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 ABSTRACT  

 This paper aims to estimate the unknown parameters, survival and hazard functions for exponentiated Rayleigh 
distribution based on unified hybrid censored data. The maximum likelihood estimators (MLEs), Bayes, and parametric 
bootstrap methods are used for estimating the two unknown parameters as well as survival and hazard functions. We 
propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. 
Approximate confidence intervals for the unknown parameters moreover survival and hazard functions are constructed 
based on the s-normal approximation to the asymptotic distribution of MLEs. The approximate Bayes estimators have 
been obtained under the assumptions of informative and non-informative priors depending on symmetric and asymmetric 
loss functions via the Gibbs within Metropolis-Hasting samplers procedure. Finally, the proposed methods can be 
understood through illustrating the results of the real data analysis. 
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1.  INTRODUCTION 

Supposing there are n identical units put to test in the same time, when the experiment is terminated at apre-fixed time T, 
we refer to Type-I censoring scheme. The disadvantage of Type-I censoring scheme is very few failures may occur before 
time T. The experiment is terminated when the r

th
 failures occur, we refer to Type-II censoring scheme. Furthermore, the 

disadvantage of Type-II censoring scheme is that the termination time is unknown prior to the experiment. For more 
details on Type-I and Type-II censoring, and related inferential issues, see Nelson [23] and Balakrishnan and Cohen [4]. A 
hybrid censoring scheme (HCS) is a mixture of Type-I and Type-II censoring schemes. This HCS was introduced by 
Epstein [10], to avoid the disadvantages of Type-I and type-II censored scheme, and it has been used in reliability 
acceptance test in MILSTD-781-C [21], see also Jeong et al. [16], Gupta and Kundu [12], Park and Balakrishnan [24]. 
Epstein [10] is considered a hybrid censored scheme in which the life-testing experiment is terminated at a random time 
T*=min{Xr:n, T}, this refer to Type-I HCS. The disadvantage of Type-I HCS is very few failures occurring until the pre-fixed 
time T. To overcome this disadvantage, Childs et al. [8] introduced a substitute Type-I HCS that would terminate the 
experiment at the random time T*=max {Xr:n, T}. This HCS is called Type-II HCS. In the same respect, to avoid the 

disadvantages in these schemes, Chandrasekar et al. [7] proposed two new schemes which are called generalized Type-I 

and Type-II HCS. In generalized Type-I HCS, fix k, r  (1, 2, …, n) and T  (0,∞) such that k < r < n. If the k
th

 failure 
occurs before time T, the experiment is terminated at min {Xr:n; T}. If the k

th
 failure occurs after time T, the experiment is 

terminated at Xk:n, so, it is clear that this HCS modifies the Type-I HCS by allowing the experiment to continue after time T 

if very few failures had observed until that time point. In generalized Type-II HCS, fix r  (1, 2, …, n) and T1, T2  (0,∞) 
such that T2 > T1. If the r

th
 failure occurs before time point T1, the experiment is terminated at T1. If the r

th
 failure occurs 

between T1 and T2, the experiment is terminated at Xr:n. If the r
th

 failure occurs after T2, the experiment is terminated at T2. 

There are some drawbacks in generalized HCS, such as, in generalized Type-I HCS. Moreover, because the experiment 
is terminated at the same time or before T, we cannot guarantee observing r failures. While in the generalized Type-II 
HCS, we cannot observe any failure at all or observe only few number of failures until the pre-fixed time T2. To avoid these 
drawbacks, Balakrishnan et al. [5] introduced an unified hybrid censoring scheme (UHCS), which can be described as 

follows, fix r, k  {1, …, n} where k < r < n and T1, T2  (0,∞) where T2 > T1. If the k
th

 failure occurs before time T1, the 
experiment is terminated at min {max {Xr:n, T1}, T2}. If the k

th
 failure occurs between T1 and T2, the experiment is 

terminated at min{Xr:n, T2}. and if the k
th

 failure occurs after time T2, the experiment is terminated at Xk:n. Under this 
censoring scheme, we can guarantee that the experiment would be completed at most in time T2 with at least k failure and 
if not, we can guarantee exactly k failures. 

Therefore, under the UHCS, we have one of the following six cases: 

Case I: 0 < xk:n < xr:n < T1 < T2; the experiment is terminated at T1. 

Case II: 0 < xk:n < T1 < xr:n < T2, the experiment is terminated at xr:n. 

Case III:0 < xk:n < T1 < T2 < xr:n, the experiment is terminated at T2. 

Case IV: 0 < T1 < xk:n < xr:n < T2, the experiment is terminated at xr:n. 

Case V: 0 < T1 < xk:n < T2 < xr:n, the experiment is terminated at T2. 
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Case VI: 0 < T1 < T2 < xk:n < xr:n, the experiment is terminated at xk:n. 

The Rayleigh distribution is an important distribution in statistics and operations research. It has a wide range of 
applications in several areas such as health, agriculture, biology, analyzing wind speed data and other. Burr [6] introduced 
twelve different forms of cumulative distribution functions for modeling lifetime data. The exponentiated Rayleigh 
distribution was derived by Vodã [35] to generalize the Rayleigh distribution originally developed by Rayleigh [28]. One of 
the important properties of the Rayleigh distribution is that its failure rate is an increasing function of time. Exponentiated 
Rayleigh distribution was studied by Sartawi and Abu-Salih [29], Jaheen [15, 14], Ahmad et al. [2], Raqab [25] and Surles 
and Padgett [31]. Recently, Surles and Padgett [32], introduced two parameter Burr Type X distribution and correctly 
named as the exponentiated Rayleigh distribution. The two parameter exponentiated Rayleigh distribution is a special 
case of the Weibull distribution originally suggested by Mudholkar and Srivastava [22]. Kundu and Raqab [17] estimated 
the parameters of ER(α,β) distribution by using different methods. Raqab and Madi [26] studied exponentiated Rayleigh 
distribution in Bayesian framework. Abd-Elfattah [1] discussed the goodness of fit test for the generalized Rayleigh 
distribution with unknown parameters. Raqab and Madi [27] discussed the inference for the generalized Rayleigh 
distribution based on progressively censored data. Lio et al. [18] discussed Parameter estimations for generalized 
Rayleigh distribution under progressively Type-I interval censored data. Fathipour et al. [11] studied the estimating R = 
P(Y < X) in the generalized Rayleigh distribution with different scale parameters. Al Kanani and Jasim [3] discussed non-
Bayesian and Bayesian estimation for generalized Rayleigh distribution. Shrestha and Kumar[30] studied Bayesian 
analysis for the exponentiated Rayleigh distribution. Mahmoud and Ghazal [19] studied estimations from the 
exponentiated Rayleigh distribution based on generalized Type-II hybrid censored data. 

The cumulative distribution function (CDF) given by 

 

Where α and β are the shape and scale parameters respectively, the probability density function (PDF) is 

 

The Survival function S(t) is given by 

 

 

The hazard function H(t) is given by 

 

 

The rest of the paper is organized as follows: In Section 2, we discussed the MLEs of the unknown parameters in addition 
to S(t) and H(t). In Section 3, credible intervals based the MLEs are presented. In Section 4, confidence intervals were 

obtained from two parametric bootstrap procedures. In Section 5, we apply MCMC technique to obtain the confidence 
intervals. One data set has been analyzed for illustrative purposes in Section 6. Finally, conclusions are given in Section 7. 

2.   MAXIMUM  LIKELIHOOD  ESTIMATION   

In this section, we obtained the MLEs of ER (α, β) distribution when α and β are unknown. Let (x1, . . . , xn) be a random 
sample of size n from ER(α, β) distribution, then the likelihood function for six cases of the UHCS is as follows: 

 

 

Where R indicates the number of the total failures in experiment up to time C (the stopping time point) and d1 and d2 
indicate the number of failures that occur before time points T1 and T2, respectively. From (1.1), (1.2) and (2.1) we get 
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Where 
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The logarithm of the likelihood function can be written as 

  

Applying the first derivative with respect to α and β in (2.3) and equating by zero, then we get the two normal equations as 

follows 

 

 where 
R and C are defined above. The MLEs of α and β can be found by solving the system of equations (2.4) and (2.5), even if 
the suggested estimators cannot be expressed in closed forms, we can use a suitable numerical technique to obtain the 

estimators. Moreover, we can obtain the MLEs of S(t) and H(t) after replacing α and β by their MLEs ̂  and ̂  as 

following 

  

 3. CONFIDENCE INTERVAL  

The asymptotic variance-covariance of the MLEs for parameters α and β are given by elements of the inverse of the 
Fisher information matrix are defined as 

.,2,1,, 21

2






















 andjiwhereEI

ji

ij


 

Unluckily, we found difficult to solve the above expectations. Therefore, we gave the approximate asymptotic variance-
covariance matrix for the MLEs, which, can be obtained by 

 



I S S N  2 3 4 7 - 1 9 2 1  

V o l u m e  1 2  N u m b e r  1 2  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6866 | P a g e                                        

J a n u a r y  2 0 1 7                                               w w w . c i r w o r l d . c o m  

 

The asymptotic normality of the MLEs can be used to compute the approximate confidence intervals (ACI) for parameters 

α and β. Therefore, (1-)100% confidence intervals for parameters α and β become 

 

 

Where Z/2 is a standard normal variate. 

Moreover; to find the ACI of the S(t) and H(t), we need to find the variances of them. To find the approximate estimates of 
the variance of Ŝ(t) and Ĥ(t) we use the delta method. The delta method is a general approach for computing confidence 
intervals for functions of MLEs. Depending on this method, the variance of Ŝ(t) and Ĥ(t) respectively given by 

 

 

 

Ĥ(t) are the gradient of Ŝ(t) and Ĥ(t) respectively, with respect to α and β. And 

 V̂ =I-1(α,β). Therefore, (1-)100% confidence intervals for S(t) and H(t) become  

   and  

 

 4.  BOOTSTRAP CONFIDENCE INTERVALS  

In this section, two parametric bootstrap procedures are provided to construct the bootstrap confidence intervals of α, β, 
S(t) and H(t). The first one is the percentile bootstrap (Boot-p) confidence interval proposed by Efron[9]. The second one is 

the bootstrap-t (Boot-t) confidence interval proposed by Hall [13]. The algorithms for estimating the confidence intervals 
using both methods are illustrated as follows. 

4.1 The procedure of Boot-p method 



I S S N  2 3 4 7 - 1 9 2 1  

V o l u m e  1 2  N u m b e r  1 2  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6867 | P a g e                                        

J a n u a r y  2 0 1 7                                               w w w . c i r w o r l d . c o m  

1. From the original sample ),...,,( ;;2;1 nRnn
xxxx  compute the ML estimates of the parameters α and β from equations 

(2.4) and (2.5). 

2. Using the values of ̂  and ̂ in equations (1.3) and (1.4), we obtain the ML estimates Ŝ(t) and Ĥ(t). 

3. Get a bootstrap sample ),...,,(* *

;

*

;2

*

;1 nRnn xxxx   by resampling with replacement. 

4. As in step 1, based on 
*x compute the bootstrap sample estimates of   where  ,)(),(,, tHtS  say 

 .)(*ˆ),(*ˆ*,ˆ*,ˆ*ˆ tHtSn   

5. Repeat steps 3 and 4 N Boot times, and obtain ,ˆ,....,ˆ,ˆ **

2

*

1 NBoot where 

  .,......2,1,)(ˆ),(ˆ,ˆ,ˆˆ ***** NBootitHtS iiiii    

6. Arrange NBootii ,....,2,1,ˆ*   in an ascending order to obtain the bootstrap sample  .ˆ,....,ˆ,ˆ *

)(

*

)2(

*

)1( NBoot   

7. Let )()(1 xpxG i    be the CDF of .i  Define )(1

1 xGiBoot

  for given .10  x  The approximate bootstrap 

100(1-)% confidence interval of i  is given by .
2

1,
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4.2 The procedure of Boot-t method 

1. From the original sample ),...,,( ;;2;1 nRnn
xxxx  compute the ML estimates of the parameters: α and β from 

equations (2.4) and (2.5). 

2. Using the values of ̂  and ̂  in equation (1.3) and (1.4), we obtain the ML estimates Ŝ(t) and Ĥ(t). 

3. Get a bootstrap sample ),...,,(* *

;

*

;2

*

;1 nRnn xxxx  by resampling with replacement. ̂  and ̂  in step 1 to generate a 

bootstrap sample. 

4. As in step 1, based on *x  compute the bootstrap sample estimates of   where  ,)(),(,, tHtS   say 

 .)(*ˆ),(*ˆ*,ˆ*,ˆ*ˆ tHtSn     

5. Compute the 
*T  statistic defined as 

              

Where )ˆvar( *  are obtained by the Fisher information matrix. 

6. Repeat step 3 and 5 NBoot times and obtain .,....,, **

2

*

1


NBootTTT  

7. Arrange .,....,, **

2

*

1


NBootTTT , in an ascending orders and obtain the ordered sequences   *

(

*

)2(

*

)1(
ˆ,....,ˆ,ˆ

NBootTTT . 

8. Let )()( *

2 xTpxG  be the CDF 
*T . For a given x , define Then the 

100(1-)% percentile confidence interval of  )(),(,, tHtS   is .
2
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5. BAYES ESTIMATION  

In this section, we described how to obtain the Bayes estimators and the corresponding credible intervals of parameters α, 
β, S(t) and H(t) of ER(α, β) distribution under squared error loss, LINEX loss and general entropy loss functions, based on 
UHCS when α and β are supposed to be unknown. We assume that α and β have the following gamma prior distributions 
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Here all the hyper parameters a1; a2; b1 and b2 are assumed to be known and non-negative. 

The joint prior distribution for α and β is 

 

Using the joint prior distribution of α and β, we obtained the joint distribution of the data, α and β as 

 

Based on (5.15), the joint posterior density function of α and β can be written as 

 

Therefore, the Bayes estimator of a function u(α, β) under the squared error loss function is as follows 

 

The Bayes estimator of a function u(α,β) under the LINEX loss function is as follows 

 

The Bayes estimator of a function u(α,β) under the General entropy loss function is as follows 

 

It is very difficult to compute the equations (5.17), (5.18) and (5.19) analytically. Then, we suggested using MCMC to 
generate samples from (5.20) and approximate these equations under square error loss, LINEX loss and general entropy 
loss functions. The MCMC method is used for computing the Bayes estimates of the parameter α and β in addition to S(t) 
and H(t) and also to construct the corresponding credible intervals based on the generated posterior sample. For more 
details about the MCMC methods see, for example, Upadhyay et al.[33] and Upadhyay and Gupta [34]. We supposed the 
Gibbs with in Metropolis sampler, which requires the derivation of the complete. From (5.16), the joint posterior up to 
proportionality can be written as 

 

 

From (5.20) we get the posterior density function of α given β 
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Also the posterior density function of β given α can be written as 

 

Therefore, the posterior density function of α given β is gamma with the shape parameter (α1+R) and scale parameter 

  




R

i

xieb
11 )1ln(

2
 and, therefore, samples of α can be easily generated using any gamma generating routine. 

Furthermore, the conditional posterior distribution of β given α in (5.22) cannot be reduced analytically to well known 
distributions and therefore it is impossible to sample directly by standard methods. So, to generate random numbers from 
this distribution, we use the Metropolis-Hastings method with normal proposal distribution, see Metropolis et al. [20]). Now, 
we suppose the next MCMC algorithm to draw samples from the posterior density (5.20) and in turn to obtain the Bayes 
estimates α and β and any function of them such as S(t) and H(t) and the corresponding credible intervals. 

Algorithm of MCMC method: 

 Step 1. Take some initial guess of α and β, say α
(0)

 and β
(0)

 respectively,   M = burn-in. 

 

 Step 2. Set j = 1. 

 Step 3. Generate α
(j)

 from Gamma )).1ln(,(
111

2

 




R

i

xi
j

ebR
  

 Step 4. Using Metropolis-Hastings, generate β
(j)

 from ),(*

2 x with the ),( 2)1(  jN proposal distribution 

where σ
2
 is the variance of β obtained using variance-covariance matrix. 

 Step 5. Compute S(t) and H(t) as 

 

 Step 6. Set j = j + 1. 

 Step 7. Repeat steps 3-6 N times and obtain α
(j)

, β
(j)

, S
(j)

(t) and H
(j)

(t), j = M+1,  , N. 

 Step 8. To compute the credible intervals of α, β, S(t) and H(t), order α
(j)

, β
(j)

; S
(j)

(t) and H
(j)

(t), j = M + 1, … , N, as 

(α
(1)

 < … ,  α
(N-M)

), (β
(1)

 < … , < β
(N-M)

, (S
(1)

(t) < … , S
(N-M)

(t) and (H
(1)

(t) < … , H
(N-M)

(t)). Then the 100(1 - )% 

credible interval of α, β, S(t) and H(t) is  .,
)2/1()(2/)( 


 MNMN   

The Bayes estimates of ζ = [α, β, S(t), H(t)], under squared error loss function are given by 

         

The Bayes estimates of ζ = [α, β, S(t), H(t)], under LINEX loss function are given by 

 

The Bayes estimates of ζ = [α, β, S(t), H(t)], under general entropy loss function are given by 

 

6.   REAL LIFE DATA  

Wind power is renewable and environmentally friendly. It is an alternative clean energy source compared with the fossil 
fuels that pollute the lower layer of the atmosphere. Wind power is a form of solar energy, driven by the unequal heating of 
the earth's surface. The most important parameter of the wind power is wind speed. Statistical methods are useful for 
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estimating wind speed because it is a random phenomenon. For this reason, wind speed probabilities can be modelled by 
using probability distributions. We have taken the daily average wind speeds from 1 / 1 /2009 to 10 / 4 / 2009 for Cairo city 
as follows 

3.5 3.1 3.8 3.2 3.2 4.5 5.6 5.7 4.9 5.7 

4.3 9.4 9.3 4.4 2.7 3.8 4.9 5.4 4.9 4.2 

5.4 3.3 6.9 9.8 10 8 5.6 8.2 9.4 11.3 

9.4 5.5 4.9 8.6 5 4.7 3.8 4.3 6.7 7.6 

13.3 8.2 5.8 5.1 7.8 10.3 9.3 4.3 7.4 13.8 

10.7 12 8.9 10.6 6.8 6.6 11.1 12.5 14.4 9.9 

4.8 4.2 5.5 7.3 12.4 14.7 6.4 8.7 5.2 6.8 

5.6 7.5 7.7 7.1 6.1 7.6 5.8 6.3 12.2 6 

3.5 9.5 8.8 5.2 5 9.8 8 7.9 6.8 5.7 

7.3 6.8 4.7 5.3 9.6 10.1 7.3 6.7 5.4 5.4 

This data was produced by the national climatic data center (NCDC) in Asheville in the United States of America. Now, 
one of the most important subjects is type of distribution of any set of data will be known during statistical tests which are 
called the goodness of fit. We depended on Kolmogorov-Smirnov test to fit whether the data distribution as ER (α, β) 
distribution or not. The calculated value of the K-S test is 0.0983022 for the ER (α, β) distribution and this value is smaller 
than their corresponding values expected at 5% significance level, which is 0.13403 at n = 100. We have just plotted the 
empirical S(t) and the fitted S(t) in Figure1a. Observe that the ER (α, β) distribution can be a good model fitting this data. 
In Figure1b it shows that all the points of a Q-Q plot are inside the unit square, so, it can be seen that the ER (α, β) 
distribution fits the data very well. P-value = 0.27052, therefore, the high p-value indicates that ER (α, β) distribution can 

be used to analyze this data set. Now, we consider the case when the data are censored. We have six cases as following: 

 Case I: T1 = 9.45, T2 = 9.95, k = 70, r = 75. In this case: R = 80, C = T1 = 9.45. 

 Case II: T1 = 9.45, T2 = 9.95, k = 70, r = 83. In this case: R = 83, C = xr:n = 9.8. 

 

Figure 1: (a) Empirical and Fitted Survival Functions. (b) Q - Q plot compare data to a specific distribution. 

 

 

 Case III: T1 = 9.45, T2 = 9.95, k = 70, r = 86. In this case: R = 85, C = T2 = 9.95. 

 Case IV: T1 = 8.4, T2 = 10.5, k = 80, r = 87. In this case: R = 87, C = xr:n = 10.1. 

 Case V: T1 = 8.4, T2 = 10.5, k = 84, r = 90. In this case: R = 88, C = T2 = 10.5. 

 Case VI: T1 = 8.4, T2 = 9.35, k = 92, r = 93. In this case: R = 92, C = xk:n= 11.3.  

In all the six cases, we estimated the unknown parameters, we computed different estimates of the parameters α and β in 
addition to S(t) and H(t). MLEs, Bootstrap confidence intervals (Boot-p, Boot-t) based on 1000 Bootstrap samples and 
Bayes estimates using MCMC method based on 11000 MCMC sample and discard the first 1000 values as `burn-in'. To 
compute the MLEs, we used the numerical method and also computed the 95% ACI; the results are given in Table (1). 
Also, we computed the 95% ACI Bootstrap confidence intervals. The results are given in Table (2). To compute the Bayes 
estimates we considered the square error loss, LINEX loss and general entropy loss functions. Under non-informative 
priors the hyper parameters are a1 = a2 = b1 = b2 = 0. The results are given in Table (3). Under the informative priors the 
hyper parameters are a1 = 0.9, a2 = 0.8, b1 = 0.5 and b2 = 1.0. The results are given in Table (4). Also, we computed the 

95% ACI based on the MCMC samples. The results are given in Table (5). The characteristics of the unknown parameters 
for MCMC method under non-informative and informative priors are given in Table (6) and Table (7) respectively. Figure 
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(2) plot the MCMC output of α, β, S(t) and H(t). The histogram of α, β, S(t) and H(t) are given in Figure (3). In all the cases 

α = 2 and β = 0.026 are considered. 

Table 1: Estimation of α, β, S and H and the 95% confidence interval of MLE method for six cases of UHCS 

 

Cases Parameters MLE Lower Upper Length 

Case I α 2.2276 1.4839 2.9714 1.4875 

β 0.0281 0.0210 0.0352 0.0142 

S 0.9646 0.9373 0.9919 0.0546 

H 0.0479 0.0231 0.0727 0.0496 

Case II α 2.2150 1.4873 2.9427 1.4554 

β 0.0279 0.0210 0.0348 0.0138 

S 0.9643 0.9370 0.9916 0.0546 

H 0.0481 0.0233 0.0728 0.0494 

Case III α 2.2426 1.5121 2.9732 1.4611 

β 0.0282 0.0214 0.0351 0.0137 

S 0.9650 0.9381 0.9918 0.0537 

H 0.0477 0.0230 0.0724 0.0494 

Case IV α 2.2724 1.5382 3.0067 1.4686 

β 0.0286 0.0218 0.0354 0.0136 

S 0.9656 0.9392 0.9920 0.0529 

H 0.0473 0.0227 0.0719 0.0493 

Case V α 2.2084 1.5001 2.9167 1.4166 

β 0.0278 0.0212 0.0344 0.0132 

S 0.9642 0.9370 0.9913 0.0543 

H 0.0482 0.0235 0.0728 0.0493 

Case VI α 2.1828 1.4959 2.8697 1.3739 

β 0.0275 0.0212 0.0339 0.0127 

S 0.9635 0.9363 0.9908 0.0545 

H 0.0485 0.0239 0.0731 0.0491 

 

 

Table 2: Estimation of α, β, S and H and the 95% confidence interval of Boot-P and Boot-T methods for six cases of 
UHCS 

Cases Parameters Boot-P Lower Upper Length Boot-P Lower Upper Length 

Case I α 2.2648 1.8221 2.8330 1.0109 2.2461 1.8120 2.8045 0.9924 

β 0.0282 0.0242 0.0326 0.0084 0.0277 0.0245 0.0307 0.0061 

S 0.9644 0.9420 0.9830 0.0410 0.9641 0.9474 0.9897 0.0422 

H 0.0106 0.0105 0.0113 0.0008 0.0485 0.0276 0.0647 0.0371 

Case II α 2.2457 1.8314 2.8450 1.0136 2.2744 1.8247 2.8740 1.0493 

β 0.0280 0.0242 0.0326 0.0083 0.0278 0.0239 0.0311 0.0071 

S 0.9638 0.9429 0.9829 0.0400 0.9646 0.9486 0.9903 0.0416 

H 0.0106 0.0104 0.0160 0.0055 0.0479 0.0268 0.0640 0.0372 

Case III α 2.2844 1.8609 2.8806 1.0196 2.3096 1.7632 2.9003 1.1370 
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β 0.0284 0.0241 0.0333 0.0092 0.0285 0.0231 0.0327 0.0095 

S 0.9648 0.9439 0.9827 0.0387 0.9668 0.9450 0.9966 0.0516 

H 0.0106 0.0100 0.0154 0.0054 0.0467 0.0217 0.0670 0.0453 

Case IV α 2.3152 1.8954 2.8630 0.9685 2.3126 1.8661 2.8512 0.9851 

β 0.0287 0.0241 0.0333 0.0092 0.0286 0.0238 0.0326 0.0088 

S 0.9658 0.9453 0.9822 0.0369 0.9685 0.9478 0.9976 0.0497 

H 0.0105 0.0065 0.0109 0.0044 0.0452 0.0210 0.0646 0.0436 

Case V α 2.2469 1.8207 2.7842 0.9634 2.2517 1.7837 2.8097 1.0260 

β 0.0281 0.0239 0.0332 0.0092 0.0281 0.0225 0.0331 0.0105 

S 0.9637 0.9416 0.9817 0.0401 0.9684 0.9440 1.0064 0.0624 

H 0.0107 0.0077 0.0111 0.0034 0.0452 0.0151 0.0677 0.0526 

Case VI α 2.2042 1.8003 2.7536 0.9533 2.2161 1.6931 2.7934 1.1002 

β 0.0275 0.0226 0.0333 0.0106 0.0275 0.0209 0.0327 0.0117 

S 0.9629 0.9418 0.9808 0.0390 0.9657 0.9427 0.9988 0.0560 

H 0.0106 0.0087 0.0171 0.0083 0.0473 0.0216 0.0691 0.0474 
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Table 3: Estimation of α, β, S and H for MCMC method for six cases of UHCS with non-informative prior 

 

Cases Parameters SE 
LINEX GE 

a = - 4 a = 0.5 a = 4 a = - 4 a = 0.5 a = 4 

Case I α 1.2877 1.4664 1.2688 1.1723 1.3757 1.2520 1.1667 

β 0.0194 0.0194 0.0194 0.0194 0.0205 0.0190 0.0178 

S 0.8999 0.9019 0.8996 0.8977 0.9017 0.8991 0.8970 

H 0.0837 0.0842 0.0836 0.0831 0.0885 0.0814 0.0752 

Case II α 1.3806 1.5549 1.3612 1.2603 1.4634 1.3463 1.2626 

β 0.0204 0.0204 0.0204 0.0204 0.0212 0.0200 0.0191 

S 0.9100 0.9117 0.9098 0.9082 0.9115 0.9093 0.9076 

H 0.0794 0.0800 0.0794 0.0789 0.0845 0.0771 0.0705 

Case III α 1.4912 1.7009 1.4684 1.3538 1.5822 1.4540 1.3652 

β 0.0217 0.0217 0.0217 0.0217 0.0226 0.0213 0.0203 

S 0.9193 0.9208 0.9191 0.9178 0.9207 0.9188 0.9173 

H 0.0755 0.0760 0.0754 0.0750 0.0809 0.0730 0.0660 

Case IV α 1.6093 1.8518 1.5835 1.4523 1.7044 1.5700 1.4742 

β 0.0230 0.0231 0.0230 0.0230 0.0239 0.0227 0.0216 

S 0.9279 0.9292 0.9277 0.9266 0.9290 0.9274 0.9261 

H 0.0716 0.0721 0.0715 0.0711 0.0772 0.0690 0.0617 

Case V α 1.6108 1.8425 1.5850 1.4519 1.7051 1.5714 1.4736 

β 0.0228 0.0228 0.0228 0.0228 0.0236 0.0224 0.0215 

S 0.9290 0.9303 0.9288 0.9276 0.9301 0.9285 0.9272 

H 0.0705 0.0710 0.0704 0.0700 0.0762 0.0679 0.0606 

Case VI α 1.7671 2.0264 1.7386 1.5927 1.8619 1.7274 1.6295 

β 0.0241 0.0241 0.0241 0.0240 0.0248 0.0237 0.0228 

S 0.9404 0.9414 0.9403 0.9394 0.9413 0.9401 0.9391 

H 0.0638 0.0642 0.0637 0.0633 0.0693 0.0612 0.0540 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Estimation of α, β, S and H for MCMC method for six cases of UHCS with informative prior 
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Cases Parameters SE 
LINEX GE 

a = - 4 a = 0.5 a = 4 a = - 4 a = 0.5 a = 4 

Case I α 1.3031 1.4883 1.2841 1.1874 1.3905 1.2678 1.1829 

β 0.0196 0.0197 0.0196 0.0196 0.0206 0.0192 0.0180 

S 0.9013 0.9033 0.9011 0.8992 0.9031 0.9006 0.8985 

H 0.0832 0.0838 0.0831 0.0827 0.0882 0.0809 0.0744 

Case II α 1.4274 1.6057 1.4071 1.3012 1.5108 1.3926 1.3071 

β 0.0211 0.0211 0.0211 0.0211 0.0220 0.0207 0.0197 

S 0.9135 0.9151 0.9133 0.9118 0.9149 0.9129 0.9112 

H 0.0784 0.0789 0.0783 0.0779 0.0836 0.0761 0.0696 

Case III α 1.5250 1.7386 1.5015 1.3785 1.6153 1.4871 1.3922 

β 0.0222 0.0222 0.2220 0.0221 0.0231 0.0218 0.0207 

S 0.9215 0.9230 0.9213 0.9200 0.9228 0.9210 0.9185 

H 0.0748 0.0753 0.0747 0.0743 0.0801 0.0724 0.0657 

Case IV α 1.6407 1.8910 1.6142 1.4786 1.7362 1.6010 1.5031 

β 0.0235 0.0235 0.0235 0.0235 0.0244 0.0231 0.0221 

S 0.9296 0.9309 0.9295 0.9283 0.9307 0.9292 0.9279 

H 0.0710 0.0715 0.0709 0.0705 0.0765 0.0684 0.0612 

Case V α 1.6292 1.8782 1.6044 1.4737 1.7181 1.5917 1.4972 

β 0.0231 0.0231 0.0231 0.0231 0.0239 0.0227 0.0218 

S 0.9302 0.9314 0.9301 0.9290 0.9313 0.9298 0.9286 

H 0.0701 0.0706 0.0700 0.0696 0.0756 0.0676 0.0609 

Case VI α 1.8038 2.1435 1.7736 1.6244 1.9060 1.7629 1.6644 

β 0.0246 0.0246 0.0246 0.0246 0.0254 0.0243 0.0234 

S 0.9418 0.9427 0.9417 0.9409 0.9426 0.9415 0.9406 

H 0.0633 0.0638 0.0632 0.0628 0.0689 0.0606 0.0527 
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Table 5: The 95% confidence interval of MCMC for α, β, S and H for six cases of UHCS 

 

Cases Parameters MCMC non informative MCMC with informative 

Lower Upper Length Lower Upper Length 

Case I α 0.9372 1.7064 0.7692 0.9541 1.7245 0.7704 

β 0.0145 0.0250 0.0105 0.0146 0.0251 0.0105 

S 0.8481 0.9425 0.0944 0.8502 0.9434 0.0932 

H 0.0604 0.1083 0.0479 0.0598 0.1081 0.0483 

Case II α 0.0196 1.8074 0.7878 1.0594 1.8641 0.8047 

β 0.0157 0.0254 0.0098 0.0163 0.0264 0.0101 

S 0.8621 0.9491 0.0871 0.8674 0.9512 0.0839 

H 0.0565 0.1044 0.0479 0.0552 0.1030 0.0477 

Case III α 1.1035 1.9516 0.8481 1.1258 1.9803 0.8545 

β 0.0168 0.0270 0.0102 0.0170 0.0276 0.0107 

S 0.8748 0.9556 0.0808 0.8775 0.9562 0.0787 

H 0.0528 0.1003 0.0475 0.0523 0.0995 0.0472 

Case IV α 1.1940 2.0899 0.8960 1.2232 2.1355 0.9123 

β 0.0179 0.0285 0.0107 0.0184 0.0290 0.0106 

S 0.8862 0.9608 0.0747 0.8886 0.9616 0.0730 

H 0.0489 0.0964 0.0474 0.0483 0.0959 0.0476 

Case V α 1.1956 2.1037 0.9082 1.2190 2.0971 0.8781 

β 0.0180 0.0280 0.0101 0.0182 0.0283 0.0101 

S 0.8869 0.9623 0.0754 0.8895 0.9615 0.0720 

H 0.0477 0.0954 0.0477 0.0483 0.0950 0.0466 

Case VI α 1.3258 2.2754 0.9496 1.3662 2.3289 0.9627 

β 0.0192 0.0292 0.0101 0.0196 0.0297 0.0101 

S 0.9042 0.9687 0.0644 0.9066 0.9698 0.0632 

H 0.0423 0.0876 0.0453 0.0415 0.0870 0.0455 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: The characteristics for α, β, S and H for six cases of UHCS with non- informative prior 
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Cases Parameters Mean Median Mode Standard deviation Root MS Skewness 

Case I α 1.2878 1.2659 1.2530 0.2362 1.3092 0.5488 

β 0.0195 0.0193 0.0190 0.0032 0.0197 0.2662 

S 0.8999 0.9023 0.9153 0.0288 0.9004 - 0.5123 

H 0.0837 0.0834 0.0846 0.0146 0.0850 0.1477 

Case II α 1.3807 1.3627 1.3620 0.2386 1.4011 0.4624 

β 0.0204 0.0203 0.0203 0.0030 0.0207 0.1913 

S 0.9101 0.9126 0.9259 0.0266 0.9104 - 0.5727 

H 0.0795 0.0792 0.0824 0.0145 0.0808 0.1718 

Case III α 1.4913 1.4666 1.3370 0.2591 1.5136 0.5113 

β 0.0219 0.0216 0.0209 0.0032 0.0220 0.2348 

S 0.9194 0.9218 0.9235 0.0248 0.9197 - 0.5614 

H 0.0756 0.0750 0.0740 0.0146 0.0770 0.1914 

Case IV α 1.6094 1.5891 1.5350 0.2759 1.6329 0.4636 

β 0.0231 0.0230 0.0230 0.0032 0.0233 0.1440 

S 0.9280 0.9302 0.9321 0.0230 0.9282 - 0.6200 

H 0.0717 0.0714 0.0740 0.0145 0.0731 0.2225 

Case V α 1.6108 1.5894 1.5400 0.2756 1.6343 0.4386 

β 0.0228 0.0228 0.0228 0.0031 0.0231 0.1288 

S 0.9291 0.9315 0.9377 0.0231 0.9293 - 0.6574 

H 0.0706 0.0699 0.0677 0.0146 0.0720 0.2386 

Case VI α 1.7671 1.7467 1.6970 0.2894 1.7907 0.4213 

β 0.0241 0.0241 0.0229 0.0031 0.0243 0.1025 

S 0.9405 0.9429 0.9455 0.0198 0.9407 - 0.6924 

H 0.0638 0.0633 0.0674 0.0137 0.0653 0.2706 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: The characteristics for α, β, S and H for six cases of UHCS with informative prior 
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Cases Parameters Mean Median Mode Standard deviation Root MS Skewness 

Case I α 1.3031 1.2827 1.2370 0.2363 1.3244 0.5675 

β 0.0197 0.0195 0.0189 0.0032 0.0199 0.3000 

S 0.9014 0.9040 0.9102 0.0286 0.9018 - 0.5398 

H 0.0833 0.0829 0.0850 0.0148 0.0846 0.1762 

Case II α 1.4275 1.4092 1.3520 0.2439 1.4482 0.4364 

β 0.0211 0.0210 0.0215 0.0031 0.0214 0.1878 

S 0.9135 0.9165 0.9249 0.0258 0.9139 - 0.6006 

H 0.0785 0.0778 0.0766 0.0145 0.0798 0.2206 

Case III α 1.5250 1.5079 104420 0.2625 1.5475 0.4247 

β 0.0222 0.0221 0.0213 0.0032 0.0224 0.1423 

S 0.9216 0.9243 0.9338 0.0243 0.9219 - 0.6532 

H 0.0748 0.0744 0.0766 0.0144 0.0762 0.2155 

Case IV α 1.6407 1.6178 1.5490 0.2792 1.6643 0.4624 

β 0.0235 0.0234 0.0229 0.0032 0.0238 0.2186 

S 0.9297 0.932 0.9366 0.0224 0.9300 - 0.644 

H 0.0710 0.0706 0.0704 0.0144 0.0725 0.2198 

Case V α 1.6292 1.6163 1.5890 0.2691 1.6513 0.4022 

β 0.0231 0.0230 0.0230 0.0031 0.0233 0.1858 

S 0.9303 0.9333 0.9349 0.0223 0.9305 - 0.7608 

H 0.0701 0.0694 0.0648 0.0142 0.0716 0.3252 

Case VI α 1.8038 1.7756 1.6670 0.2993 1.8285 0.5854 

β 0.0246 0.0245 0.0247 0.0031 0.0248 0.2061 

S 0.9419 0.9439 0.9447 0.0194 0.9421 - 0.6644 

H 0.0633 0.0629 0.0617 0.0137 0.0648 0.2263 
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Figure 2: Trace plot of α, β, S(t) and H(t) generated by MCMC method for case I. 

 

     

 

      

 

Figure 3: Histogram of α, β, S(t) and H(t) generated by MCMC method for case I. 

 

 

7.   CONCLUSION 

In this paper, we considered the Bayes estimation of the unknown parameters of the exponentiated Rayleigh distribution 
when the data is collected under the unified hybrid censored data. The MLEs, the bootstrap confidence intervals and the 
credible intervals based on the observed Fisher information matrix have been discussed. We supposed the gamma priors 
for both the unknown parameters and provided the Bayes estimators under the assumptions of squared error loss, LINEX 
loss and general entropy loss functions. In our study, the Bayes estimates cannot be obtained in explicit form. So, we used 
the MCMC technique to compute the approximate Bayes estimates and the corresponding credible intervals. We have 
applied the developed techniques on a real data set. 
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