FUZZY SPACES 

   In this section. we are going to introduce and study difference relations between the characterized 12
2

FR  and the 

characterized 1
2

3
FT with other characterized 

k
FR and characterized sFT  spaces which are listed in Section 2 for some 

special choices of k  and s . To find these relations, we try to introduce generalization to the Urysohn's Lemma for the 

characterized 
3

FR spaces with help of the characterized fuzzy proximity spaces presented in [1]. So, we at first applied 

the relation between the farness and the finer relation on the fuzzy sets to introduce the notions of 1,2 -  fuzzy 

neighborhood at the point x  in the characterized fuzzy proximity space and of 1,2 1,2 -   fuzzy continuity between the 

characterized fuzzy proximity spaces. The concepts of fuzzy function family and the - separable are applied to introduce 

important properties for the concept of the 1,2 1,2 -   continuity. Moreover, we show that the 1,2 1,2 -  fuzzy continuity of 

the mapping f between characterized fuzzy spaces is more general than of the 1,2 1,2 -   fuzzy continuity of f between 

the characterized fuzzy proximity spaces. An important result., we show that if the fixed fuzzy topological space ( , )X is 

normal, then the characterized fuzzy space 1,2( , .int )X is finer than the associated characterized fuzzy proximity space 

1,2( , .int )X and they identical if 1,2( , .int )X  is characterized 4FT space. 

    The binary relation   on 
X

L is said to be fuzzy proximity on a set X ([28]), provided it fulfill the following conditions: 

(P1)     implies     for all ,  
X

L , where  is the negation of  .  

(P2) ( )    if and only if     and     for all , ,   
X

L . 

(P3) 0  or 0   implies     for all ,  
X

L .  

(P4)     implies    for all ,  
X

L .  

(P5) If    , then there is an  
X

L such that     and    . 

   The set X equipped with a fuzzy proximity  on X is called a fuzzy proximity space and will be denoted by ( , )X . 

Every fuzzy proximity  on a set X is associated a fuzzy topology on X denoted by  . The fuzzy proximity   on a set 

X is said to be separated if and only if for all , x y X such that x y we have  x y  for all 0, .   L  
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As shown in [1], the fuzzy proximity will be identified with the finer relation on the fuzzy filters, especially with the finer 

relation on the 
1,2 - fuzzy neighborhood filters in the characterized fuzzy space 1,2( , .int).X  

Proposition 4.1[1]  Let ( , )X be a fuzzy topological space and 
1 2 ( , )
,


   XL

O . Then the binary relation   on 

X
L which is defined by     if  and  only  if  

1,2
( )  N for all ,  

X
L  is fuzzy proximity on .X  

   Consider the fuzzy topological space ( , )X be fixed and 
1 2 ( , )
,


   XL

O . Then each fuzzy proximity   on X is 

associated a set of all 1,2 -open fuzzy subsets of X with respect to  denoted by 1,2 ( ) OF X . In this case, the triple 

1,2( , ( ) )X OF X  as will as the triple 1,2( , .int )X  is said to be characterized fuzzy proximity space ([1]). The related 

1,2 -interior and 1,2 -closure operators will be denoted by 1,2.int  and 1,2.cl , respectively and they are given by: 

1,2 1,2.in and .cl (4.1)t 
     

     
 

    

for all  
X

L . Consider the characterized fuzzy proximity space 1,2( , .int )X  be fixed and  
X

L , then  is said to 

be 1,2 -  fuzzy neighborhood at the point x X  if and only if 1 . x   

 Moreover, the mapping 1,2 1,2,: ( , .int ) ( .int ) 
  f X Y  is said to be 1,2 1,2 -   fuzzy continuous, provided 

  


implies ( ) ( )  f f for all ,  
Y

L . Obviously, there is an identification between the fuzzy proximity   

and the complementarily symmetric fuzzy topogenous structure   on the same set X given by: 

 

(4.2)       

for all , .  
X

L  

Now. let  1{ }n n  is a sequence of fuzzy topogenous structure on a set X  and 1{ }n n is a sequence of fuzzy 

topogenous structure on LI . Then, the fuzzy real function L: If X  is said to be associated with the sequence 

1{ }n n
 if and only if  n  implies that 1( ) ( ) nf f  holds for all LI,   L  and 


n , where 


 is 

the set of all positive integer numbers. 

Remark 4.1. Given that 1{ }n n and 1{ }n n are two sequence of complementarily symmetric fuzzy topogenous 

structures   and  on X  and LI , respectively. If   and 


 are two fuzzy proximities on X  and LI  identified with 

  and 


by the equation (4.2), then the associated fuzzy real function 1,2 1,2,: ( , .int ) ( .int ) 
  f X Y with the 

complementarily symmetric fuzzy topogenous structures   is 1,2 1,2 -   fuzzy continuous, because from (4.2) we get 

that  


implies ( ) ( )  f f for all LI,   L . 

Lemma 4.1 [11] Consider n  for {0,1, ..., } n are complementarily symmetric fuzzy topogenous structures on a 

set X . Then, for each , ( )F G P X  such that 0 F G , there exists a fuzzy real function L: If X  associated 

with the sequence 0{ }n n for which ( ) 0f x for all x F and ( ) 1f y for all .y G  

   Because of equation (4.2), Remark 4.1 and Lemma 4.1, we can easily deduce the following proposition. 

Proposition 4.2 Let 1,2( , .int )X is a characterized fuzzy proximity space and , ( )F G P X such that   F G . If 

  is the family of all 1,2 1,2 -   fuzzy continuous mappings 1,2 1,2,: ( , .int ) ( .int ) 
  f X Y  for which x X implies 

0 ( ) 1, f x then F  and G  are - separable. 

Proof. Let   be a complementarily symmetric fuzzy topogenous structure identified with  . Because of (4.2), 

  F G  implies that 0 F G . Since f   is 1,2 1,2 -   fuzzy continuous, then because of Remark 4.1, we have 
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that f is associated with  . Hence, Lemma 4.1 implies that F
 and G

 are separated by .f  Therefore,  F
 and 

G
are - separable. ■ 

Proposition 4.3 Let 1,2( , .int )X  and 1,2,( .int )


 Y are characterized fuzzy proximity spaces. If the mapping 

1,2 1,2,: ( , .int ) ( .int ) 
  f X Y  is 1,2 1,2 -   fuzzy continuous, then the mapping 1,2 1,2,: ( , .int) ( .int) f X Y is 

1,2 1,2 -  fuzzy continuous. 

Proof. Similar to the proof of Proposition 11.2 in [20]. ■ 

Proposition 4.4 [1] Let ( , )X  be a fuzzy topological space and 1 2 ( , )
,


   XL

O  such that 2 1  XL
is isotone and  

1 is wfip with respect to 1 ( ).OF X  If ( , )X  is a fuzzy normal space and L is a complete chain, then the binary relation 

 on X  which is defined by: 

1,2 1,2 1,2( .cl ) ( .cl ) (4.3)       N  

for all ,  
X

L is  a fuzzy proximity on  X and  ( , )X  is a fuzzy proximity space. On other hand,  if ( , )X  is a fuzzy 

proximity space and   fulfills (4.3.), then the associated characterized fuzzy proximity space 1,2( , .int )X  is 

characterized 
3

FR space. 

   In the following, we are going to show an important relation between the associated fuzzy proximity space 

1,2( , .int )X by the fuzzy proximity 6 defined by (4.3) and the associated characterized fuzzy space 1,2( , .int)X that 

introduced form the fuzzy normal topological space ( , ).X  

Proposition 4.5 Let ( , )X  is a fuzzy normal topological space and 1 2 ( , )
,


   XL

O such that 2 1  XL
is isotone 

and 1  is wfip with respect to 1 ( ).OF X  If   is a fuzzy proximity on X  defined by (4.3) and L  is a complete chain, 

then 1,2( , .int )X  is finer than 1,2( , .int )X . Moreover, 1,2 1,2( , .int ) ( , .int )  X X  if and only if 1,2( , .int )X  is 

characterized 4FT  space. 

Proof. Let ( , )X  is fuzzy normal topological space and   is 1,2 -  fuzzy neighborhood for the point ,x X  then 

1 x  and because of (4.3), we have 
1,2 1,2 1 1,2( )( .cl ) ( .cl ) .     xN  Therefore, 

1,2 1,2 1,2( ) ( .cl { })   x x xN N  

1,2 1,2 1 1,2( )( .cl ) ( .cl ) .        xN . Because of Proposition 2.1, we get 1 1,2( .cl )    x and 1,2( .cl )   

1,2 ( ). OF X  Then  is 1,2 - fuzzy neighborhood of x and therefore the family 1,2 ( )( ) OF X is coarser than the family 

1,2 ( )( ) OF X ,  that is, 1,2( , .int )X is finer than 1,2( , .int ).X  

   Now, let 1,2( , .int )X is characterized 4FT  space, 
1,2

( ) xN  and 
1,2

( )


 xN  denote for the 1,2 - fuzzy neighborhood 

filters at x  in the characterized fuzzy space 1,2( , .int )X and in the associated characterized fuzzy proximity space 

1,2( , .int )X , respectively. Then, 1,2( , .int )X  is characterized
3

FR and 1FT  space. Therefore, 1,2 ( )( ) OF X  

1,2 ( )( ) OF X and 
1,2

( ) x yN holds for all y x in .X  Hence,  
1,2 1,2

( ) ( )


 x xN N holds for all x X and then 

1,2 1,2
( ) ( )



  x x yN N holds for all y x  in .X  Because of Lemma 2.1, we have that 
1,2

( )


 x yN holds for all 

y x in X  and therefore 1,2( , .int )X is characterized 1FT space. Because of Proposition 2.5 and Lemma 2.2, we get 

1,2 1 1( ).cl x x  for all x X and therefore 1,2 ( )( ) CF Xx for all .x X  Consider  is 1,2 - fuzzy neighborhood 

of x in 1,2( , .int )X , then 1  x and since 1 1,2 ( )( ) OF Xx ,  then 1
x  is 1,2 - fuzzy neighborhood for every 

y X such that 1 .y  Thus, 1  x  and hence  is 1,2 -  fuzzy neighborhood of x in 1,2( , .int )X . Thus, 
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1,2 1,2( ) ( )( ) ( ) OF X OF X , that is, 
1,2 1,2

( ) ( )


 x xN N  holds for all x X and therefore 
1,2( , .int )X is finer 

than the characterized fuzzy space 1,2( , .int )X . Consequently, 1,2( , .int )X  is characterized 4FT space implies that, 

1,2 1,2( , .int ) ( , .int )  X X . 

Conversely,  let ( 1,2 1,2( , .int ) ( , .int )  X X , x X and  is 1,2 - fuzzy neighborhood of x  in the characterized 

fuzzy space 1,2( , .int ).X  Then,  1,2 ( )( ) OF X  and 
1 x ,  this means that 

1,21,2 1 1,2 1 1,2( ) ( )( .cl ) ( .cl ) ( .cl ) .          x xN  

Because of Proposition 2.1, we get 1,2 1( ).cl x and therefore 1,2 1 1( ).cl x x  holds for all .x X  Thus,  

1,2 1 1( ).cl x x  for all .x X  Hence. Proposition 2.5, implies that, 1,2( , .int )X is characterized 1FT  space. Because 

of Proposition 4.3, 1,2( , .int )X  is characterized 
3

FR  space and the hypothesis that 1,2 1,2( , .int ) ( , .int )  X X  

implies that 1,2( , .int )X is characterized 
3

FR space,  Consequently, 1,2( , .int )X is characterized 4FT  space.  ■ 

   Now. we are going to introduce and study a generalization of Urysohn’s Lemma for the characterized 
3

FR  spaces to 

prove the relation between the characterized 
3

FR  spaces and the characterized 12
2

FR spaces in general case. The 

relation between the characterized 1
2

3
FT  spaces and the characterized 4FT spaces is also introduced by the 

generalization of Urysohn’s Lemma. 

Lemma 4.2 (Generalized Urysohn’s Lemma) Let a fuzzy topological space ( , )X  be fixed and 1 2 ( , )
,


   XL

O such 

that 2 1  XL
is isotone and 1  is wfip with respect to 1 ( ).OF X  If L  is a complete chain, then 1,2( , .int )X  is 

characterized 
3

FR  space if and only if for all 1 2 1,2, C(X)F F such that 1 2  F F , there exists a 1,2 1,2 -fuzzy 

continuous mapping 1,2 L 1,2I ,: ( , .int ) ( .int )  f X such that ( ) 0f x  for all 1x F  and ( ) 1f y for all 

2.y F  

Proof. Let 1,2( , .int )X is characterized 
3

FR  space, then the infimum 1 2
1,2 1,2

( ) ( )   F FN N  does not exists for 

all 1 2 1,2, C(X)F F such that 1 2  F F . Therefore, 1 2
1,2

( )
F FN . Consider  is a fuzzy proximity on X defined 

by (4.3), then we have 
1 2

  F F . Because of Proposition 4.2, there exists 1,2 1,2 -   fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int ) ( .int ) 
  f X  for which 

1
F  and 

2
F  are - separated by ,f  where 


 is a fuzzy proximity on LI  

defined by (4.3). Hence, because of Proposition 4.3, we have that 1,2 L 1,2I ,: ( , .int ) ( .int )  f X is 1,2 1,2 -fuzzy 

continuous mapping and from Proposition 4.5, the characterized fuzzy space 1,2( , .int )X is finer than the associated 

characterized fuzzy proximity space 1,2( , .int ).X  Therefore, the mapping 1,2: ( , .int ) f X  L 1,2I ,( .int )   is 

1,2 1,2 -fuzzy continuous such that ( ) 0f x  for all 1x F  and ( ) 1f y for all 2.y F  

   Conversely, let there exists a 1,2 1,2 -fuzzy continuous mapping 1,2 L 1,2I ,: ( , .int ) ( .int )  f X  such that 

( ) 0f x  for all 1x F  and ( ) 1f y for all 2,y F  where 1 2 1,2, C(X)F F and 1 2  F F . Consider 

1
2

R  and 
1
2R  are the restricted of 1F and 2F  on LI . Then, 

1
2  R f and 1

2

  R f are 1,2 - open fuzzy sets on X  

such that 

1
2

1
1 1 1 2

1
1,2

( )( ) ( ) ( ( )) ( )( )( ) 1,


  
   

       
x F x F x F

F x R f x f xN  
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and 

1
122 2 2 2

2
1,2

( )( ) ( ) ( ( )) ( )( )( ) 1.


  
   

      
y F y F y F

F y R f y f yN  

Therefore, 1 2
1,2 1,2

( ) ( ) 1.  F FN N  Since 

1 1 1 1
2 2 2 2

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 1( )
   

     
   

       z f z f z f z f z  

for all .z X  Hence, the infimum 1 2
1,2 1,2

( ) ( ) F FN N does not exists and therefore 1,2( , .int )X is characterized 

3
FR  space.  ■ 

Corollary 4.1 Let a fuzzy topological space ( , )X  be fixed and 1 2 ( , )
,


   XL

O such that 2 1  XL
is isotone and 

1  is wfip with respect to 1 ( ).OF X  If L  is a complete chain, then every characterized 
3

FR  space is characterized 

12
2

FR space. 

Proof. Follows directly from Lemma 4.2.  ■ 

   In the following proposition, we show that the characterized 1
2

3
FT spaces are more general than the characterized 4FT  

spaces. 

Proposition 4.6 Let a fuzzy topological space ( , )X be fixed and 1 2 ( , )
,


   XL

O  such that 2 1  XL
is isotone and 

1  is wfip with respect to 1 ( ).OF X  If L  is a complete chain, then every characterized 4FT  space is characterized 

1
2

3
FT  space. 

Proof. Let 1,2( , .int )X is characterized 4FT  space and let ,x X  1,2 ( )F C X such that .x F Then, 

1,2( , .int )X  is characterized 
3

FR and 1FT  space. Because of Proposition 4.5, we have 1,2{ } ( )x C X and  

{ } , x F  therefore because of Generalized Urysohn’s Lemma, there is a 1,2 1,2 -  fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int ) ( .int )  f X  such that ( ) 1f x  and ( ) 0f y  for all .y F  Hence, 1,2( , .int )X  is 

characterized 12
2

FR  space. Consequently, 1,2( , .int )X is characterized 1
2

3
FT  space.  ■ 

   Because of the Theorems 3.2 and 4.2 and Proposition 4.1 in [3], Propositions 2.1 and 4.3 and Corollary 4.1 in [2] and 
Proposition 4.5 and Corollary 4.1, we have the following diagram of implications: 

 

1 1 2 1 0
2 2

13 0 0 2 0 2 1 02
2

4 33 2

any chara. fuzzy space

     

     

     

  

FT FT FT FT FT FT FT

FR FT FR FT FR FT FR FR FR

 

                                                                                           Diagram 4.1 

   The inverse of the implication in Diagram 4.1 are not true in general as shown in Examples 3.2, 3.3 and 4.3 in [2] and 
the following example. 

Example 4.1. Let 
2 2

( , ) | 0{ } ,   X x y y L is a complete chain and  is the fuzzy topology on X  defined 

as follows: 

For each 
2

( , ) | 0{ },  p x y y  the basic fuzzy neighborhoods will be the usual open disks and at 
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2
\ ( , ) | 0{ },  q X x y y  the basic fuzzy neighborhoods will be the sets { } ,q O where O is the open disk in 

2
( , ) | 0{ } x y y  and tangent to the -x axis at .q  Consider 

1 2 ( , )
,


   XL

O for which 
1 int cl   and 

2 1 .  XL
 Hence, 1,2( , .int )X is characterized 

0
FT  space, because for all ( ,0), ( ,0)  p r q s X with p q for all 

r and s , there exist ,    
X

L  such that 1,2( ) ( .int )( )    p q and ( )  q  

1,2( .int )( )  p are hold for some 0, ,   L  but 1,2( , .int )X  is not characterized 
3

FR  space. Therefore, 

1,2( , .int )X is not characterized 4FT space. Moreover, 1,2( , .int )X is characterized 12
2

FR space, because if 

p X and   is the 1,2 - fuzzy neighborhood of p , then   is either 1,2 - open fuzzy disk has centered at p  or else 

p  together with an 1,2 - fuzzy open tangent to p  and depending on the placement of p . Consider 

1,2 L 1,2I ,: ( , .int ) ( .int )  f X  is the mapping defined by: ( ) 1f p and ( ) 0f q for all  q  and let f is 

linearly along the straight line passing through the point p  and the points on the boundary of  , where 

1 int cl   and IL2 1 . 
L

 Then, f  is 1,2 1,2 -  fuzzy continuous such that ( ) 1f p and ( ) 0f q for all . q  

Therefore, 1,2( , .int )X is characterized 12
2

FR space. Hence, 1,2( , .int )X is characterized 1
2

3
FT space, but it is not 

characterized 4FT space.  ■ 

 

5. NEW CHARACTERIZATIONS FOR THE CHARACTERIZED FUZZY PROXIMITY 

SPACES BY CHARACTERIZED 1
2

2
FR SPACES 

   In this section, we are going to introduce and study some important relations joining and characterized the characterized 

fuzzy proximity spaces introduced by, Abd-Allah in [1] and our characterized 12
2

FR spaces and the characterized 

1
2

3
FT spaces, which are present in Section 3. 

One of these relations at the beginning, we shall prove that the associated characterized fuzzy proximity space 

1,2( , .int )X is characterized 12
2

FR  space in our sense. 

Proposition 5.1 Let ( , )X be a fuzzy topological space and 1 2 ( , )
,


   XL

O . If  is a fuzzy proximity on ,X then 

the associated characterized fuzzy proximity space 1,2( , .int )X is characterized 12
2

FR  space. 

Proof. Let x X  and 1,2 ( )F C X such that .x F  Since  F  is 1,2 -  fuzzy neighborhood of ,x  then 1 . Fx  

Because of Proposition 4.1, we get that 1x  and F  are - separated by the 1,2 1,2 -   fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int ) ( .int ) 
  f X  for which 0 ( ) 1 f x ,that is,  ( ) 1f x and ( ) 0f y for all .y F  

Consequently, 1,2( , .int )X  is characterized 12
2

FR space.  ■ 

   To examine for a given characterized fuzzy space 1,2( , .int)X , when the fuzzy proximity   on X  is compatible with 

the 1,2 - interior operator 1,2.int, we need the following proposition. It will be shown that, this happens if and only if 

1,2( , .int)X  is characterized 12
2

FR space. 

Proposition 5.2 Let ( , )X be a fuzzy topological space and 1 2 ( , )
,


   XL

O . If   is the fuzzy function family of the 

1,2 1,2 -  fuzzy continuous mappings 1,2 L 1,2I ,: ( , .int ) ( .int ), ,   k kf X k K where K  is any class, then 
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1,2( , .int)X is characterized 12
2

FR space if and only if 1,2.int coincide with the coarsest 1,2 - interior operator 1,2.int  

on the set X  for which each member of  is 1,2 1,2 -  fuzzy continuous. 

Proof. Let 1,2( , .int)X is a characterized 12
2

FR space. Then, there exists a 1,2 1,2 -  fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int) ( .int )  f X  such that ( ) 1f x and ( ) 0f y  for all ,y F  where 1,2 ( )F C X and  

.x F  If 1,2.int  is the coarsest 1,2 - interior operator on X for which each member of   is 1,2 1,2 -  fuzzy continuous, 

then 1,2( , .int )X is one of the family 1,2( , .int )( ) k k KX and therefore 1,2 1,2.int .int ,  that is, 1,2 ( ) OF X  

1,2 ( ). OF X  Consider x X and 1,2 ( )  OF X such that 1 .x  Then, there exists a 1,2 1,2 -  fuzzy continuous 

mapping 1,2 L 1,2I ,: ( , .int) ( .int )  f X  such that ( ) 1f x and ( ) 0f y  for all 
0

( ).y S  From the 

hypothesis that 1,2.int is the coarsest 1,2 - interior operator on X  for which each member of   is 1,2 1,2 -  fuzzy 

continuous mapping, we get that f is 1,2 1,2 -  fuzzy continuous mapping and therefore 1
2

1

1,2( ) ( ) 


 f R OF X such 

that 1 1
2 2

( ) ( ( )) (1) 1   x R f x R  and 1 1
2 2

( ) ( ( )) (0) 0   y R f y R for all 1 y . This means that 1 x  and 

,    that is,   1 x and 1,2 ( )  OF X with 1 .  x  Hence, 1,2 ( )  OF X and then 1,2 1,2.int .int,  that is, 

1,2 1,2( ) ( ). OF X OF X Thus, 1,2.int coincide with the coarsest 1,2 - interior operator 1,2.int  on the set .X  

   Conversely, let 1,2.int  coincide with the coarsest 1,2 - interior operator 1,2.int on X  for which each member of   is 

1,2 1,2 -  fuzzy continuous, then each member of  is 1,2 1,2 -  fuzzy continuous. Since | }{ ,


   f fR I  

{ | } {0,1},


  R f f I  is a base for the characterized fuzzy space 1,2( , .int)X ,  then we can define the 

mapping 1,2 L 1,2I ,: ( , .int) ( .int )  g X  by: ( )( ) 1 ( )(1 )  g y s f y s for all 
01

,  f s I  and .y X  Hence, 

1 1 1
( ) ( )





  
g R f R and  

1 1

1( ) ( )




 

g R f R  , therefore the base   for 1,2( , .int)X is in the form: 

1

01
( ) | } {0,1}.{ ,





    ff R I  

   Now,  let     and x X such that x . Then, there exists   f  and 
01

  I such that 
1

0
( ).

 



 f R  

On other hand for each ,y X define the mapping ( ) : g y I L  by: 0 0( )( ) ( )( (1 )),     g y f y then 

0 0

1 1

(1 )( ) ( )   

 

 g R f R and 0 0(1 )1 1
( ) ( ),

     
g R f R therefore 1,2 L 1,2I ,: ( , .int) ( .int )  g X is 1,2 1,2 -   

fuzzy continuous. Since 
0 0

1

0 ( ( )) ( ( )) ( )( ) ( )  


  R g y R f y f R y y for all ,y X  
0 01

  I  and  f , then 

0 ( ( )) 1R g x and 0 ( ( )) 0R g y for all ,y that is,  ( ) 0g y for all y  and ( )( ) 1 g x for some 
01

  I . 

Thus, there exists 
01

  I  such that ( ( )) ( )( ) 1( )


 

k
R g x g x k holds. Hence, we define the mapping 

1,2 L 1,2I ,: ( , .int) ( .int )  h X  as follows ( )( ) ( )( )h z s g z rs for all z X and 
01

,s I then h is 1,2 1,2 -  fuzzy 

continuous and 0 0( ( )) ( ( )) 0 R h y R g y for all y and 0 0( ( )) ( ( )) 1. R h x R g x Moreover, since 
1
( ( )) R h x  

( ( )) 1


R g x , then we have ( ) 1h x and ( ) 0h y for all y . Hence, because of Proposition 3.1, we get that 

1,2( , .int)X is characterized 12
2

FR space.  ■ 

   From Diagram 4.1, we note that, every characterized 1
2

3
FT space is characterized 1FT space and because of 

Propositions 2. 5 and 5. 2, we can deduce the following result. 

Corollary 5.1 Let a fuzzy topological space ( , )X  be fixed and 1 2 ( , )
,


   XL

O . If 1,2( , .int )X is characterized 
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1
2

3
FT space and   is the fuzzy function family of all the 1,2 1,2 -  fuzzy continuous mappings, 

1,2 L 1,2I ,: ( , .int ) ( .int )  f X , then every two distinct points in X  are - separated. 

Proof. Easily seen.  ■ 

   We should notice that Proposition 4.3 gives us fuzzy proximity  that is compatible with the characterized 4FT space 

from Proposition 4.4. Now, we have the following important result, which shows that there is also other fuzzy proximity 

 on
X

L , which is compatible with the characterized 12
2

FR space. 

Proposition 5.3 Let a fuzzy topological space ( , )X be fixed and 1 2 ( , )
, .


   XL

O  If 1,2( , .int )X is characterized 

12
2

FR space and   is a fuzzy function family of all 1,2 1,2 -  fuzzy continuous mappings, then the binary relation   on 

X
L  which is defied by: 

and      are - separated,  

for all ,  
X

L is a fuzzy proximity on X compatible with the family of all 1,2 - open fuzzy subsets 1,2 ( ), OF X that is,  

1,2 1,2( , .int ) ( , .int )  X X . 

Proof. Let ,  
X

L  such that    ,  then there exists  g such that ( ) 1g x for all 
1

x and ( ) 0g y  

for all 
1

.y  Consider 1,2 L 1,2I ,: ( , .int ) ( .int )  f X is the mapping defied by:  ( )( ) 1 ( )(1 )  f x s g x s for all 

x X and s I , then f  is 1,2 1,2 -  fuzzy continuous such that ( )( ) 0f x s for all 
1

x and ( )( ) 1f y s  for 

all 
1

,y  that is,    . Hence, condition (P1) is fulfilled. Consider   and   are - separated, then ,  and 

,   are - separated. Hence, ( )     implies that     and    . On other hand     and     means 

that there exist 
1 1

,  f g such that 
1
( ) 1f x for all 

1
x  and 

1
( ) 0f y  for all 

1
y  and 

1
( ) 1g x for all 

1
x  and 

1
( ) 0g y  for all

1
y . Consider 1,2 L 1,2I ,: ( , .int ) ( .int )  h X is the mapping defied by: 

1 1( )( ) max{ ( )( ), ( )( )}h x s f x s g x s  for all x X and ,s I then h  is 1,2 1,2 -  fuzzy continuous such that 

( ) 1h x for all 
1

x or 
1

x and ( ) 0h y for all 
1

y . Then, ( )    and therefore (P2) is fulfilled. To 

prove (P3), let 1,2 L 1,2I ,: ( , .int ) ( .int )  k X  is the mapping defined by ( )( ) 0k x s for all x X and s I , 

then we get ( ) 0k x for all x X and therefore k is 1,2 1,2 -  fuzzy continuous. So, we can easily say that 

( ) 1k x for all 
1

0x and ( ) 0k y for all  
X

L and
1

y . That is, 0  and   are - separated for all 

 
X

L and hence 0  or 0  implies that    . Thus, (P3) is fulfilled. Obviously, from the definition of ,  it is 

clear to see that     implies that    and therefore (P4) is fulfilled. Consider ,  
X

L such that ,    then 

there exists a mapping 2f   such that 
2

( ) 1f x  for all 
1

x  and 
2

( ) 0f y  for all 
1

y . Consider 

1,2 L 1,2I ,, : ( , .int ) ( .int )  g l X are the mappings defined by: 

2 2

(1 )

2 2
( )( ) ( ) and ( )( ) ( )


 

s s
g x s f x l x s f x  

for all x X and 
01

s I . Since 2 ,f   then g  and l  are 1,2 1,2 -  fuzzy continuous and ( )( ) 1g x s for all 

1
x and ( )( ) 0l x s for all 

1
x . Since 

1
1 1 2

12 2 2 0
2

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))   g x f x f x f x R g xR R R R and 

1
1 2

2 0 2 0
( ( )) ( ( )) ( ( )) ( ( )),  l x R f x f x R l xR R  then if we consider 

1
1 2

2
( )( )


 f R where 

1
1 2

2
( ) ,




X
Lf R we get 



I S S N  2 3 4 7 - 1 9 2 1  

V o l u m e  1 3  N u m b e r  0 1  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

7069 | P a g e                                         

M a r c h  2 0 1 7                                          w w w . c i r w o r l d . c o m  

0 0
( ( )) ( ) ( ( )) R g x x R l x and therefore ( )( ) 0g x s for all 

1
x and 

01
s I  and ( )( ) 1l x s for all 

1
x and 

01
s I . That is, ( ) 1g x for all 

1
x and ( ) 0g y  for all 

1
y and moreover ( ) 1l x for all 

1
x  and ( ) 0l y for all 

1
y . Hence,      and    ,  therefore (P5) is fulfilled. Consequently,   is a 

fuzzy proximity on .X  

   Now, let 1,2 ( )( )  CF X  and x X such that ( ) 1. x  Since 
1,2( ) cl ( ) ( ),. 

 
   


  y y y  then there 

exists  
X

L with     such that ( ) 0. x Hence,     implies there exists 
3f  such that 

3
( ) 1f x  for all 

1
x  and 

3
( ) 0f y  for all 

1
.y Consider 

1
1 2

3
( ),


 f R then we get 

1
2

3 0 3
( ( )) ( ( ))( ) ( )  y R yy R f f 1  

holds for all 
1

y and then     implies that .   Moreover, 

1
12

3 3
( ( )) ( ( )) ( )( )    y R y yy R f f holds for. 

all .y X Thus,  1,2 ( )  OF X with 
1

x  and   which means that 
1,2

( )   OF X and therefore 

1,2
( ).  CF X  Hence, 

1,2 1,2
( ( )) ( )


 CF X CF X  which implies that .

1,2 1,2
( ) ( ( ))


 OF X OF X  Thus, 

1,2 1,2.int .int   holds. Consequently, 1,2( , .int )X is finer than 1,2( , .int ).X  

   Conversely, let 
1,2

( )  CF X and 1,2 cl.   , then there exists x X such that 1,2 cl ( ) 0.   x and ( ) 0 x . 

Since, 
0 1,2

( )  x S OF X  and 1,2( , .int )X is characterized 12
2

FR space, then there exists 
4f   such that 

4
( ) 1f x  and 

4
( ) 0f y  for all 

0
.y S  Consider  

X
L is the fuzzy set defined by 

1

4 4
1

( ) ( ( )) ( )( )( )


 


  y R f y f y for all ,y X  then 0 4( ) ( ( )) ( )  y R f y y holds for all .y X  This means 

that 4
1

( )( ) 1





 f x for all 
1

x and 4
0

( )( ) 0
 

 f y s for all 
1

,y  that is,  
4

( ) 1f x for all 
1

x and 

4
( ) 0f y for all 

1
.y  Hence,  and   are - separated which implies that    . Therefore,  

1

1,2 4cl ( ) ( ) ( ) ( ( )) 0. 
 

   


   x x x R f x  

Hence, 1,2 cl ( ) 0.   x which is a contradiction and therefore we have 1,2 ( )( ) .  CF X Thus, 
1,2

( ( ))


 OF X  

1,2
( ), OF X which implies that 1,2 1,2.int .int    holds and therefore 1,2( , .int )X  is finer than 1,2( , .int )X . 

Consequently, 1,2 1,2( , .int ) ( , .int )  X X and then   is compatible with 1,2 ( ). OF X   ■ 

 

   Now, we introduce an example of a fuzzy proximity   on a set X and show that it is induces a characterized 

12
2

FR space. 

Example 5.1 Let 
1

2
{0, 1},L , { , }X x y and 1 1{1, 0, , }  x y  is a fuzzy topology on .X  Choose 

1 2int cl, ,    1 2andint cl .     Hence, x y and because of Example 3.1, 1,2( , .int )X  is characterized 

1
2

3
FT space. Now, consider  is a binary relation on 

X
L  defined as follows: 

1 1

1,2 1,2 1,2 L 1,2

,

I ,fuzzy continuous mapping

for all with and  for all

- : ( , .int ) ( .int )

( ) 1 ( ) 0

      

 

   

    

f X

f x x X x f y y
 

for all ,  
X

L . Hence, because of Proposition 5.3,   is a fuzzy proximity on X and it is compatible with 1,2 ( ) OF X , 
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that is, the associated characterized fuzzy proximity space 1,2( , .int )X with   is characterized 12
2

FR space.  ■ 

Proposition 5.4 Let ( , )X be a fuzzy topological space, 1 2 ( , )
,


   XL

O and   is a fuzzy proximity on .X  If 

    for some ,  
X

L  and   is a fuzzy function family of all 1,2 1,2 -  fuzzy continuous mappings 

1,2 L 1,2I ,: ( , .int ) ( .int ) 
  f X ,  then  and   are - separated by the 1,2 1,2 -  fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int ) ( .int )  f X  

Proof. Because of (4.2). Lemma 4.1 and Remark 4.1, we can deduce that  and   are - separated and therefore 

because of Proposition 4.2, we deduce that they are - separated by the 1,2 1,2 -  fuzzy continuous mapping 

1,2 L 1,2I ,: ( , .int ) ( .int )  f X .  ■ 

Corollary 5.2 Let ( , )X be a fuzzy proximity space,  
1 2 ( , )
,


   XL

O  and ,  
X

L such that    . If   is the 

fuzzy function family of all proximity fuzzy continuous mappings 
LI ,: ( , ) ( ) 


f X , then  and    are - separated 

by the 1,2 1,2 -   fuzzy continuous mapping 1,2 L 1,2I ,: ( , .int ) ( .int ) 
  f X . 

Proof. Immediate from (4.2). Lemma 4.1 and Proposition 5.4.  ■ 

    As shown in [20], if   and 


 are two fuzzy proximity on a set ,X then   is finer than 


 or 


 is coarser than ,  

provided   


 implies that     for all , .  
X

L  Because this fact we can deduce the following result. 

Proposition 5.5 Let ( , )X and ( , )X are two fuzzy topological spaces, 1 2 ( , )
,


   XL

O and 1 2 ( , )
,


   XL

O . 

Consider 1,2( , .int )X  and 1,2( , .int )X are characterized 12
2

FR spaces and   is a fuzzy proximity on X  

compatible with the class of all 1,2 - open fuzzy subsets 1,2 ( ) OF X . If  


 is the fuzzy proximity on X  defined by: 

1,2and are - ( , .int )separated in      


  X  

for all ,  
X

L , then 1,2 1,2.int .int   implies that 


 is finer than  . 

Proof. Suppose that ,  
X

L  such that    . Because of Proposition 5.3, there exists 1,2 1,2 -  fuzzy continuous 

mapping 1,2 L 1,2I ,: ( , .int ) ( .int )  f X  such that ( ) 1f x for all 
1

x  and 
1

for all( ) 0  f y y . Since 

1,2 1,2.int .int ,    then 1,2 1,2( ) ( ) OF X OF X  and therefore f is 1,2 1,2 -  fuzzy continuous, that is,  and   are 

- separated in 1,2( , .int ).X  Hence,    


and therefore 


 is finer than  .  ■  

 

 

6. CONCLUSION  

  In this paper, we introduced and studied two new types of characterized fuzzy spaces named characterized 

12
2

FR spaces and characterized 1
2

3
FT spaces by using the real fuzzy function family of all 1,2 1,2 -  fuzzy continuous 

mappings presented in [5] as a generalization of all the weaker and stronger forms of the notion of completely regular 

fuzzy topological spaces introduced in [11,24 ,26 ,29]. The characterized 1
2

3
FT space or characterized Tychonoff space 

is the characterized fuzzy space for which it is characterized 
1

FT and characterized 12
2

FR space in this sense. We 

introduced and studied many difference relations between the characterized 12
2

FR spaces and the characterized 
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1
2

3
FT spaces with other characterized 

k
FR and characterized sFT spaces, which are presented in [2, 3, 4]. To find these 

relations, we introduced generalization to the Urysohn’s Lemma for the characterized 
3

FR spaces with help of the 

characterized fuzzy proximity spaces presented in [1]. So, we applied the relation between the farness and the finer 

relation on the fuzzy sets to introduced the notions of 1,2 -  fuzzy neighborhood at the point x in the characterized fuzzy 

proximity space and of 1,2 1,2 -   fuzzy continuity between the characterized fuzzy proximity spaces. Moreover, the 

characterized fuzzy space is finer than the associated characterized fuzzy proximity space that is present in [1]. The 

concepts of fuzzy function family and of the - separable are applied to introduce important properties for the concept of 

the 1,2 1,2 -   continuity. The 1,2 1,2 -  fuzzy continuity of the mapping f between characterized fuzzy spaces is more 

general than of the 1,2 1,2 -   continuity of f between the characterized fuzzy proximity spaces. An important result, we 

show that if the fixed fuzzy topological space ( , )X  is normal, then the characterized fuzzy space 1,2( , .int )X is finer 

than the associated characterized fuzzy proximity space 1,2( , .int )X  and they identical if 1,2( , .int )X is 

characterized 4FT space with help of the complementarily symmetric fuzzy topogenous structure that identified with the 

fuzzy proximity .  More generally, the fuzzy function family of all 1,2 1,2 -  fuzzy continuous mappings are used to show 

that the characterized 12
2

FR spaces and the associated characterized fuzzy proximity spaces are identical. Many new 

special classes from the 1,2 - open fuzzy sets, valued 1,2 - fuzzy neighborhoods, characterized 12
2

FR spaces, 

characterized 1FT spaces, characterized 1
2

3
FT spaces and characterized 4FT spaces are listed in Table (1). 
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Table (1) : Some special classes of 1,2 - open fuzzy sets, Valued 1,2 - fuzzy neighborhoods, Char. 12
2

FR  spaces,  Char. 
1

T spaces,            

Char. 13
2

T  spaces, Char.  
4

T spaces. 

 

Operations 
1,2 - open 

fuzzy sets 

Valued 
1,2 -  

Fuzzy neigh. 

Char. 12
2

FR  

Space 

Char.
1

FT  

space 

Char. 13
2

FT  

space 

Char.
4

FT  

Space 

1 
1

int ,   
2

1  X
L

 

1
int  , 

2
1  IL

 

  

[16,19] 

Valued fuzzy 

neighbor.[18] 

Fuzzy 12
2

R  

space [11,12] 

Fuzzy 
1

T  

space [14] 

Fuzzy 13
2

T  

Space [11,12] 

Fuzzy 
4

T  

space [14] 

2 
1

int ,   
2

cl


   

1
int  , 

2
cl


  


  

[31] 

Valued  θ- 

Fuzzy neigh. 

Fuzzy θ-

12
2

R space 

Fuzzy θ-

1
T space 

Fuzzy θ-

13
2

T space 

Fuzzy θ-

4
T space 

3 
1

int , 
2

int cl
   

1
int ,   

2
int cl

  


  

[22] 

Valued  δ- 

Fuzzy neigh. 

Fuzzy δ-

12
2

R space 

Fuzzy δ-

1
T space 

Fuzzy δ-

13
2

T space 

Fuzzy δ-

4
T space 

4 
1

cl int
   , 

2
1  X

L
 

1
int  , 

2
1  IL

 

( )SOF X  

[10] 

Valued Semi- 

Fuzzy neigh. 

Fuzzy semi-

12
2

R space 

Fuzzy semi-

1
T space 

Fuzzy semi-

13
2

T space 

Fuzzy semi-

4
T space 

5 
1

cl int
   , 

2
cl


   

1
int  , 

2
cl


  

( . )


S
 

Valued θ-semi 

Fuzzy neigh. 

Fuzzy θ semi-

12
2

R space 

Fuzzy θ semi-

1
T space 

Fuzzy θ semi-

13
2

T space 

Fuzzy θ semi-

4
T space 

6 
1

cl int
   , 

2
int cl

   

1
int  , 

2
int cl

  

( . )


S
 

Valued δ-semi 

Fuzzy neigh. 

Fuzzy δ semi- 

12
2

R space 

Fuzzy δ semi-

1
T space 

Fuzzy δ semi-

13
2

T space 

Fuzzy δ semi-

4
T space 

7 
1

int cl
  , 

2
1  X

L
 

1
int  , 

2
1  IL

 

( )POF X  

[17] 

Valued pre- 

Fuzzy neigh. 

Fuzzy pre-

12
2

R space 

Fuzzy pre-

1
T space 

Fuzzy pre-

13
2

T space 

Fuzzy pre-

4
T space 

8 
1

cl int
   , 

2
.cl


  S  

1
int  , 

2
.cl


 S  

( . )


S
 

Valued semi θ- 

Fuzzy neigh. 

Fuzzy semi θ- 

12
2

R space 

Fuzzy semi θ-

1
T space 

Fuzzy semi θ-

13
2

T space 

Fuzzy semi θ-

4
T space 

9 
1 1

. in .clcl int t,
     S S

1
int  , 

2
. .int cl

 S S  
( . )


S
 

Valued semi δ- 

Fuzzy neigh. 

Fuzzy semi δ-

12
2

R space 

Fuzzy semi δ-

1
T space 

Fuzzy semi δ-

13
2

T space 

Fuzzy semi δ-

4
T space 

10 
1

cl int cl
   , 

2
1  X

L
 

1
cl int cl

  , 
2

1  IL
 

( )OF X  

[9] 

Valued β- Fuzzy 

 neigh. 

Fuzzy β-

12
2

R space 

Fuzzy β-

1
T space 

Fuzzy β-

13
2

T space 

Fuzzy β-

4
T space 

11 
1

int cl int
   , 

2
1  X

L
 

1 2
1int cl int , 

   IL
  

( )OF X  

[17] 

Valued  - 

Fuzzy neigh. 

Fuzzy  -

12
2

R space 

Fuzzy  -

1
T space 

Fuzzy  -

13
2

T space 

Fuzzy  -

4
T space 

12 
1

.cl int ,
   S  

2
1  X

L
 

1
.cl int

  S , 
2

1  IL
 

( )fOF X  
Valued feebly- 

Fuzzy neigh. 

Fuzzy feebly-

12
2

R space 

Fuzzy feebly -

1
T space 

Fuzzy feebly-

13
2

T space 

Fuzzy feebly-

4
T space 
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