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Abstract: In this paper we prove some new conditions for Cauchy sequences by using the diameter of orbit in partial
metric spaces. A fixed point theorem for Meir-Keeler type contractions in this space is established.
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1. Introduction.

The notion of a partial metric space was introduced by G.S. Metthews [10,11] in 1992. The partial metric space is a
generalization of the usual metric spaces in which the distance of a point from itself may not be zero. Recently, many
authors have been focused on the partial metric spaces and its topological properties. [1, 12, 13].They show that partial
metric spaces have many applications both in mathematics and computer science [8, 13]. The concept of Cauchy
sequences is very important in functional analysis and especially in fixed point theory.

In [4] we obtained some conditions for equivalent Cauchy sequences and 0-equivalent 0-Cauchy sequences in partial
metric spaces.

The Banach contraction principle [14] is the most celebrated fixed point theorem. It is very useful, simple, and classical
tool in nonlinear analysis. This principle has many generalizations. For example, in 1969 [2] Meir and Keeler proved a
fixed point theorem for the mappings satisfying a (e-3) contractive condition. Some generalizations of Meir-Keeler fixed
point theorem (see 9, 5, 6) established a class of the contractions called the Mier-Keeler type contraction.

In this paper we will show some conditions about Cauchy sequences in partial metric spaces establish a fixed point
theorem for a Meir- Keeler type contraction in these spaces.

2. Preliminaries.

For convenience we start with the following definitions, lemmas, and theorems.

Definition 1. [10] A function p: X x X — R™ is a partial metric on X if, for all X,Y,Z € X , the following conditions
hold:

p1) X=yifand onlyif p(x, X) = p(X, y) = p(Y,y).

p2) P(X,X) < p(X,y)

ps) P(X y)=p(y,X).

pa) P(X,Y) < p(x,2)+ p(z,y) - p(z,2)

In this case, the pair (X, p)is called a partial metric space.

Itis clear that if p(X, y)=0then from (p1) and (p2), X=Y . But, if X=Y, pP(X, ¥) may not be 0. As an example of partial
metric space we have, (R™, p) where p(X,Yy)=max{x, y}.

Each partial metric p on X generates a T, -topology on X', which has as base the family of open p -balls
{B,(x,&):xe X, >0}, where B, (x,&) ={y e X : p(X,y) <&+ p(X,X)}orall xe X and £>0

Definition 2. [10,11] A sequence {X,} in a partial metric space (X, p) is said to be:
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(i) p-convergenttoapoint Xe X if lim p(X, X,) = p(X,X) ;

N—c0

(i) p -Cauchy sequence if lim p(Xy,,X,) exists and is finite.
n,m-—co

Notice that the limit of sequence in partial metric space is not necessary unique.

Proposition 3. [11] Every partial metric p defines a metric dp , where

d, (% y)=2p(x,y) = p(X,X) = p(y,y) forall x,yeX.
The metric d p is called the metric associated with partial metric p .

Lemma 1. [10,11]

(1) A sequence {Xn} isa P -Cauchy sequence in a partial metric space (X, p) if and only if it is a Cauchy sequence in
the metric space (X,d).

(2) (X, p) is complete if and only if the metric space (X,dp) is complete.

Lemma 2. [7] Let (X, p) be a partial metric space and let (X,) and (Y,,) be sequences in X such that X, —> X
and Y, —> Y with respectto d,. Then lim p(X,,Y,) = p(X,Y)
N—o0

Definition 4. The sequences (X,) and (Y,,) in a metric space (X,d) are called equivalentif lim d(x,,Y,)=0.
n—o0

Definition 5. The sequences (X,) and (Y,) in a partial metric space (X, p) are called equivalent if

lim p(x,,Y,) exists and is finite.
N—o0

Definition 6. The sequences (X,) and (Y, ) in a partial metric space (X, p) are called equivalent Cauchy if they
are Cauchy and equivalentin (X, p).

Definition 7. Let (X,p) be a partial metric space. A sequence {X,} in X is called O-Cauchy if

lim p(Xy,%,)=0
n,Mm-—oo

Definition 8. The sequences (X,) and (Y,) in a partial metric space (X, p) are called 0O-equivalent if
nlil;]o p(xn- yn) =0.

Definition 9. The sequences (X,;) and (Y, ) in a partial metric space (X, p) are called 0-equivalent 0-Cauchy if
they are 0-Cauchy and O-equivalentin (X, p).

Definition 10. Let (X, p) be a partial metric space

i) A subset A in X is called bounded if there exists a real number M>0 such that p(X, y) <M forall X,y € A;

ii) If A is bounded set of X, then the diameter of A is denoted by 8(A) and is defined by

S(A)=sup{p(x, y); X,y € A}

Theorem 2.2.[4] If the sequences (X,) and (Yy) are equivalent Cauchy in (X,d), then they are equivalent
Cauchy in partial metric space (X, p).

The example 3 in [4] shows that the converse of the theorem 2.2 is not true.

Also, in [4] we proved some new conditions for equivalent Cauchy sequences in partial metric spaces as follows:

Theorem 2.1. [4] Let (X, p) be a partial metric space and (X, ), (Y, ) two sequences in it. If the sequences (X,)

, (yn) satisfy one of the following conditions, then the sequences (Xn) , (yn) are equivalent Cauchy in (X, p).
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(1) The sequences (X,) and (Y, )are bounded in (X, p)and

Ve >0,3reN,35 € (0,40),3¢, € (0,&) such that 5; <&+ = p(X, ) < &, whenever i, je N

i+r? yj+r
(2) The sequences (X,) and (Y, )are boundedin (X, p) and

Ve >0,3r e N,36 € (0,+00) such that ; <&+0 = 0,

iir jor < €. Whenever I, ] € N

(3) The sequences (X,) and (Y, )are bounded in (X, p) and

i+r, j+r

vneN,Jea, €(0,+0),3r € N, such that5ij<05n = 0 <l whenever I, j € N
n

(4) The sequences (X,) and (Y, )are bounded in (X, p)and

Ve>0,3r e N,35 € (0,+:0),3¢, € (0, &) such that é}j <&+ =6 < &, whenever i, j € N

i+r, j+r —

These conditions in theorem 2.1 are necessary and sufficient for 0-equivalent 0-Cauchy sequences in partial metric
spaces as the following theorem shows.

Definition 8. [ 7] Let (X, d) be a partial metric space and T a self-mapping of X .

1. T is called orbitally continuous if

lim p(T"x, T"x) = lim p(T"x,z) = p(z,z) implies lim p(TT"x, TT" x) = lim p(TT" x,Tz) = p(Tz, Tz)
i,j>o i,j—>m i,j—ow i,j—>w

for each Xe X .

Equivalently, T is orbitally continuous provided that if T""X—Z in (X,dp), then "% 5Tz in (X,dy) for each
xeX.

Theorem 2.2. [2] ( Fixed point theorem of Meir-Keler ) Let (X, d) be a metric space and let T be a mapping from X into
itself satisfying the following condition:

Ve>0, 30(¢)>0suchthate <d (x,y)<e+d() = d Ix,Ty)<e

Then T has a unique fixed point Z € X . Moreover, for all X € X , the sequence {TnX} converges to z.
3. MAIN RESULTS.

Let (X,) be a sequence in partial metric space (X, p) .
Define &;((X,)) =sup{p(x,, X ):m=>i,k > j} V(i,j)eN*. (4)

Preposition 3.1. Let (X, p) be a partial metric space and (X,) a sequence in it. If one &, ; ({x,}) is finite than all
5 ({x,}) are finite.

Proof. Denote A= max{ P(X, %, ), 1<m< io} and B = max{p(xk X <k < jo}
The proof is similar with the proof of preposition 5 in [4] replacing Y, with X, .

Corollary 3.2. Let (X, p) be a partial metric space and (X,) a sequence in it. The sequences (X,) is bounded if
and only if &1 ({X,}) is finite.

The proof is similar with the proof of Corollary 6 in [4] replacing Y, with X, .

Theorem 3.3. Let (X, p) be a partial metric space and (X,) a sequence in it. If the sequences (X, ) satisfies one

of the following conditions, then the sequence (X,) is Cauchyin (X, p).
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(1) The sequences (X,) is bounded in (X, p)and

Ve >0,3reN,36 € (0,+0),3g, € (0, &) such that &;({x,}) <&+35= p(x ) <&, whenever i, je N

i+r? Xj+r
(2) The sequences (X,) is bounded in (X, p)and
Ve >0,3r e N,36 (0, +0o) such that 5;({x,}) <e+5=6,,, ., {x,}) <&, whenever i, je N

(3) The sequences (X,) is bounded in (X, p)and

i+r, j+r

vne N, 3, €(0,40),3r € N, such that 5; ({x,}) <, = 4, <1 whenever i, je N
n

(4) The sequences (X,) is bounded in (X, p)and

Ve >0,3r e N,36 €(0,+%),3¢g, € (0, &) such that 5; ({X,}) <e+5=,

i+r, j+r

{x.}) <&, whenever i, je N
Proof.

Let (X,) be asequencein (X, p) satisfying (1). Define

a,=06,, :sup{p(xi,x.),i >n,j= n}

The sequences (an) is decreasing and positive. Hence it converges and !m a, =inf {an ‘ne N} =a=0

Suppose that a > 0. From the condition (1) for £ =a > 0 there arer e N, & €(0,&)and 6>0

such that &; ({x,}) <&+6= p(x ) <&, whenever i, j € N (5)

i+r’Xj+r
For this 0 >0exists pe N suchthatfor n>p >, <a+d=6+6

Fori>p, j>p we have §;({x,}) <a, =6,, <&+ .By(5) we have p(X.,, X )<¢& .

But it is obvious that i+r=k>p+r, j+r=1>=p+r, so p(X,X)<g& <&=a , which is a contradiction. Hence we

have lima, =inf {a;, :ne N}=0.But p(X;,X;) < a5

n—w

and whereas lima, =0 we have lim p(x;,x;) =0. So the sequence (Xn) is Cauchy.
n—w i,jow
Furthermore, since P(X,,X,) < ¢, and lima, =0 hold, then lim p(X,,X,) =0.
nN—o0 n—oo

(2) Let (X,) be asequencein (X, p) satisfying (2).

As in theorem 7 in [4], we first shall prove that (2) = (3) and if (X,) is satisfying (3) in the same way as in (1) above, we
can prove that the sequence (X,) is Cauchyin (X, p) ..

(4). Let (X,) be asequence in (X, p) satisfying (4).

It is clear that (4)=(2) and by (2) immediately follows that the sequences (Xn) is Cauchy in (X, p) .

Remark 3.4. The converse of the theorem 3.3 is not true. For this we can see the following example.

Example 3.5. Let X=R" and define a mapping p:RxR — R" by p(x,y) =max{x, y} as a partial metric.

- 1
The sequence (Xn):(%—l) is Cauchy in (X, p). But, é‘i]:%forl, Jj € N and fors=5, for any 0>0and r>0,
n

thoughé‘ij:%<g+5 we have & :128.

i+r, j+r E
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So, the sequence (Y, )= (%—1) do not satisfy the condition (2).
n

In the same way we can show that this sequence do not satisfy and the conditions (1), (3) and (4).

But if (Xn) is 0-Cauchy sequence then the converse of the theorem 3.3 is true and we can prove the following theorem.

Theorem 3.6. Let (X, p) be a partial metric space and (X,) a sequence in it. The sequence (X,)is 0-Cauchy

sequence in (X , p) if and only if it satisfies one of the following conditions,

(1) The sequences (X, ) is bounded in (X, p)and

Ve >0,3r e N,36 € (0,+0),3g, € (0, &) such that &;({x,}) <&+35= p(X,,,X;,,) <& whenever i, je N
(2) The sequences (X,) is bounded in (X, p)and

Ve >0,3r e N,36 (0, +0) such that 5;({x,}) <e+5=5,

i+r, j+r

({x,}) <&, whenever i, je N

(3) The sequences (X,) is bounded in (X, p)and

vneN,3q, €(0,+),3r € N, such that5; ({X,}) <, = 4, <l whenever i, je N
n

i+r, j+r

(4) The sequences (X,) is bounded in (X, p)and

Ve >0,3reN,30 €(0,+x),3¢g, € (0,¢) such that 5; ({x,}) <e+5=,

i+r, j+r

({x,}) <&, whenever i, je N

Proof.

By the proof of the theorem 3.3 if the sequence (Xn) satisfies one of the conditions (1)-(4) it is Cauchy sequence and
lim p(x,x;) =lim p(x, %) =lim p(x;, x;) =0. So the sequence (X,) is 0-Cauchy sequence in (X, p).

i,joo i i—>o

Conversely, if (Xn) is a 0-Cauchy sequence in (X, p), then it is a Cauchy sequence with respect to dp. So, by
Definition 1 and 7, we have

Jim d, (%, %) =lim[ 2p(x, ;) = p(x, %) = p(x;, %) ] =0

Therefore, (Xn) is Cauchy in metric space (X ) dp) and as shown in [3] the conditions (1), (2), and (4) are equivalent to
being of sequence (Xn) Cauchy sequence in metric space.

So, now we can prove that if sequence (X,) is 0-Cauchyin (X, p), then it satisfies the condition (3).

By the definition 1 and 7, we have lim p(x;, x;) =lim p(x;, %) =lim p(x;, x;) =0.
I, J>x I—00 I—00
. : : 1 1
Then, for N € N thereis P € N suchthatfor I > P, ] > P we have p(x,X;) <= andso &, <= .
n n

1 1 ..
Hence, for ¢, >—, r=P we have J; <a, =4, <8pp <= whenever 1, ] € N . So (3) hold.
n n

i1, j+r
Let (X, p) be a partial metric space and T a self-mapping define on X. For each X € X , we define the orbit of T by

o) ={x,Tx,T?x,T°x,,,T"x,,,} and & =sup{p(T'“x,Tky) m>i k> j} v(i, j) e N2.

Theorem 3.6. Let (X, p) be a complete partial metric space and T a self-mapping orbitally continuous define on X. If

T satisfies one of the following condition, than T has a unique fixed point z € X Moreover, limT"x=z forany xe X .

n—o

(1) Forall x,y e X , the sequences (T'x) and (T'y) are bounded in (X, p) and
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Ve>0,3reN,36 € (0,+x0),35, € (0,&) such that & <g+6 = p(T""x,T*"y) <&, whenever i, j e N
(2) Forall X,y e X , the sequences (T'x) and (T'y) are bounded in (X, p)and

Ve >0,3r e N,36 e (0, +0) such that é’ij <e+d=0, <&, whenever i, jeN

i+r, j+r

(3) Forall x,y e X , the sequences (T'x) and (T'y) are bounded in (X, p) and

i+r, j+r

vneN,3Je, €(0,+x0),3r € N,suchthat&ij<ozn = 5 <l whenever i, je N
n

(4) For all X,ye X, the sequences (T'x) and (T'y)are  bounded in (X, p) and
Ve >0,3r e N,35 € (0,+0), 3¢, (0, &) such that J; <e+d = 6 <¢, whenever i, je N

i+, jr =
Prof. Let x e X . We define the iterative sequence {x,}as follows x , =Tx ,for ne N.
If there exists n, € N suchthat X, =X, ,; than X, is afixed point of T. Assume then that X, = X, foreach ne N .
We first shall prove that if T satisfy one of the conditions (1)- (4) the sequence {x,} is a Chauchy sequence.
(1) Suppose T satisfies the condition (1). Substituting X=X, and y=X_,, in (1) we obtain:
the sequence {Xx.} is bounded in (X, p) and
Ve >0,3reN,35 € (0,+0),35, € (0, &) such that §; <e+5= p(T""x,T*""y) <&, whenever i, je N
but & :sup{p(T’“x,Tky) ‘m>i k> j} =sup{p(T”‘xn,Tkxn+l) ‘m>i k> j} :sup{p(l'”‘*”x,Tk*””x) m>i k> j}
=SUP{ P(Xpins Xozen) 1M 21K 2} = 6 0 (X0
and PT %, T %,00) = P Xpons o)
So the sequence {x,} satisfies condition (1) in theorem 3, so it is a Cauchy sequence in (X, p) .

(2) Suppose T satisfies the condition (2). We first shall prove that (2) =(3).

For neN, take g:l and by (2) we have that exists reN, §>0and an:l+5 such that
n n
1 -

O sg+5:0en36ij<a::ﬁ fori,jeN .

(3) Now, suppose T satisfies (3). In the same way as (1), substituting X=X, and y=X_,, in (3) we obtain:

the sequence {X,} is bounded in (X, p) and

vneN,3Je, €(0,+0),3r € N, such that S <a, =0 <

i+r, j+r

S|

whenever i, je N

but & =sup{p(T"x,T*y):m=ik> j} =sup{p(T"%,, T %) :m=ik > jj=sup{pT™ "% T"*x):m>i,k > j}
=SUP{ P (X s Xynan) 1M 20 K2 ) = G a3

and &, ,, =sup{pT"X,T* y)im=i+r k= j+r} =8, g0, @D

So the sequence {x,} satisfies condition (3) in theorem 3, so it is a Cauchy sequence in (X, p) .

(4) It is clear that (4)=(2) and if T satisfies (4) than by (2) the sequence {X,} is a Cauchy sequence in (X, p) .

Now, since {x,} is a Cauchy sequence in (X, p), by Lemma 1, it is a Cauchy sequence in the metric space (X,d,).

Since (X, p) is complete, by Lemma 2, it is complete with respect to metric dp , so there is ze X such that X, —>Z
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with respect to dp . By the orbital continuity of T, we deduce that X, — Tz with respect to metric dp . Hence z=Tz and
Z is a fixed point of T.

Let ye X, where y# X . The iterative sequence {y,}, where y ., =Ty, , for ne Nis a Cauchy sequence in (X, p)
and Y, > 7

The sequences {x,} and {y,} satisfy conditions (1)-(4) in theorem 2.1, so they are equivalent Cauchy sequences in
(X, p) and as shown in the proof of the theorem 2.1. in [4] we have

lim p(x,,%,) = lim p(x,,y,) = lim p(y,,y,) .
n—o0 N—0o0 N—o0

Also, whereas the sequences {X,} and {y,} converge to Z and Z; respectively with respect to dp, by Lemma 2, we

have p(z,z)= lim p(x,,Y,)=0 and consequently z = z;, which concludes the proof.
N—o0

REFERENCE

[1] Altun.l, Sola. F, Simsek. H, Generalized contractions on partial metric spaces. Topology Appl. 157(18), 2010, 2778-
2785.

[2] A. Meir and E. Keeler, A theoremon contraction mappings, J.Math.Anal.Appl. 28(1969), 326-329.1,3
[3] Bushati. S,. Disa pohime pér vargjet Koshi. Bul.Shk. Univ. Shkodrés, Nr. 53(4), 2001, 5-7.

[4] Duraj. S, Hoxha.E, The equivalent Cauchy sequences in partial metric spaces, Journal of Advances in Mathematics
(JAM), vol 12, nr.4, 2016, 6148-6155.

[5] J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J.Math.Anal.Appl. 194, (1995), 293-303.1

[6] J. Matkowski, Fixed point theorems for contractive mappings in metric spaces, Casopis Pro Pestovani Matematiky. 105
94), (1980), 341-344.1

[7] Karapinar.E, Romaguera. S, Nonunique fixed point theorems in partial metric spaces. Published by Fac. of Scie. and
Math., Univ. of Nis, Serbia, 2013, 1305-1314.

[8] Kopperman. R.,Matthews. S.G, and Pajoohesh .H.: What do partial metrics represent?, Spatial representation: discrete
vs. continuous computational models, Dagstuhl Seminar Proceedings, No. 04351, Internationales Begegnungs- und
Forschungszentrumf ~ ur Informatik (IBFI), Schloss Dagstuhl, Germany, (2005).

[9] Lj. B. Ciric, A new fixed point theorem for contractivemappings, Publ. Inst. Math. (Beograd) 30 (44), (1981), 25-27.1

[10] Matthews. S. G., Partial metric topology, Research Report 212, Dept. of Computer Science, University ofWarwick,
(1992).

[11] Matthews. S. G., Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann.
New YorkAcad. Sci. 728 (1994). 183-197.

[12] Oltra.S. and Valero. O., Banach’s fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste 36
(2004), 17-26.

[13] Romaguera. S. and Valero.O, A quantitative computational model for complete partial metric spaces via formal balls,
Math.Struct. Comp. Sci. 19 (2009), 541-563.

6528 |Page council for Innovative Research

August 2016 www.cirworld.com



)

AUTHOR’S PROFILE

6529 |Page

August 2016

ISSN 2347-1921
Volume 12 Number 08
Journal of Advances in Mathematics

M.Sc. Sidité Duraj (DOB-19/09/1980)

Completed her M.Sc in Mathematics at Tirana University in 2011, she is a Ph. D student. She
works as a lecturer at Shkodra University, in the Department of Mathematics, Faculty of Natural
Science, Albania for more than 5 years. Her subject of teaching is Mathematical Analysis and
Functional Analysis. Her research field is Functional Analysis.

Dr. Elida Hoxha (DOB-08/01/1961)

Completed her M.Sc. in Mathematics from Tirana University in the year 1984 and completed her
Ph.D. from Tirana University in 1997. She has a teaching experience of more than 29 years.
Currently she is working as a Professor in the Department of Mathematics, Faculty of Natural
Science, University of Tirana, Albania.

She is a popular teacher in under graduate and post graduate level. Her subject of teaching is
Mathematical Analysis, Topology, Functional Analysis. Besides teaching she is actively engaged
in research on the fields of Fixed Point Theory, Fuzzy sets and Fuzzy mappings, Topology.

council for Innovative Research

www.cirworld.com



