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1. Introduction. 

The notion of a partial metric space was introduced by G.S. Metthews [10,11] in 1992. The partial metric space is a 
generalization of the usual metric spaces in which the distance of a point from itself may not be zero. Recently, many 
authors have been focused on the partial metric spaces and its topological properties. [1, 12, 13].They show that partial 
metric spaces have many applications both in mathematics and computer science [8, 13]. The concept of Cauchy 
sequences is very important in functional analysis and especially in fixed point theory. 

In [4] we obtained some conditions for equivalent Cauchy sequences and 0-equivalent 0-Cauchy sequences in partial 
metric spaces. 

The Banach contraction principle [14] is the most celebrated fixed point theorem. It is very useful, simple, and classical 
tool in nonlinear analysis. This principle has many generalizations. For example, in 1969 [2] Meir and Keeler proved a 

fixed point theorem for the mappings satisfying a (-) contractive condition. Some generalizations of Meir-Keeler fixed 
point theorem (see 9, 5, 6) established a class of the contractions called the Mier-Keeler type contraction. 

In this paper we will show some conditions about Cauchy sequences in partial metric spaces establish a fixed point 
theorem for a Meir- Keeler type contraction in these spaces.   

2. Preliminaries. 

For convenience we start with the following definitions, lemmas, and theorems. 

Definition 1. [10] A function :p X X R   is a partial metric on X  if, for all , ,x y z X , the following conditions 

hold:  

p1) x y if and only if ( , ) ( , ) ( , )p x x p x y p y y  , 

p2) ( , ) ( , )p x x p x y  

p3) ( , ) ( , )p x y p y x , 

p4) ( , ) ( , ) ( , ) ( , )p x y p x z p z y p z z    

In this case, the pair ( , )X p is called a partial metric space. 

It is clear that if ( , ) 0p x y  then from (p1) and (p2), x y . But, if x y , ( , )p x y may not be 0. As an example of partial 

metric space we have, ( , )R p
 where ( , ) max{ , }p x y x y . 

Each partial metric p  on X  generates a 0T -topology on X , which has as  base the family of open p  -balls 

{ ( , ) : , 0}pB x x X    , where ( , ) { : ( , ) ( , )}pB x y X p x y p x x     for all x X  and 0   

Definition 2. [10,11] A sequence { }nx  in a partial metric space ( , )X p  is said to be: 
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(i) p -convergent to a point x X  if lim ( , ) ( , )n
n

p x x p x x


  ; 

(ii) p  -Cauchy sequence if 
,
lim ( , )m n

n m
p x x


 exists and is finite. 

Notice that the limit of sequence in partial metric space is not necessary unique.   

Proposition 3. [11] Every partial metric p  defines a metric pd , where 

( , ) 2 ( , ) ( , ) ( , )pd x y p x y p x x p y y      for all ,x y X . 

The metric pd  is called the metric associated with partial metric p . 

Lemma 1. [10,11] 

(1) A sequence { }nx  is a p  -Cauchy sequence in a partial metric space ( , )X p  if and only if it is a Cauchy sequence in 

the metric space ( , )pX d . 

(2) ( , )X p  is complete if and only if the metric space ( , )pX d  is complete.  

Lemma 2. [7] Let ( , )X p  be a partial metric space and let ( )nx  and ( )ny  be sequences in X such that nx x   

and ny y  with respect to pd . Then lim ( , ) ( , )n n
n

p x y p x y


  

Definition 4. The sequences  ( )nx  and ( )ny  in a metric space ( , )X d  are called equivalent if lim ( , ) 0n n
n

d x y


 .    

Definition 5. The sequences ( )nx  and ( )ny  in a partial metric space ( , )X p  are called equivalent if 

lim ( , )n n
n

p x y


 exists and is finite. 

Definition 6. The sequences  ( )nx  and ( )ny  in a partial metric space ( , )X p  are called equivalent Cauchy if they 

are Cauchy and equivalent in ( , )X p .     

Definition 7. Let ( , )X p   be a partial metric space. A sequence { }nx  in X is called 0-Cauchy if 

,
lim ( , ) 0m n

n m
p x x


   

Definition 8. The sequences  ( )nx  and ( )ny  in a partial metric space ( , )X p  are called 0-equivalent if 

lim ( , ) 0n n
n

p x y


 .     

Definition 9. The sequences  ( )nx  and ( )ny  in a partial metric space ( , )X p  are called 0-equivalent 0-Cauchy if 

they are 0-Cauchy and 0-equivalent in ( , )X p . 

Definition 10. Let ( , )X p   be a partial metric space 

i) A subset A in X is called bounded if there exists a real number M>0 such that ( , )p x y M for all ,x y A ; 

ii) If A is bounded set of X, then the diameter of A is denoted by (A) and  is defined by 

( ) sup{ ( , ); , }A p x y x y A    

Theorem 2.2.[4]  If the sequences  ( )nx  and ( )ny are equivalent Cauchy in ( , )pX d , then they are equivalent 

Cauchy in partial metric space ( , )X p .  

The example 3 in [4] shows that the converse of the theorem 2.2 is not true. 

Also, in [4] we proved some new conditions for equivalent Cauchy sequences in partial metric spaces as follows:  

Theorem 2.1. [4] Let ( , )X p  be a partial metric space and ( )nx , ( )ny  two sequences in it. If the sequences ( )nx

, ( )ny satisfy one of the following conditions, then the sequences ( )nx , ( )ny  are equivalent Cauchy in ( , )X p .  
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(1) The sequences ( )nx and ( )ny are bounded in ( , )X p and  

00, , (0, ), (0, )r N            such that 
ij 0( , )i r j rp x y        whenever ,i j N

 

(2) The sequences ( )nx  and ( )ny are bounded in ( , )X p
 
and 

0, , (0, )r N        such that 
ij ,i r j r        , whenever ,i j N

 

(3) The sequences ( )nx  and ( )ny are bounded in ( , )X p
 
and  

, (0, ), ,nn N r N       such that
ij < n 

,i r j r  
<

1

n
 whenever ,i j N

 

(4) The sequences ( )nx  and ( )ny are bounded in ( , )X p and  

00, , (0, ), (0, )r N            such that 
ij    

,i r j r   0  whenever ,i j N  

These conditions in theorem 2.1 are necessary and sufficient for 0-equivalent 0-Cauchy sequences in partial metric 
spaces as the following theorem shows. 

Definition 8. [ 7] Let ( , )X d  be a partial metric space and T a self-mapping of X  . 

1. T is called orbitally continuous if  

, ,
lim ( , ) lim ( , ) ( , )ji i

nn n

i j i j
p T x T x p T x z p z z

 
   implies 

, ,
lim ( , ) lim ( , ) ( , )ji i

nn n

i j i j
p TT x TT x p TT x Tz p Tz Tz

 
    

for each x X .  

Equivalently, T is orbitally continuous provided that if in
T x z  in ( , )pX d , then 

1in
T x Tz


  in ( , )pX d  for each 

x X .      

Theorem 2.2. [2] ( Fixed point theorem of Meir-Keler ) Let ( , )X d  be a metric space and let T be a mapping from X  into 

itself satisfying the following condition:  

  0,  ( ) 0 such that ( , ) ( )  ( , )<d x y d Tx Ty                   

Then T has a unique fixed point z X  . Moreover, for all x X , the sequence { }nT x  converges to z.             

3. MAIN RESULTS. 

Let ( )nx be a sequence in partial metric space ( , )X p  . 

 Define  (( )) sup ( , ) : ,ij n m kx p x x m i k j   
2( , )i j N  . (4) 

Preposition 3.1. Let ( , )X p  be a partial metric space and ( )nx  a sequence in it. If one 
0 0

({ })i j nx  is finite than all 

({ })ij nx   are finite.   

Proof. Denote  
0, 0max ( ),1m iA p x x m i    and  

0 0max ( , )1k jB p x x k j    

The proof is similar with the proof of preposition 5 in [4]  replacing ky  with kx .   

Corollary 3.2. Let ( , )X p  be a partial metric space and ( )nx
 
 a sequence in it. The sequences ( )nx  is bounded if 

and only if 11({ })nx is finite. 

The proof is similar with the proof of Corollary 6 in [4]  replacing ky  with kx .   

Theorem 3.3. Let ( , )X p  be a partial metric space and ( )nx
 
a sequence in it. If the sequences ( )nx

 
satisfies one 

of the following conditions, then the sequence ( )nx  is Cauchy in ( , )X p .  
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(1) The sequences ( )nx  is bounded in ( , )X p and  

00, , (0, ), (0, )r N            such that ({ })ij nx 0( , )i r j rp x x        whenever ,i j N
 

(2) The sequences ( )nx  is bounded in ( , )X p and 

0, , (0, )r N        such that ({ })ij nx , ({ })i r j r nx        , whenever ,i j N
 

(3) The sequences ( )nx  is bounded in ( , )X p and  

, (0, ), ,nn N r N       such that ({ })ij nx <
n 

,i r j r  
<

1

n
 whenever ,i j N

 

(4) The sequences ( )nx  is bounded in ( , )X p and 

00, , (0, ), (0, )r N            such that ({ })ij nx , 0({ })i r j r nx         whenever ,i j N  

Proof.  

Let ( )nx  be a sequence in ( , )X p   satisfying (1). Define  

n =  , sup ( , ), ,n n i jp x x i n j n     

The sequences ( )n  is decreasing and positive. Hence it converges and  lim inf : 0n n
n

a n N a


     

Suppose that 0a  . From the condition (1) for 0a    there are
0,  (0, ) and 0r N       

such that ({ })ij nx 0( , )i r j rp x x        whenever ,i j N
  

( 5)  

For this 0  exists p N  such that for n p n a       
 

For ,i p j p   we have ({ })ij nx ,p p p        .By (5) we have 
0( , )i r j rp x x     . 

But it is obvious that ,i r k p r j r l p r        , so 0( , )k lp x x a     , which is a contradiction. Hence we 

have  lim inf : 0n n
n

a n N


   . But 
min{ , }( , )i j i jp x x a  

and whereas lim 0n
n

a


  we have 
,
lim ( , ) 0i j

i j
p x x


 . So the sequence ( )nx  is Cauchy. 

 Furthermore, since ( , )n n np x x   and lim 0n
n

a


  hold, then lim ( , ) 0n n
n

p x x


 .   

(2)  Let ( )nx  be a sequence in ( , )X p   satisfying (2). 

As in theorem 7 in [4], we first shall prove that (2)  (3) and if ( )nx  is satisfying (3) in the same way as in (1) above, we 

can prove that the sequence ( )nx  is Cauchy in ( , )X p .. 

 (4). Let ( )nx  be a sequence in ( , )X p satisfying (4). 

It is clear that (4)(2) and by (2)  immediately follows that the sequences ( )nx  is Cauchy in ( , )X p . 

Remark 3.4. The converse of the theorem 3.3 is not true. For this we can see the following example. 

Example 3.5. Let X=R
+
 and define a mapping :p RxR R  by  ( , ) max ,p x y x y  as a partial metric. 

The sequence ( nx )=
1 1

( )
2 n
  is Cauchy in ( , )X p . But, 

ij =
1

2
for ,i j N and for

1

2
  , for any 0  and 0r  , 

though ij =
1

2
<    we have ,i r j r  

1

2
   . 
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So, the sequence (
ny )=

1 1
( )
2 n
  do not satisfy the condition (2). 

In the same way we can show that this sequence do not satisfy and the conditions (1), (3) and (4).   

But if  ( )nx is 0-Cauchy sequence then the converse of the theorem 3.3 is true and we can prove the following theorem. 

Theorem 3.6. Let ( , )X p  be a partial metric space and ( )nx
 
a sequence in it. The sequence ( )nx is 0-Cauchy 

sequence in ( , )X p  if and only if it satisfies one of the following conditions, 

 (1) The sequences ( )nx  is bounded in ( , )X p and  

00, , (0, ), (0, )r N            such that ({ })ij nx 0( , )i r j rp x x        whenever ,i j N
 

(2) The sequences ( )nx  is bounded in ( , )X p and 

0, , (0, )r N        such that ({ })ij nx , ({ })i r j r nx        , whenever ,i j N
 

(3) The sequences ( )nx  is bounded in ( , )X p and  

, (0, ), ,nn N r N       such that ({ })ij nx <
n 

,i r j r  
<

1

n
 whenever ,i j N

 

(4) The sequences ( )nx  is bounded in ( , )X p and 

00, , (0, ), (0, )r N            such that ({ })ij nx , 0({ })i r j r nx         whenever ,i j N  

Proof.  

By the proof of the theorem 3.3 if the sequence ( )nx  satisfies one of the conditions (1)-(4) it is Cauchy sequence and 

,
lim ( , ) lim ( , ) lim ( , ) 0i j i i j j

i j i i
p x x p x x p x x

  
   . So the sequence ( )nx  is 0-Cauchy sequence in ( , )X p . 

Conversely, if ( )nx  is a 0-Cauchy sequence in ( , )X p , then it is a Cauchy sequence with respect to 
pd . So, by 

Definition 1 and 7, we have 

,
lim ( , ) lim 2 ( , ) ( , ) ( , ) 0p i j i j i i j j

i j i
d x x p x x p x x p x x

 
               

Therefore, ( )nx  is Cauchy in metric space ( , )pX d  and as shown in [3] the conditions (1), (2), and (4) are equivalent to 

being of sequence ( )nx  Cauchy sequence in metric space. 

So, now we can prove that if sequence ( )nx  is 0-Cauchy in ( , )X p , then it satisfies the condition (3). 

By the definition 1 and 7, we have 
,
lim ( , ) lim ( , ) lim ( , ) 0i j i i j j

i j i i
p x x p x x p x x

  
   . 

Then, for n N  there is P N  such that for ,  i P j P   we have 
1

( , )i jp x x
n

  and so 
1

PP
n

   . 

Hence, for 
1

,  n r P
n

    we have ,

1
ij n i r j r PP

n
         whenever ,i j N  . So (3) hold. 

Let ( , )X p  be a partial metric space and T a self-mapping define on X. For each x X , we define the orbit of T by  

2 3( ) { , , , , , , , , ,}nO x x Tx T x T x T x      and  sup ( , ) : ,m k

ij p T x T y m i k j   
2( , )i j N  .       

Theorem 3.6. Let ( , )X p  be a complete partial metric space and T a self-mapping orbitally continuous define on X. If 

T satisfies one of the following condition, than T has a unique fixed point z X   Moreover, lim n

n
T x z


  for any x X  .   

(1) For all ,x y X , the sequences ( )iT x  and ( )jT y are bounded in ( , )X p and  
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00, , (0, ), (0, )r N            such that 
ij 0( , )i r j rp T x T y        whenever ,i j N

 

(2) For all ,x y X , the sequences ( )iT x  and ( )jT y are bounded in ( , )X p and 

0, , (0, )r N        such that 
ij ,i r j r        , whenever ,i j N

 

(3) For all ,x y X , the sequences ( )iT x  and ( )jT y are bounded in ( , )X p and 

, (0, ), ,nn N r N       such that
ij <

n 
,i r j r  

<
1

n
 whenever ,i j N

 

(4) For all ,x y X , the sequences ( )iT x  and ( )jT y are bounded in ( , )X p and 

00, , (0, ), (0, )r N            such that 
ij    

,i r j r   0  whenever ,i j N  

Prof. Let x X  . We define the iterative sequence { }nx as follows 
1n nx Tx  , for n N .  

If there exists 
on N  such that 

0 0 1n nx x   than 
0nx  is a fixed point of T. Assume then that 

1n nx x  for each n N . 

We first shall prove that if T satisfy one of the conditions (1)- (4) the sequence { }nx  is a Chauchy sequence. 

 (1) Suppose  T satisfies the condition (1).  Substituting 
nx x  and 

1ny x   in (1) we obtain:  

the sequence { }nx  is bounded in ( , )X p  and     

00, , (0, ), (0, )r N            such that 
ij 0( , )i r j rp T x T y        whenever ,i j N

 

but    sup ( , ) : ,m k

ij p T x T y m i k j     =  1sup ( , ) : ,m k

n np T x T x m i k j   =  1sup ( , ) : ,m n k np T x T x m i k j       

=  1sup ( , ) : ,m n k np x x m i k j      = 
, 1 ({ })i n j n nx   

   

and 1 1( , ) ( , )i r j r

n n n i r n j rp T x T x p x x 

      . 

So the sequence { }nx  satisfies condition (1) in theorem 3, so it is a Cauchy sequence in ( , )X p .  

(2) Suppose T satisfies the condition (2). We first shall prove that (2) (3). 

For n N , take 
1

n
   and by (2) we have that exists 

1
,  0 and nr N

n
       such that 

1
ij n ij

n
            for ,i j N  .   

(3) Now, suppose T satisfies (3). In the same way as (1), substituting nx x  and 1ny x   in (3) we obtain:  

the sequence { }nx  is bounded in ( , )X p  and     

, (0, ), ,nn N r N       such that 
ij ,

1
n i r j r

n
       whenever ,i j N

 

but    sup ( , ) : ,m k

ij p T x T y m i k j     =  1sup ( , ) : ,m k

n np T x T x m i k j   =  1sup ( , ) : ,m n k np T x T x m i k j       

=  1sup ( , ) : ,m n k np x x m i k j      = , 1 ({ })i n j n nx       

and  , sup ( , ) : ,m k

i r j r p T x T y m i r k j r        = , 1 ({ })i n rj n r nx       

So the sequence { }nx  satisfies condition (3) in theorem 3, so it is a Cauchy sequence in ( , )X p . 

(4) It is clear that (4)(2) and if T satisfies (4) than by (2) the sequence { }nx  is a Cauchy sequence in ( , )X p . 

Now, since { }nx  is a Cauchy sequence in ( , )X p , by Lemma 1, it is a Cauchy sequence in the metric space ( , )pX d . 

Since ( , )X p  is complete, by Lemma 2, it is complete with respect to metric pd  , so there is z X  such that nx z   
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with respect to pd  . By the orbital continuity of T, we deduce that nx Tz  with respect to metric pd  . Hence z Tz  and 

z  is a fixed point of T. 

Let y X , where y x  . The iterative sequence { }ny , where 
1n ny Ty  , for n N is a Cauchy sequence in ( , )X p  

and 1ny z    

The sequences { }nx  and { }ny  satisfy conditions (1)-(4) in theorem 2.1, so they are equivalent Cauchy sequences in 

( , )X p and as shown in the proof of the theorem 2.1. in [4] we have  

lim ( , ) lim ( , ) lim ( , )n n n n n n
n n n

p x x p x y p y y
  

  . 

Also, whereas the sequences { }nx  and { }ny  converge to z  and 1z  respectively with respect to pd , by Lemma 2, we 

have 1( , ) lim ( , ) 0n n
n

p z z p x y


   and consequently 1z z , which concludes the proof. 
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