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ABSTRACT

In this paper, we prove two theorems about fixed point and coupled coincidence point in generalized b-metric space via

p-distance for a mapping satisfying a contraction condition.
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1. INTRODUCTION

The Banach contraction principle is the most known fixed point theorems. In 1993, Czerwik.’ introduced b-metric spaces

where the triangle inequality generalized as follows:
d(x,z) <b[d(xy) +d(y,z)] forallx,yandzeX, b =1

In. 8, Branceciri defined a generalized metric space as a metric space in which the triangle inequality is replaced by the

rectangular one called quadrilateral inequality d{(x=,v) =< d(x,u) + d(u,v) + d(v,¥) forallx,y,uandve X

On the other hand, In. 10, Dhage introduced the notion of D -metric spaces on XE:

1.D(x,y.2z)= 0 if and only if x=y =z (coincidence).
2.D(x,v,z) = D(pi{xy,z}), for all x,y, z € X and for any permutation p{x, ¥, z} of x,¥, Z (symmetry).
3.D(x,v.z)= D(x,v,a) + D(x,a,z) + D(a,v,z), for all x,y, z,and a £ X (tetrahedral inequality).

and claimed that D'-metric but, Naidu S.V.R., Rao K.P.R. and Rao N.S. (2004-2005) gave many corrections for Dhage's

work in. ** 13218 1n 2006, Mustafa and Sims. ** introduce a new concept known as G-metric space satisfied the

following:

1.G(x,y,z) = 0iffx = y=zforallx,y,z €X

2.G(x,x,v) =0forallx,yE X, withx £y

3. G(xxv) < G(x,y,z) forallx,y,z e X, withz # y.

4. G(x,v,z) = G(p{x.v.z}), p permutation ofx,y and z.

5.G(x,v,z) =< G(x,a,a) + G(a,y,z) forall x,y, z and a € X (Rectangle inequality).

Mustafa et al. studied many fixed point theorems for mappings satisfying several contractive conditions on complete G-
metric space. Aghajani et al. * introduced new generalizations of G-metric spaces called g1,-metric space. Mustafa et al. 13

have obtained some coupled coincidence point theorems for g,-metric space. Kada et al. Zintroduced the concept of w-
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distance on a metric space. Saadati et al. 7 defined an p-distance on a complete G-metric spaces. Gholizadeh et al. 1

state complete partially ordered G-metric space with the concept of p-distance. Shatanawi and Pitea in **?° prove some

1,235,6,7

fixed and coupled fixed point theorem for nonlinear contractions used the notion of p-distance see . The aim of this

paper is define a new weak contraction mappings defined on a g1,-metric space depend on P-distance and prove some
results about the fixed point, coupled coincidence point.

2. Preliminaries:

Definition 2-1: =3

Let X be a non-empty set and §: X X X X X — R¥ be a function such thatfor all X, y,zand a€ X,b = 1
1Ly(xyz)=0ifx=y==z

2.v(x%,x,v) = 0forallx,y € Xwith x#v.

ayvixxy) =vixy z)lioralx v,z € Xwithy &+ =

4.v(x,yv,z ) = y(p{xy.2}),p permutation of x,y and =z

5.¥(x,v,z) <b[y(x,a,a) + y(a,v.z)] forall x,y,z and a € X,b = 1(Like trihedron).

then the pair (X, ¥) is called generalized b-metric space.

Definition 2-2: 1

Let X be a @,-m space. A sequence {X,, } in X is said to be:

1. Y-Cauchy sequence if, for each £ = 0, there is ny € M such that, for all m, 1, i = n,, v(x,, %, %) < =

2. y-convergent to a point X € X if, for each £ = 0, there is ny € M such that, for all m, n = nu,‘f(xn,xm, X) <&
Throughout this paper (X, ¥) will be a generalized b-metric space b = 1.

Definition 2-3:

letp: X KX XX — R*. p is called an p-distance on X if for all X, v,z and a E X;

@pl(xy.z) <£p(xaa)+tplayz)foralxyzacX

(b) Foreachx, ¥ € X ,p[x,y, .:'], p[x,.,]f]: X - R are Lower semi-continuous (L.S.C).

(c) Ve == O thereis & = 0 such that p(x,a,a) = § and p(a,y,z) < 5 imply

V(xyz) =€

Lemma 2-4; "1
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Let p be an p-distance on X and let {3, }, {¥, } are sequences in X, {e, } and {5} are sequences in B with

lim a, =lim___f, = 0.Ifx,y,zanda €& Xthen

n—+wo N

M iplv.x,, x,) = o, and p(x,,v,z) =B, forn€ Ntheny(v.y.2) <cand,y =z

@1p(y,. %, %) = o and p(%,, V. Z) = B, form = nthen y(v,.¥,.2z) = 0, hencey_— z
@) Ifp(Xy Xy, %) = @, forh,n,m € W withn =< m = i, then {X, } is a y-Cauchy sequence.

@)ifp(x,,a a) <o, ,nE N then {x_}is a y-Cauchy sequence.

Definition 2-5: 8

Let G: X X X — X and T:X — X be two mapping. An ordered pair (x,¥) € X X Xis called:
(a) Fixed point if Tx = x.
(b) Coupled coincidence point if T(x) = G(x,y) and T(y) = G(y, x).
3. Main Results:
The following classes are needed in the next results. Let L be a class of functions LL: R = R with
i. LL is continuous.
ii. L non-decreasing.
i. u(g) = 0forall== 0.
and Let ¥ be a class of functions 1: BT — R with
1. Y non-decreasing.
2. 4 is right continuous.
3.¢(t) < 0forallt = 0.

Remark 3-1:

ify €W thenlim___¢"(t) = 0 foreacht>0and if p€ p,{a,} S R* and

w(a,) =0then lim___a_ =0

lim n

1 — o0

Fixed Point:

Theorem 3-2;

Let P be an p-distance, T: X — X be a mapping and i € ., 4 € ' such that
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up(Tx, Ty, Tz) < Yup(x,y, z) for each x,y,z €X (1)
Suppose that if U # Tuthen inf{p(x, Tx,u):x € X} = 0
Then T has a unique fixed point.

Proof:

letxy EXandx, ., =Tx, ,VneM
if there is 1 € M for which X,,.; = x,, then x_ is fixed point of T.

in the following, we assume ¥,:4 #* X, Vn € N
by condition (1)
1P (xn’Xn+1’ Xn+ 1j = up (TXH—P Txn’ Txn:]

£ 11£.|'|_.L|j (xn—ll xnlxn]

< P up (g, Xy, X4)

thus lim, _, . up [xn,xn+ 1s xn+1:] = 0. Then by remark (2-1) implies

AT&C P(Xar¥ns1:Xns0) =0 (2)
also
lim p(x,44.%,%,) =0 (3)
n— oo

Assume that {Xy, } is not a y-Cauchy sequence, so, there is an € = 0 and {x_}, {¥X,, _} subsequences of {x, } with

my, = 1y = ksuch that
P[xnkfxmk’xmk) E £ [:4:]

P[xnkfxmk—lfxmk—l) = £ (5]
the next step getting from conditions (4) and (5)

£ = p(x X

nk’xmk’ mk:]

£ P [Xnk_.xmk_ 1 xmk—l) + Ij (xmk— 1 xmk’xmk]
< s+ p[xmk_i, xmk,xmk)

then letting k — ©2in the above inequality and using (2)
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lim [x %X X )=E+
k_mp e

if n. = ]'lm sup p(_xnk+1’ xmli+1’ xmli‘l'l) ZE

then there exists ﬂ{,.} such that

p (xnkrﬂ,xmkrﬂ,xmkrﬂ) — N =£asr— o0,

since L is continuous and non-decreasing

1(2) < () = 1m0 (o, 1, Xomy 1%y +1)

< lim Yip (%o Xy Koy ) = WH(E)

note that L (Xnkr,xmkr,xmkr) — (), and 1 is right continuous.

thus LL(E:] = 0. This is a contradiction and

iﬂ Supp[xnk+1!xmk+1’xmk+1) = (6)
this implies that

£ = P[xnermermk)

= P(xnkFxnk+1’xnk+1) + P(xnk+1’ xmk+1’xmk+1) + P[xmk+lfxmkfxmk)

by (2),(3) and (6)

£= iﬂ p[xnk!xnk+1’xnk+1) + qul-r;];l: Supp[:xnk+1!xmk+ 1’xmk+1)
T qul—rgc P[:ka+1, xmk’xmk)

= iﬂr&: Supp[xnk-Fl’ xmli-l'l’ xmk-l- 1) £
a contradiction, then

lim p(x,x_,%x,)=0

L, 1= oo
then {xn} is ¥-Cauchy sequence. Since X complete, there exists 11 £ X such that

lim x, =u
n— oo

suppose . &= Tu

now, for £ == 0 and by (L.S.C) of p, we get
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p(xy %y, u) S lim . infp(x,,x,.%x,) <= (7)
considering . = 11 + 1 in (7), we get

p(x,, Tx ,u) <=

on the other hand, we get

0 < inf{p(x,Tx,u):x €X}

< inf{p(x,, Tx,,u)n =2n,} <=

this implies that inf{p(x, Tx,u): x,y X} = 0
which is contradiction with hypothesis, therefore u = Tu
Suppose 11, and u, are two fixed points of T, we have
np(uy, uy,uy) = pup(Tuy, Tuy, Tu,)

= up(uy,uy, uy)

thus, pp(u,, u,,u,) = 0 and p(u,y,u,,u,) =0
similarly P(ulruzr ul:] =0

then, by lemma (2-4) pent (1), we get 1y = ;. m

Coupled Coincidence Point:
Theorem 3-3:

Let p be an p-distance, G: X X X = X and T: X — X be a mappings with properties G(:"[ X Kj C Txand TX

complete subspace of X. Consider . € 18 S E ¥ such that

up[G(x,y],G[u,v], G(z,w]) < Yup(Tx,Tu,Tz) for each x,y,u,v,z,w € X (8)
It G(u,v) = Tu or G(v,u) # TV then

inf{p(Tx,G(x,¥), Tu) + p(Ty,G(y, x), Tv):x,y EX} > 0

Then G and T have a unique coupled coincidence point.

Proof:

LetXg, ¥y € X, since G(X X X) £ TX, we can choose x4, ¥; € X such that
Tx; = G(x,,¥,) and Ty, = G(¥,,%, ). Again from G(X X X) € TX, we can choose X5, ¥ € X such that
Tx, = G(xy,¥,) and Ty, = G(y,.%,)
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continuing in the process, we can construct two sequences {xn} and {yn} in X such that

Txn+1 = G(xn!}?n] and TFn+1 = G(anxn:]
by (8)
e (Txy,, Txpey, Txpyq) = PLP[G[xn—lan—ljrG[xn:}’njrﬂ(xn:}’n])

< yYup(Tx,_,, Tx,,Tx,)

< " (up(Txg, Txy, Tx,y)
then lim, _, . [up(Tx,, Tx,:1, TX,44)] = 0

by remark (2-1) implies

AT&C[P(TKHJTXH+1’ Tx,44)] =0 (9)

and

Aﬂ[ﬂ(mnﬂ: Tx,,Tx,)] = 0 (10)
also

Ai_f}l;lc[li"(T}’anFn+1r T¥a:1)] =0 (11)
and

Ai_f}l;lc[li"(r[?nﬂ: Ty, Ty,)] =0 (12)

Assume that at least one of {T}'.:n }or {T}Fn} is not a ¥-Cauchy sequence, so, there is an £ == 0 and

{Txnk}, {Txmk} subsequences of {Tx_} and {Tynk}, {Tka}

subsequences of {Ty, } with my = n; = ksuch that

p [Txn o T T ) = (13)
p(Txnk, TXp, 1 Txmk_l) <E (14)
the next step getting from conditions (13) and (14)

£ = p(Txr,, Txy Txy )

=p [ijn o T¥y 15 Txmk_l) +p [Txmk_l, Txpm, . Txmk)
<etp [Txmk_l, T, Txmk)
and by (9)as k — oo,
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lim p(:Txnk, Ty, s Txmk) =gt

k—om

it N = limy,_,.. sup p(TxnkH, Txp, +1,Txmk+1) =€

then there exists {k, } such that

o (Tx”k{"l’Txmkr*l’ Txmkrﬂ) — I = Easr—oo

since L is continuous and non-decreasing

u(e) = pu() = lim pp (Txnkrﬂ, Ty 410 Txmkr,,i]

< ll_}n;lc Pup (Txnkr,Txmh,Txmh)

= Yu(s)

note that LLp (TxnkT,Txmkr, T ) — u(e)

and W is right continuous. Thus () = 0. This is a contradiction and

Ll;i—?:: SUPP(TXnkﬂr Ty 410 Ty s 1) = (15)

this implies that

£ = p(Txnk,Txm]i,Txm]i)

= P(Txnkr Txpps1 T s )+ P(Txnkur Ty 410 T s )+ P(Txmk+ 1 T, Txmk}
by (9),(10) and (15)

£ = Llil_}n; p(TXnk-' Txnk+1’Txnk+1) + Llil_l}]:: SUPP(TXnkH: Txq 410 Txmk+1)
+ LEI_I}]; p(Txmk+1,TXMk, Tka)

= l1:1_13;1': supp(’l‘xnkﬂ,TX Txmk-l-l) =€

my+1/

a contradiction, then

lim p(Tx,, Tx,, Tx,)=0

m, n—*oc

also

lim p(Ty,, Ty Tym) = 0
m, n—*oc
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therefore by lemma (1-4) part (3) {T%,, } and { T'¥,, } are ¥-Cauchy sequence, since TX is y-complete, there exists

u, v £ X such that

lim Tx, = Tuand lim Ty, =Tv
n— oo Fl— oo

suppose G{u,v) # Tu or G(v,u) = Tv
Now, for € == 0 and by (L.S.C) of 2, we get

p(Tx,,Tx_, Tu) < pli_}n;lc inf p(Tx,, Tx,, Tx, ) < ¢ (16)

P(TY, TV TV) < lim infp(Ty,, Ty, Ty, ) <= (17)
P—:’DC
Considering 1t =1 + 1 in (16) and (17), we get

p(Tx,,G(x,,v,), Tu) + p(Ty,,G(y,.x,), Tv) < 2¢
on the other hand, we get

0 < inf{p(Tx,G(x,v),Tu) + p(Ty,G(y.x), Tv):x,y € X}

< inf{p(Tx,,6(x,,¥,), Tu) + p(Ty, G(y,, x,), Tv):n = ny} < 2¢

this implies that inf{p(Tx, G(x,¥), Tu) + p(Ty,G(v,x),Tv):x,y EX} =0
which is contradiction with hypothesis, therefore G(u,v] = Tu and G(‘I.F, u:] =Tw

Now we prove the uniqueness

assume that (1, v) and (u*,v*) be a another coupled coincidence point of G and T

by (8)

wp(Tu®, Tu, Tu) = pp(G(u*,v*),G(u,v), G(u,v))
< up(Tu®, Tu, Tu)

then pp(Tu*, Tu, Tu) = 0 then p(Tu*,Tu,Tu) = 0
similarly p(Tu, Tu*, Tu) = 0

then by lemma (2-4) pent (1), then Tu = Tu*

similarly we can show that Tw = Tv*,
now, by (3.8)

wp(Tu, Tu, Tv) = pp(G(u,v),G(u,v), G(v,u))
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< Yup(Tu, Tu, Tv)

then wp(Tu, Tu, Tv) = 0 then p(Tu, Tu, Tv) =0
also p(Tu, Tv,Tu) =0

then, by lemma (2-4) pent (1), then Tu = Tv. =

The following example illustrate theorem (2-2)

Example 3-4:
Consider (X, ¥) g;,-m space withb = 1 define as follows
X=1{0,1,2, ..} define : X X X X X = R™ by

( ]—{ 0 ifx=y=z
vixyzl = x+y+z ifx+yvory*zorx#z

-distance, p: X X X X X = X, p(x,y,z) = x 4+ 2max{y, z}pis p

Define T: X — X

0 ifx=0,1
x—1 ifx>=2

Tx = {
and w:RY = RY,u(t) =4t v: RT = RY ¢ () =t t =0
Ifu # Tu then

inf{p(x, Tx,u):x EX} = infx 4+ 2u:x EX} =2u =0

for %, ¥, 2 € X, with ¥ = Z, then

p(x,v,z) =x+ 2y and p(Tx, Ty, Tz) = x— 1+ 2(y — 1)
Since

4x—14+2(y—1)] = 4[x+ 2y]

We have

up(Tx, Ty, Tz) = up(x.y, z)
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thus all hypotheses of theorem (3-2) are satisfied and ¥ = 0 is the unique fixed point of T.
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