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This paper studies the long time behavior of the solution to the initial boundary value problems for a class of nonlinear
strongly damped Kirchhoff type wave equations:

U, —&AU, +a|U, [P U, + AU u—g(PVuP?)Au = f(X).

Firstly, we prove the existence and uniqueness of the solution by priori estimate and the Galerkin method. Then we obtain
to the existence of the global attractor. Finally, we consider that the estimation of the upper bounds of Hausdorff and
fractal dimensions for the global attractor is obtained.
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1 Introduction

It is well known that the dynamical systems that arise in physics, chemistry or biology, are often generated by a partial
differential equation or a functional differential equation and thus the underlying state space is infinite-dimensional. The
long time behavior of many dynamical systems generated by evolution equations can be described naturally in term of
attractors of corresponding semigroups. The attractor is a basic concept in the study of the asymptotic behavior of
solutions for the nonlinear evolution equations with various dissipation.

In recent years, many scholars have made useful researches for the existence of global attractors and their dimensions
estimation about some the infinite dimension dynamic systems[1,2,3,4,5].

In this paper, we are concerned with the Kirchhoff type wave equations with nonlinear strongly damped terms referred to

as follows:
U, —&AU, +a|U, [P U+ BluT u—g(PVuP?)Au = f(x) in QxR @)
u(x,0) =u,(x);u,(x,0) =u,(x), xeQ, @)
u(xt)|.=0,Au(x,t)|,=0, XxeQ ®3)

where Q is a bounded domain in RN with smooth boundary 0Q), and gl,a,ﬂ are positive constants, and the

assumptions on @(PAUP?) will be specified later.

In [6], G. Kirchhoff firstly proposed the so called Kirchhoff string model in the study nonlinear vibration of an elastic string:
_ Eh L 2
P, + U, = pO+Z(L |u,|”dx)u,, + f(x),0<x<L,t>0, (4)

where U = U(X,t) is the lateral displacement at the space coordinate X and the time t, E is the Young modules, h is
the cross-section area, O is the mass density, L is the length, P, is the initial axial tension, O is the resistance

modules and f is the external force.

Yang Zhijian, Ding Pengyan and Liu Zhiming [7] studied the Global attractor for the Kirchhoff type equations with strong
nonlinear damping and supercritical nonlinearity:

u, —o(PAUP?)AU, —g(PAUP?)Au+ f (U)=h(x) in QxR", )
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u(x,t) |.o=0,u(x,0) =u,(x),u,(x,0) =u,(x), xeQ. (6)

where Q is a bounded domain in R" with the smooth boundary 6Q, & (S), ¢#(S) and f(S) are nonlinear
functions, and h(X) is an external force term.

Yang Zhijian, Wang Yunging [8] also studied the global attractor for the Kirchhoff type equation with a strong dissipation:

u, — M (PAUP?)Au—Au, +h(u,)+g(u) = f(x) in QxR", )
u(x,t)|.o=0,t>0,u(x,0) = u,(x),u,(x,0) =u,(x), xeQ 8)
> 4

where M(s) =1+52,1<m< Q is a bounded domain in R™ , with smooth boundary 8Q , h(s) and

(N-2)
g(s) are nonlinear functions, and f (X) is an external force term.

Recently, Meixia Wang, Cuicui Tian, Guoguang Lin [9] studied the global attractor and dimension estimation for a 2D
generalized Anisotropy Kuramoto-Sivashinsky equation:

U + oAU+ i+ (@(U)), +(9(W)),, = F(X),(x,y) eQcR?, )
U(X, ¥,1) o= Uy (X, ¥), (X, ) e Q= R, (10)
u(x, y,t) |aQ=0: 0,Au(x,y,t) |aQ: 0,(x,y)eQc R%. (11)

where QQ < R? is bounded set; 0Q is the bound of ©; ¢@(U) and g(U) are considered as smooth functions of
u(x,y,t).

There have been many researches on the long-time behavior of solutions to the nonlinear damped wave equations with
delays. For more related results we refer the reader to [10]-[13]. In order to make these equations more normal, in section
2 and in section 3, some assumptions, notations and the main results are stated. Under these assumptions, we prove the
existence and uniqueness of solution, then we obtain the global attractors for the problems (1.1)-(1.3). According to [9]-
[13], in section 4, we consider that the global attractor of the above mentioned problems (1.1)-(1.3) has finite Hausdorff

dimensions and fractal dimensions.

2 Statement of main results
For convenience, we denote the norm and scalar product in L?(Q) by PP and (.,.);
f=f(x). L =L"(Q). H*=H"(Q), H; =H;(Q). P-P=P-P, P-P,=P-P .

In this section, we present some assumptions and notations needed in the proof of our results. For this reason, we
assume that

(G,) #(PVUP?) : R" — R" is a differentiable function;

(G,) There exist constant & >0,6>0,7,>0,7,>0,K>0, such that K-2¢20,
£ <PHPVUP?) < —TL (145,672,
K-2¢

Lemma 1. Assume (G,),(G,) hold, and (Uy,U,) € (L™ () " H (Q))x L*(Q), f e L*(Q),v=u, +eu, let

p=>2, n=1,2;
n+4
2<p< , nN>3.
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qg=2, n=1.2;
2<(Q< nLZ n=3.
n-2
Then the solution (u,v) of the problems (1.1)-(1.3) satisfies
(u,v) € (L"(Q) " H () x L (Q),H, == L"(Q) " H (), and

P(u,v)P? , =PVuP?+PvP? WO ey +L(1—e*“1‘). &
Hy<L N Ney,

where V=U,+&u, 0<N <min{l,4(PVUP?)—ge}, and W(0) =Pv,P? + (¢(PVU,P?) —£,)PVU,P?,
V, = U, +&U,, thus there exist R, and t, =t,(€2) >0, such that

P(u,v)PHZ1x =PVUP? +PVP? <R,(t > ). )

12
Proof. Let V=U, +&uU , We multiply V with both sides of equation (1.1) and obtain
(U, —gAU, +a U, [P U+ Blu ™ u—g(PVUP?)Au,V) = (f (X),V). 3)

By using H 0 Ider’s inequality, Young’s inequality and Poincar e'’s inequality. one by one as follows:

2 2
(U, V) = 11PvP2 —e(V—au,v) > 11PvP2 —ePvP2 - Z _pvup? - £ pyp2. (4
2 2 dt 2/, 2

dt
(—&,AU,, V) = —& (A(V—eu),V) > g A,PVP? —%% PVUP’ - £,&’PVUP?. 5)
(e |u "™ U, v)
=a(u, " u,,u, +eu) (6)
=aPuP}; + agjg lu, |°* u, -udx,
where
ocgJ.Q |u, [P u, -udx
Sagjg|ut P |u|dx
P 1
<as(] Ju 1" dx) P (] ulP dx)P ™
=aePupPy,-PuP,
p+1

<P pypri X _pyprit,

p+1 p+1

And using Interpolation Theorem, we have
p+1

B pypriiEE_pyprd
p+1 p+1

ap n(p-1) (8)
<——PuP! +Cy(a &, p,PUP)PVUP 2 |

p+1

n+4 _ _
then from 2 < p < ——,N >3, according to Embedding Theorem
n
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n(p-1)

p“plpu P;’:ll+co(a,g, p,PUP)PVUP 2
+

9)

< pypri
p+

+C,(a,¢, p,PuP, g).

and

(Blultuv) = LdiPuPq+1 + BePuP (10)

( ) g+1 g+l "

(—¢(PVUP?)Au,v)
= ¢(PVuP?) %% PVUP? + g (PVUP?)PVuP?

(11)
= %[% ¢(PVUP*)PVUP?] —%PVUPZ %(¢(PVUP2)) +ap (PVUP?)PVuP?.
2
(f(X),v) <PfPPVP < %PVPZ T 2—; PfP?, )

From the above, we have

i[PvP2 +(¢(PVUP?) — £,£)PVUP? + Zﬁlpup‘m]Jr (26,4, —2¢ — 2&%)PvP?
q+

q+1
2
+[2ap (PVUP? )——(¢(PVuP ))—Z—sglg “PVUP? +286PuP ) + (13)
24 py Pri< —pr2 +2C,(at, &, p,PUP, &)= C
p+1
Next, we take proper &, &, such that: £,& < ¢(PVUP2) ,
let constant K, such that K —2£>0 ,
2
0 < K(S(PVUP?) - &,¢) < 2ap (PVUP?) —%(¢(PVUP2)) —%—38132, (14)
82
Where C; =C,(g,4,,6)) = Z+38182 £- such that
0 < K(¢(PVUP?) —¢g,&) < 2ap (PVUP?) —%(gﬁ(PVuPz)) -C,, (15)
(K —2£)¢(PVUP?) +%(¢(PVUP2)) <Kege-C,i=y,. (16)
Multiplying(2.16) by €72 then
#(PVUP?) % (e™2) yglk2on % (p(PVUP?)) < e 29", an
We integrate (2.17)with respect to time t and get that
P(PVUP?) < —1— (1+y,e 2, (18)
K- 2
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Where &, %, Y, is constant. From the above, we obtain

.6 <PPVUP?) < — 1 (145,072, (19)
K-2¢

At last, we take proper &, gl,ﬂ , such that:

a, =2& A, —26-2c°>0

2

a, = 25¢(PVUP2)—%(gﬁ(PVuPz))—gZ—%lgz > 0.

Taking ¢, = min{a,, ,e(q+1)}, then

a2
p(PVUP?)—g,&

%W (t)+aW () <C. (20)
2 2 2, 2P ] : . . :
wWhere W (t) = PvP* + (¢(PVUP?) — ,6)PVUP* + _]_PUP;]A , by using Gronwall’s inequality, we obtain:
q-+

W (t) <W,e L (1-e™ ). 1)

o

n+2
From 2<( < PPy N> 3, according to Embedding Theorem H¢(Q)°L™(Q), let

0< N =min{1,g(PVUP?) —&,&}, such that:

P(u,v)P? , =PVuP?+PvP? < WA(O) g-ay +L(1—e_“1t). 22)
Hy L N N,
where V = U, +&U , and W (0) = Pv,P? + (#(PVU,P?) — £,6)PVu,P? JrilPuoP(?jll,v0 = U, +&l,, then
q-+
limPu,v)P? , < : 23
limP(u, V)P, 2 Nez, (23)
thus there exist R and t; =t (Q) > 0, such that
P(u,v)P? , =PVUP’ +PVP? <R (t>1,). (24)
1><
Lemma 2. In addition to the assumptions of Lemma 1, (G,), (G, ) hold.
if (G;): f e Hg(Q) | let
p=2, n=1,2;
2<p< n_+4 n=3.
n
q=2, n=1,2;
2<Qg< nLA', n>3.
n
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and (Uy,U;) € (H*(Q) MHZ(Q)xHa(Q),v=U, +&u, Then the solution (U,V) of the problems (1.1)-(1.3)
satisfies (U,V) € (H?(Q) M H(Q))x Hy(Q),H, := H*(Q) "H(Q) , and

P(u,v)P? | =PAUP? +PVVP? < V(0) et +&(1—e*”‘2t). (25)
HaxHo M Ma,
where V=U, +eu, 0<M <min{1,¢(PVUP?) + &}, and

U (0) =PVV,P? + (¢(PVU,P?) + £,)PAU,P?, thus there exist R, and t, =1,(€2) > 0, such that
P(u,v)Pj = PAUP? +PVVP? <R (t >1,). (26)
270
Proof. Let —AV = —AU, — AU, We multiply — AV with both sides of equation (1.1) and obtain
(U, —gAU, +a U, [P U, + Bu ™ u—g(PVUP?)Au,~Av) = (f (X),~AV). (27)

By using H 0 Ider’s inequality, Young’s inequality and Poincar e'’s inequality, we deal with the terms in (2.27), one by one

as follows:
2 2
(U, —Av) > 19 byyp? —PWP? - £ pAuP? - £ PwyvP2, (28)
2 dt 20 2
(—&,Au,,—AV)
= (—gAu,,—Au, — gAu)
= gPAUP? + 5 PAVP? — g, (AV, Au,) — £,6(AU, AV) + g,6(Au, Au,) (29)
> 888 pNp2 Epagp? 88 G pape &8 pp P2,
2 2 2 dt 2
(0! | U, |p71 Uy ’_AV) = a(| U |p71 U, ,—AUI) +a(| U |p71 U, ’_EAU)- (30)
Where
OC(I U, Ipil U, ’_Aut)
p-1
=a(V((u?) 2 u,),Vu,)
_ p-3
= a(pTl (u) 2 2uVu, Vu) +e(u, " Vu,Vu,) (31)

= a(p-1)(u, [ Vu, Vu) +a(u, " Vu, Vu,)
=ap| [u |V, F dx>0,

a(u, Pt u,—gAu) < ang|ut 1P| Au | dx

1 1
< ag(jg|ut ° dx)Z(iju ? dx)2 (32)
= aéPu,P; PAUP,

By using Interpolation Theorem and Embedding Theorem:
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n(p-1)
aPUPLPAUP < asCo(PUP)PAUP * PAUP
2 2 n(p-1)
< paupr 4 42 CoPUP) oy B (33)
24 2
2
<2 PAUP? + ZLPAUP? +C,(,Cy, 14y, £,),
21 4

Substituting (2.31),(2.32),(2.33) into (2.30), we receive

(0[ | U, |p7l Uy 1_AV)

2
> ap_[ lu, PV, P dx———PAuP? - LpAuP? - C,. ¢y
Q 21 4

By using Interpolation Theorem and Embedding Theorem:

(Blul™ u-Av)

< fPuP; PAVP
n(g-1)
< pC,(PuP)PAUP 4 PAVP

B°C2(PuP)

& —&E

n(g-1) (35)
PAuUP 2

<4 4518 PAVP? +

<& 4818 PAVP? + ;‘9 PAUP? +C, (¢, 3, £, PUP).

(—¢(PVUP?)Au,—Av)
= p(PVUP?)(Au, Au, + Au)

= 1¢(F>VuF>2)iF>AuF>2 + a;S(PVuPZ)PAuPZ (36)

——[ p(PVUP?)PAUP® ]— PAuP2 (¢(PVuP2))+a¢(PVuP2)PAuP2.

(f —AV) <PVIPPWWP < 288 pyyp? 4 _2H2 pyip? 37)
8y2 & —&E

From the above, we have

_ _ _ 2
9 PVuP? + (s + gPVUP?)PAUP? + (2= 8f 88 ~A1eE \py b2
dt ) 4, @8)

+[2ap (PVUP?) —% (BPVUPY) =25 2. PAuP? <C.

H

Similar to lemma 1.1 formulas (2.14)-(2.19) we can obtain that

£ <p(PVUP?) < —L Y 2 (1+ e M2, (39)

where &;,&, M, K, K, is constants.

At last, we take proper &, &;, such that:
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_ & —&&—8au, —4u,e” >

b, = >0
Au,
., d ) 2&?
b, =2gp (PVUP") —— (¢(PVUP?)) ——— —2£, > 0.
dt H
Taking &, = min{b, b, }. then
’ 'ee+¢(PVUP?)”
%U t)+a,U(t)<C. (40)

where U (t) = PVVP? + (g, + ¢(PVUP?))PAUP?, by using Gronwall's inequality, we obtain:

U(t) <U(0)e 7 + < (1—e™?). (41)

a,

Let 0 < L =min{1,&,¢+@(PVUP?)}, so we get

P(u,v)Pf| = PAUP? +PVVP? < @e“zt +£L (1-e ), 42)
2)(

0 a,

where V= U, + U, and U (0) = PVV,P? + (&,& + ¢(PVU,P?))PAUP? v, = U, + &l then

— C
imP(u,v)P>  <—. 43
!Epo ) HyxHg a,l “
So, there exist R, and t, =1,(Q) > 0, such that
PU,V)P? | =PAUP? +PWWP? <R (t>t,). (44)
2*"0

3 Global attractor
3.1 The existence and uniqueness of solution

Theorem 3.1 assume (G,),(G,) hold, let

p=>2, n=1,2;
2< p<n—+4, n>3.
n
g2, n=1.2;
n+4 n+2

2<g<mnf{f——,——}, n=3.
n n-2

and H,(Q):=H*(Q)NHI(Q), (Uy,U)eH,(QxH (Q), feH(Q), Vv=U,+&u, so Equation (1.1)
exists a unique smooth solution

(u,v) € L7([0,+90), H, (€2) x Hy (€2))- &)
Proof. By the Galerkin method, Lemma 1 and Lemma 2, we can easily obtain the existence of Solutions. Next, we prove
the unigueness of Solutions in detail.
Assume U,V are two solutions of the problems (1.1)-(1.3), let W=U—V, then
W(X,0) = w,(X) =0, w,(X,0) =w,(x) = 0 and the two equations subtract and obtain
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Wy — &AW, +a (U, P U= v [P V) + BQUlT U= V[T v) +

(#(PVVP?)Av — ¢(PVUP?)Au) = 0. 2

By multiplying (3.2) by W, , we get

(W“ _glAWt +0{(| U |p71 u,— | Vi |p71 Vt) +ﬁ(| u |Q7l u— | \' |qi1 V) +

(p(PVVP?*)Av—g(PVUP*)Au), w,) = 0. ©)

By using H 0 Ider’s inequality, Young’s inequality and Poincar e'’s inequality.
One by one as follows:

1d

(W, W) = EaPWtPZ. 4)

(~&AW,, W,) = & PVW,P? > g A, PWP’. (5)

(a(l ut |p_1 ut_lvt |p_l Vt)'Wt)
=af (u " -V, P vwd

o ot (6)
<ap[ (u P 1V 77 [w ] w [

According to Lemma 1, So, there exists C, >0, such that
(o] U |p_l u— | Vi |p_l Vt)' Wt) < apCoPWtPZ- (7)

Bu " u=|v [ v),w)
= B (Ul u=|v [ v)wdx

q-1 g-1 8)
< paf (Ul +v ) w w | dx.

According to Lemma 1, So, there exists C, > 0, such that
Bul*u=v]*v),w)
< fqC,PWPPW,P ©)
242/ 2
<Ehpyp? L9 pypr
2 2e,,
(p(PVVP?)Av — g(PVUP?)Au,w,)
= p(PVVP?)AvV — p(PVVP?)Au + ¢(PVVP?)Au — (PVUP?)Au, w,)
= (PVVP?)(—Aw, W, ) + [¢(PVVP?) — p(PVUP?)](Au, w,) (10)

= ¢(PVVP2)%%PVWP2 +¢ (£)(PVVP +PVUP)(PVVP —PVUP)(Au, W, ).

where
$ (£)(PVVP +PVUP)(PVVP —PVUP)(Au, w,)
< ¢ (£)| (PVVP +PVUP)(PVv - VuP)PAUPPw,P "
<Pg¢ (£)P,(PVVP +PVUP)PAUPPVWPPW,P.
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According to Lemma 1 and Lemma 2, So, there exists C2 > 0, such that

¢ (£)(PVVP +PVUP)(PVVP —PVUP)(Au, W,)
<C,PVwWPPwP

2
<&hpypry S pygp?
2 24,

Next, according to the basic assumption of Lemma 1 and Lemma 2:

£,e <p(PVUP?) < mln{

2 (L+ y,0 2N, s Klzg L+ r,e” ™2,
Then, we have

(@(PVVP?)Av - (PVUP?)Au,w,)

2
> 88 Qpgypr @hpypr G2 pyypr
2 dt 2 26,0,

From the above, we have

%[PWtPZ +£,ePVWP?]

2 2
< 20pC,Pwp? +-C2 pywp? + 9C by o
0 t 811 821
1

.. G . B9°Cl 2
<2apC,PWP* + ——PVWP" + PVwP
&4 ), &t
< 20pC,pup? + ST PAC oy
&

2 22
Taking M=max{20pC,, CZ'UI:_'B A }. then

& Aty

i(Pth2 +£,ePVWP?) <M (PWP? + g PVWP?).
dt
By using Gronwall’s inequality, we obtain
PW,P? + &, PVWP? < (Pw, (0)P? + &,cPVW(0)P*)e™.
So , we can get PWP? + £ ePVWP? <0, because of W, (X) =0,W,(x) =0.
That shows that
PwP?=0, PVWP?=0.
That is
w(x,t) =0.
Therefore
u=v.
So we get the uniqueness of the solution.

Remark 3.1. under the assumptions of Lemma 1, Lemma 2 and Theorem 3.1, We claim that

S(t)(Uy,U,) = (U(t),u, (t)). Then S(t) composes a continuous semigroup in H, () x HE (Q).

(12)

(13)

(14)

(15)

(16)
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3.2 Global attractor

Theorem 3.2 ™2 et E be a Banach space, and {S(t)}({t>0) are the semigroup operator on E.

S(t):E—>E,S(t+7)=S(t)S(z)(Vt,z>0),S(0) = | , where I is a unit operator. The semigroup operator S(t)
satisfies the following conditions.

1) S(t) is uniformly bounded, namely VR > 0,PuP. <R, it exists a constant C(R), so that
PS(t)uP: < C(R)(t €[0,+x));
2) It exists a bounded absorbing set B,  E , namely, VB — E, it exists a constant t; , so that
St)Bc B,y(t>t,);
where By and B are bounded sets.

3)When t >0, S(t) is a completely continuous operator A.
Therefore, the semigroup operator S(t) exists a compact global attractor.

Theorem 3.3 uUnder the assume of Lemma 1, Lemma 2 and Theorem 3.1, equations have global attractor

A=w(B))= nUS(t)BO’

20 t>7
where B, ={(u,v) eH,(Q)xH,(Q): P(u,v)PszxH% = Ptu2 +Pij% <R,+R},B, is the bounded
absorbing set of H, x H} and satisfies
1) SHA=At>0;
2) !m dist(S(t)B,A) =0, here B cH, x H and it is a bounded set,

dist(S(t)B,A) = sup(in}z PS(t)x— yPH Hl) —0,t > oo,
210

xeB Y€

Proof. Under the conditions of Theorem 3.1, it exists the solution semigroup S(t), S(t) :H, x Hy —>H, x Hg, here
E=H,(Q)xH;(Q).

(1) From Lemma 1 to Lemma 2, we can get that VB — H, (€) x H,(Q) is a bounded set that includes in the
pall {P(u,v)P | <R},
HszO
PS(t)(u,,V,)P> , =PuP: +PvP? <Pu/pP? +Pv,P?, +C<R*+C,
HyxHY 2 HY 2 H3
(t=0,(uy,Vv,) €B).
This shows that S(t)(t > 0) is uniformly bounded in H, (€2) x Hg ().
(2) Furthermore, for any (U, V,) € H, () x HE(Q) , when t > max{t,,t,}, we have
PS(t)(uy,v,)P> , =PuP? +PVP’ <R, +R..
HyxH3 2 HY
So we get B0 is the bounded absorbing set.

@) since E,:=H,(Q)xH (Q)°E, :=H,(Q)xL*(Q) is compact embedded, which means that the

6097 |Page council for Innovative Research
May 2016 www.cirworld.com



& ISSN 2347-1921
Volume 12 Number 3
Journal of Advances in Mathematics

bounded set in E1 is the compact set in Eo, so the semigroup operator S(t) exists a compact global attractor A .
Furthermore we can know, the global attractor A is @-limited set of the absorptive set BO,
A=ow(B,)=(JS®)B,.

>0 t>7

4 The estimates of the upper bounds of Hausdorff and fractal dimensions for the
global attractor

In order to obtain an estimate of the upper bounds of Hausdorff and fractal dimensions for the global attractor A of the
problems (1.1)-(1.3). we rewrite the problems (1.1)-(1.3):

1
u, +&Au, +¢(PA2UP?)Au+h(u) = f(x) in QxR", 17)
u(x,0) =u,(x);u,(x,0) =u,(x), xeQ, (18)
u(x,t)|.o=0, Au(x,t)|.,=0, xeQ. (19)

Let Au=-Au, h(U) = a|u, [P u, +B|u|*" u, where Q is a bounded domain in R™ with smooth boundary 6Q2,

and &, Q, ,3 are positive constants. We consider the abstract linearized equations of the above equations as follows:
U,+AU =FU, (20)
U, =4U(0)=¢. (21)

Let U, € H(Q),U (t) is the solution of the problems (4.20)-(4.21). We can prove that the problems (4.20)-(4.21) have

a unique solution U e L*(0,T, Hy(Q)),U, € L”(0,T, L*()). The equation (4.20) is the linearized equation by the
equation (4.17).

Define the mapping LS(t)uo : LS('[)uo S =U(t).

Let u(t) = st)u,. @ = (Ug,Uy), @ = 0 +{E, 3 ={Uy + &, U, +
PoPe, <R, PpPe <R, Ey = VxH,V = Hi(Q),Hi= L*(Q); S, = o(t) ={u(®),u ()}, S, ={o(®), . (O}
Lemma 4.1™ Assume H is a Hilbert space, E, is a compact set of H.

S(t): E, > H is a continuous mapping,satisfy the follow conditions.

1) S(t)E, = E,,t>0;

2) If S(t) is Fre'chet differentiable, it exists a bounded linear differential operator

L(t,,) € C(R"; L(E,, E,)), ¥t >0, thatis

PS ()¢ — S () — Lt 0, ) (U VIPE
P{&, P

where L(t,¢,) :{&, {3 —>{U(t),U, (1)}.U((t) is the solution of problems (4.20)-(4.21).

—04{¢&,¢3—0.

The proof of lemma 4.1 see ref. [11], is omitted here.

According to Lemma 4.1, we can get the following theorem :
Theorem 4.1 [11.12] Let A isthe global attractor that we obtain in section 3. In that case, A has finite Hausdorff

dimensions and fractal dimensions in (H, () "HE(Q))x H(Q), thatis d, (A) < n,d. (A) < 87n .
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Proof. Firstly, we rewrite the equations (4.17),(4.18) into the first order abstract evolution equations in E,.

Let ¥ = R.¢={u,u, +eu}, R, :{u,u,} —>{u,u, +&u}, is an isomorphic mapping. So let A is the global
attractor of {S(t)}, then R_A is also the global attractor of {S,(t)}, and they have the same dimensions.

. &
0<e<g,& = mm{—l,i}, then V' satisfies as follows:

&
¥ +A¥+h(W)=f, 22)
W(0) ={u,,u, +eu,} . (23)

where W ={u,u, +eu}",h(¥) ={0,h(w)}", f ={0, f ()},

. &l -1
A, =| pPAP)A—g A A (24)
W= F(¥) = f —A,¥—h(¥P). (25)
R =FR(Y). (26)
P+A,P+h(¥)P=0. @7

where P ={U,U, + U} he (P)P ={0,h (U)U}" . The initial condition (4.21) can be written in the following form:

P0) =w,0={£ ¢}<E,. (28)
We take Ne N, then consider the corresponding n solutions: (P = B, P,,..., P,. P, € E;) of the initial values:
(a) =0, 0y,..., 0,. O € Eo) in the equations (4.26)-(4.28) . So there is
t
J.TrFt(Sg(r)‘{‘O)-Qn(r)dr
|[RE) AR M) A..AP (L) |An =lo, Ao, A A @, |An %0 :
%o Eo

from w(r)=S,(7)Y,, we get S, (7) {uy, v, =u, +eu } —>{u(z),v(r) = u,(r) + eu(z)},
() ={u(?),vi () = u,(r) + au(z)}.
Here u is the solution of the problems (4.17)—(4.19); A represents the outer product, Tr represents the trace,

Q,(7) =Q,(z,¥,; @, ®,,...,®,) is an orthogonal projection from the space E, =V xH to the subspace spanned
by {R(7), % (2),-... R, (7)}-
For a given time 7 , let ¢, (7) ={&;(7),¢;(7)}, ] =1,2,....n{@; () };-, ., is the standard orthogonal basis of the
space Q, (z')EO = span[P,(z), R, (z),..., P,(7)].
From the above, we have

TrR(Y(7))-Q,(r) = 25 (¥ (2))-Q,(2)¢; (). 4; (7)), -

(29)

= SR 0.4,
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where (~,~)EO is the inner productin E;. Then
(S CHAE D, = (D +(E N (R 8)e, = (A, 8)e, —~(NUE &)

Let Aé'j = ﬂ,j é'j , here /11- is the eigenvalue of characteristic vector é/j about A. Using the method similar to the priori

estimates in Lemma 1 and Lemma 2 to obtain:
(Ag¢j7¢j)E0 = 5P§jP2 +(¢_818)(A6:j!gj)_(é:pé/j)—'_gl(Aé,j’é/j)'
= gpéjjpz +(¢_515M~j (é,jlgj)_(gjlé/j)+glﬁ‘jpé/jpz' (30)
>a(P&P? +P¢ P?).

2¢6—11. -1 2¢. —lg, -1
2’ : JZJ Hetl=g—ce.

Now, suppose that {u0 , Ul}e A, according to theorem 3.3, A is a bounded absorbing set in E1-
Y(t) ={u(t),u, (t)+eu(t)}e E,u(t) e D(A); D(A) ={u eV, Au e H}.

Then there is a S €[0,1] to make the mapping h, : D(A) = p(V,,H). At the same time, there are the following
results:

where a:= min{

R, = sup | AZ[< o;
{&.¢3eA

sup |h,(u) |p(VS,H)S I <co. (81)
ue D(A)
|AUKR

where Ph, (U)&;, &P meets: Ph (U)&;,4 P <rP&PPSP.
Comprehensive above can be obtained:

(R(P)¢;.¢))e, <-a(PEP’+P¢P*)+rPEPPSP.

a 2 o I 2 (32)
< —E(PQZJP +PZ P )+£P§JPS :
P§JP2 -I—F)é'jl:)2 = P¢JP§0 =1, dueto {¢;(7)} .., is astandard orthogonal basis in Q, (Z')EO . So
n na r? )
DR (2). ¢ (D), <——+ PP (33)
= 2 2a
Almost to all t, making
n n-1
QPSR <A (34)
=1 i=1
So
na r’& .
TrR(¥(2))-Q, (1) S ——+—> &A™ (35)
2 2a%H
Let us assume that {U,,U; } € A, is equivalent to ‘¥, ={u,,u, +&u,} € R.A.
Then
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j TrE(S,(0)¥,)-Q, (T)dT) _

q,(t)= sup sup (= j=1.2,...n.
WyeR,A ek t,
PoPg <1
g, = limsupg, (t). (36)
According to (4.35),(4.36), so
2 n-1
na r
<——+ A
WO=-3 2a,z_;‘ ,
2 n-1 (37)
Y
Therefore, the Lyapunov exponent of A(OrR_A) is uniformly bounded.
na r’g
Uy A S—— A — YA (38)
Mt py ey S = Za; ,

From (4.36), when N —00,(, — 0. By the compactness of the operator Afl, we can get further to :When

] >, A, — 0. So,when N — 00,such that
1S 2150
LS50 g
—

From what has been discussed above, it exists N >1,a,r are constants,

then

n 2
1 DA< a (40)

r2g 7na

na
q, <-——@0-— N<——. (41)
2 a’ 121: 16

r’ & oo . )
(@)). s QA" <2 Zﬂﬂ ,1—12 (42)
i=1 i=1
So we finally obtained the following conclusions:
ax % < 1 (43)
1<j<n-1 |qn | 7

According to the reference [11,12], we immediately to the Hausdorff dimension and fractal dimension are respectively

dH(A)Sn,dF(A)§87n.
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