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ABSTRACT 

In 1945 , Wolfgang Hahn introduced his difference operator ,qD , which is defined by  
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  with 0.>1,<<0 q  In this paper, we establish Leibniz’s rule and Fubini’s theorem associated with 

this Hahn difference operator.  
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1Introduction 

The Hahn difference operator is defined by  
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where (0,1)q  and 0>  are fixed, see [2]. This operator unifies and generalizes two well known difference operators. 

The first is the Jackson q -difference operator which is defined by  
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see [3, 4, 5, 6]. The second difference operator which Hahn’s operator generalizes is the forward difference operator  
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where   is a fixed positive number, see [9, 10, 13, 14]. The associated integral of (3) is the well known Nörlund sum  
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see [12, 13, 15]. In some literature Nörlund sums are called the indefinite sums, cf. [14]. Then we can define  
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 whenever the convergence of the series is guaranteed. Note that, under appropriate conditions,  
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 In [1], A.Hamza et al. gave a rigorous analysis of the calculus associated with ,qD . They stated and proved some basic 

properties of such a calculus. For instance, they defined the inverse of ,qD  which contains the right inverse of qD  and the 

right inverse of  . Then, they proved a fundamental lemma of Hahn calculus. 

This paper is devoted to establishing Leibniz’s rule and Fubini’s theorem associated with the ,q - difference operator. We 

organize this paper as follows. Section 2 gives an introduction to ,q - difference calculus. In Section 3, we prove Leibniz’s rule 

which is concerning with differentiating under the integral sign. Some related results are obtained. Also, we prove Fubini’s 
theorem in Hahn difference operator setting, that is, we prove that the iterated integrals are equal. 

2  Preliminaries  

Let N  be the set of natural numbers and {0}:=0 NN . For 0Nk  and 1<<0 q , we define the q -numbers 
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Let I  is an interval of R  containing 0 , where ),/(1:=0 q  and h  denote the transformation 
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The transformation h  has the inverse Itqtth  ,)/(=)(1  . The k th order iteration of h  is given by  
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 Furthermore, 


1=)}({ k

k th  is a decreasing (an increasing) sequence in k  when 0>t  ( 0<t ) with 
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 The sequence 
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k th  is increasing (decreasing), 0>t  ( 0<t ) with  
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Let f  be a function defined on I . The Hahn difference operator is defined in [2] by  
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and )(=)( 00, 
'

q ffD , provided that f is differentiable at 0 , where (0,1)q  and 0.>  In 

this case, we call fDq , , the ,q -derivative of f . Finally, we say that f  is ,q -differentiable, 

i.e. throughout I , if )( 0,  fDq  exists. 

One can easily check that if gf ,  are ,q -differentiable at ,It  then  
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provided in the last identity 0,)()( qtgtg  cf. [1]. The right inverse for ,qD  is defined in [1] in 

terms of Jackson-Nörlund sums as follows. Let Iba ,  the ,q -integral of f  from a  to b  is 

defined to be  
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provided that the series converges at ax =  and .= bx  It is known that if f is continuous at ,0  

then the series in (7) is uniformly convergent. 

In the folloing we present some needed results from [1] concerning the calculus associated with ..qD  

Corollary 1 The series  
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is uniformly convergent to || 0t  on interval ],[= baI  containing 0 .  

Theorem 2Let X  be a Banach space endowed with a norm ⃦. . ⃦.  Assume XIf :  is continuous at 0 . Then the 

following statements are true   
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 is uniformly convergent on I  and consequently f  is ,q -integrable over I .  

    • The function  
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is continuous at 0 . Furthermore, )(, xFDq   exists for every Ix  and  
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Conversely,  
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Consequently, the ,q - integration by parts for continuous function gf ,  is giving in by  
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Theorem 3 Let RIf :  be continuous function at 0 , then for It  
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We will apply the time scales calculus tools, see [7, 8], to obtain a ,q -analog of the chain rule.  

Theorem 4 Let RIg :  be continuous and ,q -differentiable and RR:f  be continuously differentiable. Then, 

there exists c  between qt  and t  such that,  
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  3  ,q -Differentiation Under The Integral Sign  

 

In this section we study the continuity and the ,q -differentiation of the integral  
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We establish Libnitz’s rule. Finally, we prove that the iterated integrals are equal (this theorem is known by Fubini’s Theorem). 

Let R IIf : . We begin by the following definitions.  
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Definition 1  

(i) We say that ),( stf  is continuous at 0= tt  uniformly with respect to Ibas  ],[  if   

.],[ respect towith  uniformly ),(=),(lim 00
Ibasstfstftt   

(ii) The ,q -partial derivative of f  with respect to t  is defined by  
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whenever the limit exists. 

(iii) We say that ),( stf  is uniformly partially differentiable at It 0= , with respect to Ibas  ],[  if  
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exists uniformly with respect to ],[ bas .  

Definition 2 Let Iba  ],[0 . We define the ,q -interval by  
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Lemma 3 The following statements are true   

    (i) Assume that ),( stf  is continuous at 0=t  uniformly with respect to ,][ qbs . Then  
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Proof. 
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(iii) Assume that ),(,, stfD tq   exists uniformly at 0=t  with respect to ,][ qbs . We conclude that  
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For 0> , there exists 0>  such that for all It  we have  <||<0 0t  
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In view of corollary 1, for It  such that  |<<|0 0t , we see that  
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Corollary 4 If ),(,, stfD tq   exists uniformly at 0=t  with respect to ,][ qas  and ,][ qbs  , 

then  
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Proof. By lemma 3, we get the desired result from the following inequality  
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Theorem 5 (Leibniz's integral rule) Define the function F  by  
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The following statements are true   
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By theorem 3, we get  
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The continuity of ),( stf  at ),( 00   implies that given 0> , there exists 0>  such that 

 |<| 0s , ( and consequently  <][ q

k ksq   ), implies  |<),()][,(| 00fksqsf q

k  . Thus  

 ,|<),(
)()(

| 00

0

0 



f

s

FsF





 

whenever  |<<|0 0s , which completes the proof.  

Theorem 6 Let II :  be bounded. Define the function F  by  
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The following statements are true   
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    (ii) Assume that the following conditions hold   

        -   is ,q -differentiable.  

        - ),( stf  is uniformly partially differentiable at 0=t  with respect to Is  such 

that ),( 0,, sfD tq   is continuous at 0=s .  
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    (i) For 0t  we have  
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Since ),( stf  is uniformly partially differentiable at 0=t  with respect to Is , and   is 

bounded, then  
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0=t  which in turn implies that ))(( tK   is continuous at 0=t , that is  
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Corollary 7 Let II :,  be bounded functions. Define the function F  by  
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    (ii) Assume that the following conditions hold   

        -   and   are ,q -differentiable.  

        - ),( stf  is uniformly partially differentiable at 0=t  with respect to Is  such 

that ),( 0,, sfD tq   is continuous at 0=s .  
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Proof. By theorem 6 and using the definition  
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we get the desired result. 

 

Theorem 8 (Fubini's theorem) 

Let f  be defined on the closed rectangle IIbaR  ],[],[= 00  . Assume that ),( stf  is 
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continuous at 0=t  uniformly with respect to ,][ qas  and continuous at 0=s  uniformly with 

respect to ,][ qbt . Then, the double ,q -integrals  
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exist and they are equal, that is  
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Proof. By assumptions, lemma 3 tells us that tdstf q
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