

Two theorems in general metric space with p-distance

Salwa Salman Abed, Hiba Adel Jabbar Dep. Of Math. Colle. Of Education for Pure Sciences Ibn Al-Haitham University of Baghdad

salwaalbundi@yahoo.com

hiba.adel85@yahoo.com

ABSTRACT

In this paper, we prove two theorems about fixed point and coupled coincidence point in generalized **b**-metric space via **p**-distance for a mapping satisfying a contraction condition.

Keywords

Weak Contractions; fixed Points; coupled coincidence points; general metric spaces.

1. INTRODUCTION

The Banach contraction principle is the most known fixed point theorems. In 1993, Czerwik. introduced b-metric spaces where the triangle inequality generalized as follows: $d(x,z) \leq b[d(x,y)+d(y,z)]$ for all x,y and $z \in X$, $b \geq 1$

In. 8 , Branceciri defined a generalized metric space as a metric space in which the triangle inequality is replaced by the rectangular one called quadrilateral inequality $d(x,y) \le d(x,u) + d(u,v) + d(v,y)$ for all x,y,u and $v \in X$.

On the other hand, In. 10 , Dhage introduced the notion of D-metric spaces on X^3 :

1.D(x,y,z)=0 if and only if
$$x = y = z$$
 (coincidence).

$$2.D(x,y,z) = D(p\{x,y,z\})$$
, for all $x,y,z \in X$ and for any permutation $p\{x,y,z\}$ of x,y,z (symmetry).

$$3.D(x,y,z) \le D(x,y,a) + D(x,a,z) + D(a,y,z)$$
, for all x,y,z , and $a \in X$ (tetrahedral inequality).

and claimed that **D**-metric but, Naidu S.V.R., Rao K.P.R. and Rao N.S. (2004-2005) gave many corrections for Dhage's work in. ^{14, 15 and 16}. In 2006, Mustafa and Sims. ²⁵ introduce a new concept known as **G**-metric space satisfied the following:

1.
$$G(x,y,z) = 0$$
 iff $x = y = z$ for all $x,y,z \in X$

2.
$$G(x,x,y) > 0$$
 for all $x,y \in X$, with $x \neq y$.

3.
$$G(x,x,y) \le G(x,y,z)$$
 for all $x,y,z \in X$, with $z \ne y$.

4.
$$G(x,y,z) = G(p\{x,y,z\})$$
, p permutation of x,y and z.

5.
$$G(x,y,z) \le G(x,a,a) + G(a,y,z)$$
 for all x,y,z and $a \in X$ (Rectangle inequality).

Mustafa et al. studied many fixed point theorems for mappings satisfying several contractive conditions on complete Gmetric space. Aghajani et al. 4 introduced new generalizations of G-metric spaces called g_b -metric space. Mustafa et al. 13 have obtained some coupled coincidence point theorems for g_b -metric space. Kada et al. 12 introduced the concept of W-

distance on a metric space. Saadati et al. 17 defined an p-distance on a complete G-metric spaces. Gholizadeh et al. 11 state complete partially ordered G-metric space with the concept of p-distance. Shatanawi and Pitea in 19,20 prove some fixed and coupled fixed point theorem for nonlinear contractions used the notion of p-distance see 1,2,3,5,6,7. The aim of this paper is define a new weak contraction mappings defined on a gh-metric space depend on p-distance and prove some results about the fixed point, coupled coincidence point.

2. Preliminaries:

Definition 2-1: 13

Let X be a non-empty set and $y: X \times X \times X \to \mathbb{R}^+$ be a function such that for all x, y, z and $a \in X, b \ge 1$

1.
$$y(x, y, z) = 0$$
 if $x = y = z$.

$$2.y(x,x,y) > 0$$
 for all $x,y \in X$ with $x \neq y$.

3.
$$y(x, x, y) \le y(x, y, z)$$
 for all $x, y, z \in X$ with $y \ne z$.

4.
$$y(x,y,z) = y(p\{x,y,z\}), p$$
 permutation of x,y and z.

5.
$$y(x,y,z) \le b[y(x,a,a) + y(a,y,z)]$$
 for all x,y,z and $a \in X$, $b \ge 1$ (Like trihedron).

then the pair (X, y) is called generalized **b**-metric space.

Definition 2-2: 13

Let X be a g_b -m space. A sequence $\{x_n\}$ in X is said to be:

1. γ -Cauchy sequence if, for each $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that, for all $m, n, i \geq n_0$, $\gamma(x_n, x_m, x_i) < \epsilon$.

2. γ -convergent to a point $x \in X$ if, for each $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that, for all $m, n \geq n_0$, $\gamma(x_n, x_m, x) < \epsilon$.

Throughout this paper (X, y) will be a generalized **b**-metric space $b \ge 1$.

Definition 2-3: 17

Let $\rho: X \times X \times X \to \mathbb{R}^+$. ρ is called an ρ -distance on X if for all x, y, z and $a \in X$:

(a)
$$\rho(x,y,z) \le \rho(x,a,a) + \rho(a,y,z)$$
, for all $x,y,z,a \in X$.

(b) For each
$$x,y\in X$$
 , $\rho(x,y,.)$, $\rho(x,.,y):X\to \mathbb{R}^+$ are Lower semi-continuous (L.S.C).

(c)
$$\forall \epsilon > 0$$
 there is $\delta > 0$ such that $\rho(x,a,a) \leq \delta$ and $\rho(a,y,z) \leq \delta$ imply

$$y(x,y,z) \leq \epsilon$$

Lemma 2-4: 17,11

Journal of Advances in Mathematics Let ρ be an ρ -distance on X and let $\{x_n\}$, $\{y_n\}$ are sequences in X, $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in \mathbb{R}^+ with

$$\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$$
. If x,y, z and $a \in X$ then

$$\text{(1) If } \rho(y,x_n,x_n) \leq \alpha_n \text{ and } \rho(x_n,y,z) \leq \beta_n \text{ for } n \in \mathbb{N} \text{ then } \gamma(y,y,z) < \epsilon \text{ and, } y = z.$$

$$\text{(2) If } \rho\big(y_n,x_n,x_n\big) \leq \alpha_n \text{ and } \rho\big(x_n,y_m,z\big) \leq \beta_n \text{ for } m > n \text{ then } \gamma\big(y_n,y_m,z\big) \to 0, \text{ hence } y_n \to z.$$

(3) If
$$\rho(x_n, x_m, x_i) \leq \alpha_n$$
 for $i, n, m \in \mathbb{N}$ with $n \leq m \leq i$, then $\{x_n\}$ is a γ -Cauchy sequence.

(4) If
$$\rho(x_n,a,a) \leq \alpha_n$$
 , $n \in \mathbb{N}$ then $\{x_n\}$ is a γ -Cauchy sequence.

Definition 2-5: 18

Let $G: X \times X \to X$ and $T: X \to X$ be two mapping. An ordered pair $(x,y) \in X \times X$ is called:

- (a) Fixed point if Tx = x.
- (b) Coupled coincidence point if T(x) = G(x,y) and T(y) = G(y,x).

3. Main Results:

The following classes are needed in the next results. Let μ be a class of functions $\mu \colon \mathbb{R}^+ \to \mathbb{R}^+$ with

- i. μ is continuous.
- ii. µ non-decreasing.

iii.
$$\mu(\varepsilon) > 0$$
 for all $\varepsilon > 0$.

and Let Ψ be a class of functions $\psi \colon \mathbb{R}^+ o \mathbb{R}^+$ with

- 1. ψ non-decreasing.
- 2. ψ is right continuous.

3.
$$\psi(t) < 0$$
 for all $t > 0$.

Remark 3-1:

If
$$\psi \in \Psi$$
 then $\lim_{n \to \infty} \psi^n(t) = 0$ for each $t > 0$ and if $\mu \in \mu$, $\{a_n\} \subseteq \mathbb{R}^+$ and

$$\lim_{n\to\infty}\mu(a_n)=0$$
 then $\lim_{n\to\infty}a_n=0$

Fixed Point:

Theorem 3-2:

Let ρ be an ρ -distance, $T:X\to X$ be a mapping and $\mu\in\mu$, $\psi\in\Psi$ such that

$\mu\rho(Tx,Ty,Tz) \le \psi\mu\rho(x,y,z)$ for each $x,y,z \in X$

(1)

Suppose that if $u \neq Tu$ then $\inf\{\rho(x,Tx,u): x \in X\} > 0$

Then T has a unique fixed point.

Proof:

Let
$$x_0 \in X$$
 and $x_{n+1} = Tx_n$, $\forall n \in \mathbb{N}$

if there is $n \in \mathbb{N}$ for which $x_{n+1} = x_n$ then x_n is fixed point of T.

in the following, we assume $x_{n+1} \neq x_n$, $\forall n \in \mathbb{N}$

by condition (1)

$$\mu\rho(x_n, x_{n+1}, x_{n+1}) = \mu\rho(Tx_{n-1}, Tx_n, Tx_n)$$

$$\leq \psi \mu \rho(\mathbf{x}_{n-1}, \mathbf{x}_n, \mathbf{x}_n)$$

Ė

$$\leq \psi^n \mu \rho(x_0, x_1, x_1)$$

thus $\lim_{n\to\infty} \mu \rho(x_n, x_{n+1}, x_{n+1}) = 0$. Then by remark (2-1) implies

$$\lim_{n \to \infty} \rho(x_n, x_{n+1}, x_{n+1}) = 0 \tag{2}$$

also

$$\lim_{n \to \infty} \rho(x_{n+1}, x_n, x_n) = 0 \tag{3}$$

Assume that $\{x_n\}$ is not a γ -Cauchy sequence, so, there is an $\epsilon>0$ and $\{x_{n_k}\}$, $\{x_{m_k}\}$ subsequences of $\{x_n\}$ with $m_k\geq n_k\geq k$ such that

$$\rho(x_{n_k}, x_{m_k}, x_{m_k}) \ge \epsilon \tag{4}$$

$$\rho\left(\mathbf{x}_{\mathbf{n}_{k}}, \mathbf{x}_{\mathbf{m}_{k}-1}, \mathbf{x}_{\mathbf{m}_{k}-1}\right) < \epsilon \tag{5}$$

the next step getting from conditions (4) and (5)

$$\varepsilon \le \rho(x_{n_k}, x_{m_k}, x_{m_k})$$

$$\leq \rho(x_{n_k}, x_{m_k-1}, x_{m_k-1}) + \rho(x_{m_k-1}, x_{m_k}, x_{m_k})$$

$$<\epsilon+\rho\big(x_{m_k-1},x_{m_k},x_{m_k}\big)$$

then letting $k \to \infty$ in the above inequality and using (2)

$$\lim_{k\to\infty} \rho(x_{n_k}, x_{m_k}, x_{m_k}) = \epsilon^+$$

if
$$\eta = \lim\sup \rho \big(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}\big) \geq \epsilon$$

then there exists $\{k_r\}$ such that

$$\rho\left(x_{n_{k_r}+1},x_{m_{k_r}+1},x_{m_{k_r}+1}\right)\to\eta\geq\epsilon\;\text{as}\;r\to\infty.$$

since µ is continuous and non-decreasing

$$\mu(\epsilon) \leq \mu(\eta) = \lim_{r \to \infty} \mu \rho \left(x_{n_{k_r}+1}, x_{m_{k_r}+1}, x_{m_{k_r}+1} \right)$$

$$\leq \lim_{r \to \infty} \psi \mu \rho \left(\mathbf{x}_{n_{k_r}}, \mathbf{x}_{m_{k_r}}, \mathbf{x}_{m_{k_r}} \right) = \psi \mu(\epsilon)$$

note that $\mu\rho\left(x_{n_{k_r}},x_{m_{k_r}},x_{m_{k_r}}\right)\to\mu(\epsilon)$, and ψ is right continuous.

thus $\mu(\varepsilon) = 0$. This is a contradiction and

$$\lim_{k\to\infty} \sup_{\rho} \left(x_{n_k+1}, x_{m_k+1}, x_{m_k+1} \right) < \varepsilon$$
 (6)

this implies that

$$\epsilon \le \rho(x_{n_{lr}}, x_{m_{lr}}, x_{m_{lr}})$$

$$\leq \rho\big(x_{n_k}, x_{n_k+1}, x_{n_k+1}\big) + \rho\big(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}\big) + \rho\big(x_{m_k+1}, x_{m_k}, x_{m_k}\big)$$

by (2),(3) and (6)

$$\epsilon \leq \lim_{k \to \infty} p\big(x_{n_k}, x_{n_k+1}, x_{n_k+1}\big) + \lim_{k \to \infty} sup\rho\big(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}\big)$$

$$+\lim_{k\to\infty}\rho(x_{m_k+1},x_{m_k},x_{m_k})$$

$$=\lim_{k\to\infty}\sup\rho\big(x_{n_k+1},x_{m_k+1},x_{m_k+1}\big)<\epsilon$$

a contradiction, then

$$\lim_{m,n\to\infty} \rho(x_n, x_m, x_m) = 0$$

then $\{x_n\}$ is y-Cauchy sequence. Since X complete, there exists $u \in X$ such that

$$\lim_{n\to\infty} x_n = u$$

suppose $\mathbf{u} \neq \mathbf{T}\mathbf{u}$

now, for $\varepsilon > 0$ and by (L.S.C) of ρ , we get

(7)

$$\rho(x_n,x_m,u) \leq lim_{p \to \infty} \inf \rho\big(x_n,x_m,x_p\big) \leq \epsilon$$

considering m = n + 1 in (7), we get

$$\rho(x_n, Tx_n, u) \leq \varepsilon$$

on the other hand, we get

$$0 < \inf\{\rho(x, Tx, u) : x \in X\}$$

$$\leq \inf\{\rho(x_n, Tx_n, u): n \geq n_0\} \leq \varepsilon$$

this implies that
$$\inf\{\rho(x,Tx,u):x,y\in X\}=0$$

which is contradiction with hypothesis, therefore $\mathbf{u} = \mathbf{T}\mathbf{u}$

Suppose \mathbf{u}_1 and \mathbf{u}_2 are two fixed points of \mathbf{T} , we have

$$\mu\rho(u_1, u_2, u_2) = \mu\rho(Tu_1, Tu_2, Tu_2)$$

$$\leq \psi \mu \rho(u_1, u_2, u_2)$$

thus,
$$\mu \rho(u_1, u_2, u_2) = 0$$
 and $\rho(u_1, u_2, u_2) = 0$

similarly
$$\rho(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_1) = 0$$

then, by lemma (2-4) pent (1), we get $\mathbf{u_1} = \mathbf{u_2}$.

Coupled Coincidence Point:

Theorem 3-3:

Let ρ be an ρ -distance, $G: X \times X \to X$ and $T: X \to X$ be a mappings with properties $G(X \times X) \subseteq Tx$ and TXcomplete subspace of X. Consider $\mu \in \mu$, $\psi \in \Psi$ such that

$$\mu\rho\big(G(x,y),G(u,v),G(z,w)\big)\leq\psi\mu\rho(Tx,Tu,Tz) \text{ for each } x,y,u,v,z,w\in X \tag{8}$$

If
$$G(u,v) \neq Tu$$
 or $G(v,u) \neq Tv$ then

$$\inf\{\rho(Tx, G(x, y), Tu) + \rho(Ty, G(y, x), Tv): x, y \in X\} > 0$$

Then G and T have a unique coupled coincidence point.

Proof:

Let
$$x_0, y_0 \in X$$
, since $G(X \times X) \subseteq TX$, we can choose $x_1, y_1 \in X$ such that $Tx_1 = G(x_0, y_0)$ and $Ty_1 = G(y_0, x_0)$. Again from $G(X \times X) \subseteq TX$, we can choose $x_2, y_2 \in X$ such that $Tx_2 = G(x_1, y_1)$ and $Ty_2 = G(y_1, x_1)$

continuing in the process, we can construct two sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$Tx_{n+1} = G(x_n, y_n)$$
 and $Ty_{n+1} = G(y_n, x_n)$

by (8)

$$\mu\rho(Tx_{n},Tx_{n+1},Tx_{n+1}) = \mu\rho\big(G(x_{n-1},y_{n-1}),G(x_{n},y_{n}),G(x_{n},y_{n})\big)$$

$$\leq \psi \mu \rho (Tx_{n-1}, Tx_n, Tx_n)$$

Ė

$$\leq \psi^{n}(\mu\rho(Tx_0, Tx_1, Tx_1))$$

then
$$\lim_{n\to\infty} \left[\mu\rho(Tx_n, Tx_{n+1}, Tx_{n+1})\right] = 0$$

by remark (2-1) implies

$$\lim_{n \to \infty} [\rho(Tx_n, Tx_{n+1}, Tx_{n+1})] = 0$$
(9)

and

$$\lim_{n \to \infty} [\rho(Tx_{n+1}, Tx_n, Tx_n)] = 0$$
 (10)

also

$$\lim_{n \to \infty} [\rho(Ty_n, Ty_{n+1}, Ty_{n+1})] = 0$$
(11)

and

$$\lim_{n \to \infty} [\rho(Ty_{n+1}, Ty_n, Ty_n)] = 0$$
 (12)

Assume that at least one of $\{Tx_n\}$ or $\{Ty_n\}$ is not a γ -Cauchy sequence, so, there is an $\epsilon>0$ and $\{Tx_{n_k}\}$, $\{Tx_{m_k}\}$ subsequences of $\{Tx_n\}$ and $\{Ty_{n_k}\}$, $\{Ty_{m_k}\}$ subsequences of $\{Ty_n\}$ with $m_k \geq n_k \geq k$ such that

$$\rho(\mathsf{T} \mathsf{x}_{\mathsf{n}_{\mathsf{k}}}, \mathsf{T} \mathsf{x}_{\mathsf{m}_{\mathsf{k}}}, \mathsf{T} \mathsf{x}_{\mathsf{m}_{\mathsf{k}}}) \ge \varepsilon \tag{13}$$

$$\rho(Tx_{n_{b'}}Tx_{m_{b'}-1},Tx_{m_{b'}-1}) < \epsilon$$
 (14)

the next step getting from conditions (13) and (14)

$$\epsilon \leq \rho (Tx_{n_k}, Tx_{m_k}, Tx_{m_k})$$

$$\leq \rho \big(\mathsf{Tx}_{n_k}, \mathsf{Tx}_{m_k-1}, \mathsf{Tx}_{m_k-1} \big) + \rho \big(\mathsf{Tx}_{m_k-1}, \mathsf{Tx}_{m_k}, \mathsf{Tx}_{m_k} \big)$$

$$<\epsilon+\rho\big(\mathsf{Tx}_{\mathsf{m}_{k}-1},\mathsf{Tx}_{\mathsf{m}_{k}},\mathsf{Tx}_{\mathsf{m}_{k}}\big)$$

and by (9)as $k \rightarrow \infty$,

$$\lim_{k\to\infty} \rho \left(Tx_{n_k}, Tx_{m_k}, Tx_{m_k} \right) = \epsilon^+$$

if
$$\eta = \lim_{k \to \infty} \; \sup \rho \big(\operatorname{Tx}_{n_k+1}, \operatorname{Tx}_{m_k+1}, \operatorname{Tx}_{m_k+1} \big) \geq \epsilon$$

then there exists $\{k_r\}$ such that

$$\rho\left(Tx_{n_{k_r}+1},Tx_{m_{k_r}+1},Tx_{m_{k_r}+1}\right)\to\eta\geq\epsilon\;\text{as}\;r\to\infty$$

since μ is continuous and non-decreasing

$$\mu(\epsilon) \leq \mu(\eta) = \lim_{r \to \infty} \mu \rho \left(Tx_{n_{k_r}+1}, Tx_{m_{k_r}+1}, Tx_{m_{k_r}+1} \right)$$

$$<\lim_{r\to\infty}\psi\mu\rho\left(\mathsf{Tx}_{n_{k_r}},\mathsf{Tx}_{m_{k_r}},\mathsf{Tx}_{m_{k_r}}\right)$$

$$= \psi \mu(\varepsilon)$$

note that
$$\mu\rho\left(Tx_{n_{k_r}}, Tx_{m_{k_r}}, Tx_{m_{k_r}}\right) \rightarrow \mu(\epsilon)$$

and ψ is right continuous. Thus $\mu(\epsilon)=0$. This is a contradiction and

$$\lim_{k\to\infty} \sup_{\rho} \left(Tx_{n_k+1}, Tx_{m_k+1}, Tx_{m_k+1} \right) < \varepsilon$$
 (15)

this implies that

$$\epsilon \leq \rho \big(Tx_{n_k}, Tx_{m_k}, Tx_{m_k} \big)$$

$$\leq \rho \big(\mathsf{Tx}_{n_k}, \mathsf{Tx}_{n_k+1}, \mathsf{Tx}_{n_k+1} \big) + \rho \big(\mathsf{Tx}_{n_k+1}, \mathsf{Tx}_{m_k+1}, \mathsf{Tx}_{m_k+1} \big) + \rho \big(\mathsf{Tx}_{m_k+1}, \mathsf{Tx}_{m_k}, \mathsf{Tx}_{m_k} \big)$$

by (9),(10) and (15)

$$\epsilon \leq \lim_{k \to \infty} p \left(Tx_{n_k}, Tx_{n_k+1}, Tx_{n_k+1} \right) + \lim_{k \to \infty} sup \rho \left(Tx_{n_k+1}, Tx_{m_k+1}, Tx_{m_k+1} \right)$$

$$+\lim_{k\to\infty} \rho \left(Tx_{m_k+1}, Tx_{m_k}, Tx_{m_k} \right)$$

$$=\lim_{k\to\infty}\sup\rho\big(\mathrm{Tx}_{n_k+1},\mathrm{Tx}_{m_k+1},\mathrm{Tx}_{m_k+1}\big)<\epsilon$$

a contradiction, then

$$\lim_{m,n\to\infty} \rho(Tx_n, Tx_m, Tx_m) = 0$$

also

$$\lim_{m,n\to\infty} \rho(Ty_n, Ty_m, Ty_m) = 0$$

therefore by lemma (1-4) part (3) $\{Tx_n\}$ and $\{Ty_n\}$ are γ -Cauchy sequence, since TX is γ -complete, there exists $u, v \in X$ such that

$$\lim_{n\to\infty} Tx_n = Tu \text{ and } \lim_{n\to\infty} Ty_n = Tv$$

suppose
$$G(u,v) \neq Tu$$
 or $G(v,u) \neq Tv$

Now, for $\varepsilon > 0$ and by (L.S.C) of ρ , we get

$$\rho(Tx_{n}, Tx_{m}, Tu) \leq \lim_{n \to \infty} \inf \rho(Tx_{n}, Tx_{m}, Tx_{p}) \leq \epsilon$$
 (16)

$$\rho(Ty_n, Ty_m, Tv) \le \lim_{p \to \infty} \inf \rho(Ty_n, Ty_m, Ty_p) \le \epsilon$$
 (17)

Considering m = n + 1 in (16) and (17), we get

$$\rho(Tx_n, G(x_n, y_n), Tu) + \rho(Ty_n, G(y_n, x_n), Tv) \le 2\varepsilon$$

on the other hand, we get

$$0 < \inf\{\rho(Tx,G(x,y),Tu) + \rho(Ty,G(y,x),Tv): x,y \in X\}$$

$$\leq \inf\{\rho(Tx_n,G(x_n,y_n),Tu)+\rho(Ty_n,G(y_n,x_n),Tv):n\geq n_0\}\leq 2\epsilon$$

this implies that
$$\inf\{\rho(Tx,G(x,y),Tu)+\rho(Ty,G(y,x),Tv):x,y\in X\}=0$$

which is contradiction with hypothesis, therefore G(u,v)=Tu and G(v,u)=Tv

Now we prove the uniqueness

assume that (u,v) and (u^*,v^*) be a another coupled coincidence point of G and T

by (8)

$$\mu\rho(Tu^*,Tu,Tu)=\mu\rho(G(u^*,v^*),G(u,v),G(u,v))$$

$$\leq \psi \mu \rho (Tu^*, Tu, Tu)$$

then
$$\mu\rho(Tu^*, Tu, Tu) = 0$$
 then $\rho(Tu^*, Tu, Tu) = 0$

similarly
$$\rho(Tu, Tu^*, Tu) = 0$$

then by lemma (2-4) pent (1), then $Tu = Tu^*$

similarly we can show that $Tv = Tv^*$.

now, by (3.8)

$$\mu\rho(Tu,Tu,Tv) = \mu\rho(G(u,v),G(u,v),G(v,u))$$

$$\leq \psi \mu \rho (Tu, Tu, Tv)$$

then
$$\mu\rho(Tu, Tu, Tv) = 0$$
 then $\rho(Tu, Tu, Tv) = 0$

also
$$\rho(Tu, Tv, Tu) = 0$$

then, by lemma (2-4) pent (1), then Tu = Tv.

The following example illustrate theorem (2-2)

Example 3-4:

Consider $(X, y) g_b$ -m space with b = 1 define as follows

$$X = \{0,1,2,...\}$$
 define $y: X \times X \times X \to \mathbb{R}^+$ by

$$y(x,y,z) = \begin{cases} 0 & \text{if } x = y = z \\ x + y + z & \text{if } x \neq y \text{ or } y \neq z \text{ or } x \neq z \end{cases}$$

-distance, $\rho: X \times X \times X \to X$, $\rho(x,y,z) = x + 2max\{y,z\}\rho$ is ρ

Define $T: X \to X$

$$Tx = \begin{cases} 0 & \text{if } x = 0,1\\ x - 1 & \text{if } x \ge 2 \end{cases}$$

and
$$\mu: \mathbb{R}^+ \to \mathbb{R}^+, \mu(t) = 4t, \ \psi: \mathbb{R}^+ \to \mathbb{R}^+, \psi(t) = t, \ t > 0$$

If $u \neq Tu$ then

$$\inf\{\rho(x, Tx, u) : x \in X\} \ge \inf\{x + 2u : x \in X\} \ge 2u > 0$$

for $x, y, z \in X$, with $y \ge z$, then

$$\rho(x,y,z) = x + 2y \text{ and } \rho(Tx,Ty,Tz) = x - 1 + 2(y-1)$$

Since

$$4[x-1+2(y-1)] \le 4[x+2y]$$

We have

$$\mu\rho(Tx, Ty, Tz) \le \psi\mu\rho(x, y, z)$$

thus all hypotheses of theorem (3-2) are satisfied and x = 0 is the unique fixed point of T.

REFERENCES

1. Abbas, M., Ali Khan, M. and Radenovic, S. 2010. Common Coupled Fixed Point Theorems in Cone Metric Spaces for **w**-Compatible Mappings, Appl. Math. Comput. 217, 195-202.

Basic and Applied Sciences, Vol. 5, No. 3.

- Journal of Advances in Mathematics 2. Abed, S.S. and Jabbar, H.A. 2016. Coupled Points for Total Weakly Contraction Mappings Via gb-m Space, inter. J. of
- advan. Scie. and tech. resear., Issur 6, vol.3, pages 64-79. 3. Abed, S.S. and Jabbar, H.A. 2016. Coupled Points for Total Weakly Contraction Mappings Via p-distance, Inter. J. of
- 4. Aghajani, A., Abbas, M. and Roshan, J.R. 2014. Common Fixed Point of Generalized Weak Contractive Mappings in Partially Ordered G_h-Metric Spaces, Math. Slovaca, in press, Vo. 64, pp. 941-960.
- 5. Agarwal, R.P, Sintunavarat, W. and Kumam, P. 2013. Coupled Coincidence Point and Common Coupled Fixed Point Theorems Lacking The Mixed Monotone Property, Fixed Point Theory Appl. 2013, Article ID 22.
- 6. Aydi, H., Postolache, M. and Shatanawi, W. 2012. Coupled Fixed Point Results For (ψ, ϕ) -Weakly Contractive Mappings in Ordered G-Metric Spaces, Comput. Math. Appl. 63, 298-309.
- 7. Berinde, V. 2012. Coupled Fixed Point Theorems for Contractive Mixed Monotone Mappings in Partially Ordered Metric Spaces, Nonlinear Anal. 75, 3218-3228.
- 8. Branciari, A. 2000. A Fixed Point Theorem of Banach-Caccioppoli Type on a Class of Generalized Metric Spaces, publ. Math. Debrcen, 57:1-2, 31-37.
- 9. Czerwik, S. 1993. Contraction Mappings in b-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1,5-11.
- 10. Dhage, B.C. 1992. Generalized Metric Spaces and Mappings With Fixed Points, Bull.Cal.Math.Soc., Vol. 84, pp.(329-336).
- 11. Gholizadeh, L., Saadati, R., Shatanawi, W. and Vaezpour, S.M. 2011. Contractive Mapping in Generalized Ordered Metric Spaces With Application in Integral Equations, Math. Probl. Eng. 2011, Article ID 380784, 14 pages.
- 12. Kada, O., Suzuki, T. and Takahashi, W. 1996. Non-Convex Minimization Theorems and Fixed Point Theorems in Complete Metric Spaces, Mathematica Japonica, Vol. 44, No. 2, pp. 381-391.
- 13. Mustafa, Z., Roshan, J.R. and Parvaneh, V. 2013. Coupled Coincidence Point Results for (ψ, φ) -Weakly Contractive Mappings in Partially Ordered G_h-Metric Spaces, Fixed Point Theory Appl. ,206.
- 14. Naidu, S.V.R., Rao, K.P.R. and Rao, N.S. 2004. on The Topology of D-Metric Spaces and Generation of D-Metric Spaces From Metric Spaces, Int. J. Math. Sci., No.51, PP. 2719-2740.
- 15. Naidu, S.V.R., Rao, K.P.R. and Rao, N.S. 2005. on The Concepts of Balls in D-Metric Space, International Journal of Mathematics and Mathematical Sciences, Vol. 1, pp. 133-141.
- 16. Naidu, S.V.R., Rao, K.P.R. and Rao, N.S. 2005. on Convergent Sequences and Fixed Point Theorems in D-Metric Spaces, International Journal of Mathematics and Mathematical Sciences, Vol.12, pp. 1969-1988.
- 17. Saadati, R., Vaezpour, S.M., Vetro, P. and Rhoades, B.E. 2010. Fixed Point Theorems in Generalized Partially Ordered G-Metric Spaces, Math. Comput. Modelling. 52,797-801.
- 18. Sabetghadam, F., Masiha, H.P. and Sanatpour, A.H. 2009. Some Coupled Fixed Point Theorems in Cone Metric Spaces, Fixed point Theory and Applications, Vol. 2009, Article ID 125426, 8 pages.
- 19. Shatanawi, W. and Pitea, A. 2013. Fixed and Coupled Fixed Point Theorems of Omega-Distance for Nonlinear Contraction, Fixed Point Theory Appl., 2013, 16 pages.
- 20. Shatanawi, W. and Pitea, A. 2013. Omega-Distance and Coupled Fixed Point in G-Metric Spaces, Fixed Point Theory Appl., 2013, 15 pages.