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ABSTRACT 

The effect of gravity modulation (time periodic body force or g-jitter) on the onset of Rayleigh-Bénard convection in a 

micropolar fluid with internal heat generation is investigated by making a linear stability analysis. The stability of a horizontal 

layer of fluid heated from below is examined by assuming time periodic body force in the presence of internal heat source. A 

regular perturbation method is used to arrive at an expression to compute the critical Rayleigh number for small amplitude of 

modulation and dimensionless internal heat source. The Venezian approach is adopted to obtain the eigen value of the 

problem. The results obtained during the analysis have been presented graphically. 

Keywords: Rayleigh-Bénard convection; gravity modulation; internal heat generation; Venezian approach; Rayleigh 

number. 

1. INTRODUCTION 

A classical Rayleigh problem on the onset of convective instabilities in a horizontal thin layer of fluid heated from below is of 

fundamental importance and becomes a prototype to a more complex configuration in experiments and industrial processes. It 

has its origin in the experimental observations of Bénard [1] and [2]. The convective flows in a liquid layer are driven by 

buoyancy forces due to temperature gradients. Rayleigh’s paper is the pioneering work for almost all modern theories of 

convection. Rayleigh [3] showed that Bénard convection, which is caused by buoyancy effects, will occur when the Rayleigh 

number exceeds a certain critical value. 

Micropolar fluids, the fluids with microstructure, are introduced and developed by Eringen [4]. Physically, these fluids represent 

fluids consisting randomly oriented particles suspended in a medium, where the deformation of the fluid particles is ignored. 

This constitutes a substantial generalization of the Navier–Stokes model and opens a new field of potential applications 

including a large number of complex fluids. A detailed survey of the theory of micropolar fluid and its applications are 

considered in the books of Erigen[5,6], Lukasazewicz[7] and Power[8], which has become an important field of research 

especially in many industrially important fluids like paints, polymeric suspensions, colloidal fluids, and also in physiological 

fluids such as normal human blood and synovial fluids. The theory of thermomicropolar convection was studied by many 

authors Datta and Sastry [9], Ahmadi [10], Rama Rao [11], Bhattacharya and Jena [12], Siddheshwar and Pranesh [13,14], 

Pranesh and Kiran [15], Pranesh and Riya [16], Joseph et al. [17] and Pranesh [18]. 

A significant class of natural convection problem is anxious with the effort in evading the convection in the earth’s gravitational 

field even when the basic temperature gradient is identical and interfacial instabilities can be overlooked. Owing to numerous 

inevitable sources of residual acceleration experienced by a spacecraft, the gravity field in an orbiting laboratory is not 

constant in a microgravity environment, but it is randomly fluctuating. This fluctuating gravity is referred to as g-jitter. 

 The effect of gravity modulation on a convection stable configuration can significantly influence the stability of a system by 

increasing or decreasing its susceptibility to convection. In general, a distribution of stratifying agency that is convectively 

stable under constant gravity conditions can be destabilized when a time-dependent component of the gravity field is 

introduced certain combinations of thermal gradients, physical properties and modulation parameters may lead to parametric 

resonance and hence, to the stability of the system. Gresho and Sani [19], Wheeler et al. [20], Siddheshwar and Pranesh 

[21,22], Malashetty and Basavaraja [23], Siddheshwar and Abraham [24], Swamy et al. [25], Bhadauria and Kiran [26] and 

Pranesh et al. [27] have studied the effects of gravity modulation on the onset of convection in Newtonian and non-Newtonian 

fluids.   
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The above studies on gravity modulation are made for non-internal heating systems. However, in many practically important 

situations the material offers its own source of heat and this leads to a setting up of different convective flow in a fluid layer 

through internal heating. 

The mechanism of internal heating in a flowing fluid is relevant to the thermal processing of liquid foods through ohmic heating, 

where the internal heat generation serves for the pasteurization/sterilization of the food Ruan et al. [28]. Other important 

applications of flows with internal heat generation are relative to nuclear reactors, as well as to the geophysics of the earth’s 

mantle. In both cases, the internal heating is due to the radioactive decay.The research on internal heat generation is much 

less extensive as compared to external heat generation. Bhattacharya and Jena [29], Takashima [30], Tasaka and Takeda 

[31], Bhadauria et al [32] and Pranesh and Ritu Bawa [33] have studied the effect of internal heating on the onset of Rayleigh 

– Bénard convection under different situations. 

The main aim of the present study is to investigate the effects of gravity modulation and internal heat generation on the onset 

of Rayleigh-Bénard convection in micropolar fluid. This analysis based on the linear stability theory and the resulting 

eigenvalue problem is solved using the Venezian [34] approach by considering free-free, isothermal and no spin boundaries. 

2.MATHEMATICAL FORMULATION 

Consider an infinite horizontal layer of   Boussinesquian, micropolar fluid of depth d, where the fluid is heated from below with 

the internal heat generation exists with the fluid system. Let   ΔT be the temperature difference between the lower and upper 

surfaces with the lower boundary at a higher temperature than the upper boundary. These boundaries maintained at constant 

temperature. A Cartesian system is taken with origin in the lower boundary and z-axis vertically upward (see figure 1). 

 

 

Figure 1. Schematic diagram of the Rayleigh-Bénard situation for micropolarfluid with gravity modulation. 

The governing equations are 

Continuity Equation: 

∇. 𝑞 = 0  ,        (1) 

Conservation of Linear Momentum: 

𝜌0  
𝜕𝑞  

𝜕𝑡
+  𝑞 . ∇ 𝑞  = −∇𝑝 + 𝜌𝑔  𝑡 𝑘 +  2𝜁 + 𝜂 ∇2𝑞 + 𝜁(∇ × 𝜔   ) ,    (2) 

𝑔  𝑡 = −𝑔0(1 + 𝜀 cos 𝛾𝑡 )  ,       (3) 

Conservation of Angular Momentum: 

𝜌0𝐼  
𝜕𝜔    

𝜕𝑡
+ (𝑞 . ∇)𝜔    =  𝜆′ + 𝜂′ ∇ ∇.𝜔    + 𝜂′∇2𝜔   + 𝜁(∇ × 𝑞 − 2𝜔   ) ,   (4) 

Conservation of Energy: 
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𝜕𝑇

𝜕𝑡
+  𝑞 . ∇ 𝑇 =

𝛽

𝜌0𝐶𝜐
(∇ × 𝜔   ). ∇𝑇 + 𝜒∇2𝑇 + 𝑄(𝑇 − 𝑇0)  ,     (5) 

Equation of State: 

𝜌 = 𝜌0[1 − 𝛼 𝑇 − 𝑇0 ] ,       (6) 

where, 𝑞  is the velocity, 𝜌0 is density of the fluid at temperature T = 𝑇0, p is the pressure, 𝜌 is the density, 𝑔   is acceleration 

due to gravity, 𝑔0 is the mean gravity, ε is the small amplitude of gravity modulation, γ is the frequency, δ is coupling viscosity 

coefficient or vortex viscosity,  𝜔     is the angular velocity, I is moment of inertia, λ'  and  ε' are bulk and shear spin viscosity 

coefficients, T is the temperature, χ is the thermal conductivity, β is micropolar heat conduction coefficient, α is coefficient of  

thermal expansion, Q is the internal heat source and t is time. 

3. BASIC STATE: 

The basic state of the fluid is quiescent and is described by 

𝑞 = 𝑞𝑏      0,0,0 , 𝜔   = 𝜔𝑏       0,0,0 , 𝑝 = 𝑝𝑏 𝑧 , 𝜌 = 𝜌𝑏 𝑧 , 𝑇 = 𝑇𝑏(𝑧) .   (7) 

Substituting equation (7) into basic governing equations (1)-(6), we obtain the following quiescent state solutions: 

𝑑𝑝𝑏

𝑑𝑧
= −𝜌𝑏𝑔0[1 + 𝜀 cos 𝛾𝑡 ]𝑘  ,      (8) 

𝜒
𝑑2𝑇𝑏

𝑑𝑧2 = −𝑄(𝑇 − 𝑇0) ,        (9) 

𝜌𝑏 = 𝜌0[1 − 𝛼 𝑇𝑏 − 𝑇0 ] .               (10) 

Solution of equation (9) subject to the conditions 

𝑇𝑏 = 𝑇0 + ∆𝑇 at z = 0 and 𝑇𝑏 = 𝑇0 at z = d, 

 are obtained as 

𝑇𝑏 𝑧 = 𝑇0 + ∆𝑇
𝑠𝑖𝑛 𝑅𝑖(1−𝑧

𝑑 )

𝑠𝑖𝑛 𝑅𝑖
 ,       (11) 

where 𝑅𝑖 =
𝑄𝑑2

𝜒
 . 

4. LINEAR STABILITY ANALYSIS: 

The stability of the basic state is analysed by introducing the following perturbation 

𝑞 = 𝑞𝑏     + 𝑞′    ,  𝜔   = 𝜔𝑏      + 𝜔′     , 𝑝 = 𝑝𝑏 + 𝑝′ , 𝑇 = 𝑇𝑏 + 𝑇 ′ , 𝜌 = 𝜌𝑏 + 𝜌′ ,                 (12) 

where the prime indicates that the quantities are infinitesimal perturbations. 

Substituting equation (12) into the equations (1)-(6) and using the basic state solutions, we get linearized equations governing 

the infinitesimal perturbations in the form: 

∇. 𝑞′    = 0 ,           (13) 

𝜌0
𝜕𝑞′    

𝜕𝑡
= −∇𝑝′ − 𝜌′𝑔0[1 + 𝜀 cos 𝛾𝑡 ] 𝑘 +  2𝜁 + 𝜂 ∇2𝑞′ + 𝜁(∇ × 𝜔′     ),     (14) 

𝜌0𝐼  
𝜕𝜔 ′      

𝜕𝑡
+ (𝑞′    . ∇)𝜔′      =  𝜆′ + 𝜂′ ∇ ∇.𝜔′      + 𝜂′∇2𝜔′     + 𝜁 ∇ × 𝑞′    − 2𝜔′      ,     (15) 

𝜕𝑇′

𝜕𝑡
=

∆𝑇

𝑑

 𝑅𝑖𝑐𝑜𝑠 𝑅𝑖(1−𝑧
𝑑 )

𝑠𝑖𝑛 𝑅𝑖
 𝑊 ′ −

𝛽

𝜌0𝐶𝜗
∇ × 𝜔′    + 𝜒∇2𝑇 ′ + 𝑄𝑇′ ,      (16) 

𝜌′ = −𝛼𝜌0𝑇′.                                         (17) 

The perturbations equations (13)-(17) are non-dimensionalised using the following definitions 
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 𝑥∗, 𝑦∗, 𝑧∗ =  
𝑥

𝑑
,
𝑦

𝑑
,
𝑧

𝑑
  ,  𝑞∗     =

𝑞 ′     

𝜒

𝑑

  ,  𝑇∗ =
𝑇 ′

∆𝑇
 

𝑡∗ =
𝑡

𝑑2/𝜒
  ,  𝛺∗ =

𝛻×𝜔∗      

𝜒/𝑑3
  ,   𝜔∗      =

𝜔 ′      

𝜒/𝑑2
  .                   (18) 

Using equation (17) in equation (14) and operating curl twice on the resulting equation, operating curl once on equation (15) 

and non-dimensionalizing the two resulting equations and equation (16), using equation (18), we get   

1

𝑃𝑟

𝜕

𝜕𝑡
 𝛻2𝑊 = 𝑅 1 + 𝜀 𝑐𝑜𝑠 𝛾𝑡   𝛻1

2𝑇 +  1 + 𝑁1 𝛻
4𝑊 + 𝑁1𝛻

2𝛺,       (19) 

𝑁2

𝑃𝑟

𝜕𝛺

𝜕𝑡
= 𝑁3∇

2𝛺 − 𝑁1∇
2𝑊 − 2𝑁1𝛺 ,        (20) 

𝜕𝑇

𝜕𝑡
= 𝑔 𝑧  𝑊 − 𝑁5𝛺 + ∇2𝑇 + 𝑅𝑖 𝑇 ,        (21) 

where the asterisks have been dropped for simplicity. The dimensionless groups are 

𝑃𝑟 =
𝜁+𝜂

𝜒𝜌0
 ,  (Prandtl Number) 

𝑅 =
𝜌0𝛼𝑔0∆𝑇𝑑

3

𝜒(𝜁+𝜂)
  ,  (Rayleigh Number) 

𝑁1 =
𝜁

𝜁+𝜂
  ,  (Coupling Parameter) 

𝑁2 =
𝐼

𝑑2  ,  (Inertia Parameter) 

𝑁3 =
𝜆′ +𝜂′

(𝜁+𝜂)𝑑2  ,  (Couple Stress Parameter) 

𝑁5 =
𝛽

𝜌0𝐶𝜗𝑑2
   , (Micropolar Heat Conduction Parameter) 

𝑅𝑖 =
𝑄𝑑2

𝜒
  ,  (Internal Rayleigh Number) 

and 𝑔 𝑧 =
 𝑅𝑖𝐶𝑜𝑠[ 𝑅𝑖 1−𝑧 ]

𝑆𝑖𝑛 [ 𝑅𝑖]
 . 

Equations (19) to (21) are solved subject to the conditions, free-free, isothermal and no spin boundary conditions, given by 

  𝑊 =
𝜕2𝑊

𝜕𝑧2
= 𝛺 = 𝑇 = 0 𝑎𝑡 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 1        (22) 

Eliminating T and Ω from equations (19) to (21), we get an equation for W in the form 

  
𝑁2

𝑃𝑟

𝜕

𝜕𝑡
− 𝑁3∇

2 + 2𝑁1  
𝜕

𝜕𝑡
− ∇2 − 𝑅𝑖  

1

𝑃𝑟

𝜕

𝜕𝑡
−  1 + 𝑁1 ∇

2 ∇4 + 𝑁1
2  

𝜕

𝜕𝑡
− ∇2 − 𝑅𝑖 ∇6 𝑊 =      

   𝑅∇2∇1
2  

𝑁2

𝑃𝑟
𝜀𝑓′ +  −𝑁3∇

2 + 2𝑁1 + 𝑁1𝑁5∇
2  1 + 𝜀𝑓  𝑔 𝑧 𝑊     (23) 

where 𝑓 = Real part of (𝑒−𝑖𝛺𝑡 )  and 𝑓′ = (−𝑖𝛺) Real part of (𝑒−𝑖𝛺𝑡 ) 

In the dimensionless form, the velocity boundary conditions for solving equation (23) are obtainable from equations (19)-(21) 

and (22) in the form 

𝑊 =
𝜕2𝑊

𝜕𝑧2 =
𝜕4𝑊

𝜕𝑧4 =
𝜕6𝑊

𝜕𝑧6 =
𝜕8𝑊

𝜕𝑧8 = 0 at z=0,1.         (24) 

5.PERTURBATION PROCEDURE: 

We now seek the eigen-function W and eigen-values R of the equation (23) in the form 

 𝑅, 𝑊 =  𝑅0, 𝑊0 + 𝜀 𝑅1, 𝑊1 + 𝜀2 𝑅2, 𝑊2 + ………………     (25) 
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Substituting the expression (25) into equation (23) and equating like powers of ε on both sides, we get 

𝐿1𝑊0 = 0,            (26) 

𝐿1𝑊1 =
𝑁2

𝑃𝑟
𝑅0∇

2∇1
2𝑓′𝑔 𝑧 𝑊0 + ∇2∇1

2 −𝑁3∇
2 + 2𝑁1 + 𝑁1𝑁5∇

2 𝑔(𝑧)(𝑓𝑅0 + 𝑅1)𝑊0    (27) 

𝐿1𝑊2 = ∇2∇1
2 𝑁2

𝑃𝑟
𝑔(𝑧)𝑓′ 𝑅0𝑊1 + 𝑅1𝑊0 + ∇2∇1

2 −𝑁3∇
2 + 2𝑁1 +  𝑁1𝑁5∇

2 𝑔(𝑧)[ 𝑅1 + 𝑓𝑅0 𝑊1 +  𝑅2 + 𝑓𝑅1 𝑊0] 

          (28) 

where 

𝐿1 =   
𝑁2

𝑃𝑟

𝜕

𝜕𝑡
− 𝑁3∇

2 + 2𝑁1  
𝜕

𝜕𝑡
− ∇2 − 𝑅𝑖  

1

𝑃𝑟

𝜕

𝜕𝑡
−  1 + 𝑁1 ∇

2 ∇4 + 𝑁1
2  

𝜕

𝜕𝑡
−  ∇2 − 𝑅𝑖 ∇6 − 𝑅0∇

2∇1
2𝑔(𝑧)  

𝑁2

𝑃𝑟

𝜕

𝜕𝑡
−

                                  𝑁3∇2+2𝑁1+𝑁1𝑁5∇2       (29) 

6. SOLUTION TO THE ZEROTH ORDER PROBLEM:   

The zeroth order problem is equivalent to the Rayleigh-Bénard problem of micropolar fluid with internal heat generation in the 

absence of gravity modulation.The stability of the system in the absence of gravity modulation is investigated by introducing 

vertical velocity perturbation 𝑊0 corresponding to lowest mode of convection as:        

𝑊0 = 𝑆𝑖𝑛(𝜋𝑧)exp⁡[𝑖 𝑙𝑥 + 𝑚𝑦 ]              (30) 

where l and m are horizontal wave numbers in x and y direction.  

Substituting equation (30) into equation (26) we obtain the expression for Rayleigh number in the form    

𝑅0 =
4𝜋2−𝑅𝑖

2𝜋2

𝑁3 1+𝑁1 𝑘
8+𝑁1 2+𝑁1 𝑘

6−𝑅𝑖[𝑁3 1+𝑁1 𝑘
6+𝑁1 2+𝑁1 𝑘

4]

 (𝑁3−𝑁1𝑁5 𝑘
2+2𝑁1]𝑎2     (31) 

where 𝑘2 = 𝜋2 + 𝑎2,   𝑎2 = 𝑙2 + 𝑚2 .  

7. SOLUTION TO THE FIRST ORDER PROBLEM: 

Equation (27) for 𝑊1 now takes the form 

𝐿1𝑊1 =
𝑁2

𝑃𝑟
𝑘2𝑎2𝑓′𝐺 𝑧 𝑅0𝑊0 + 𝑘2𝑎2𝐺 𝑧 [ 𝑁3 − 𝑁1𝑁5 𝑘

2 + 2𝑁1](𝑓𝑅0 +  𝑅1)𝑊0        (32) 

If the above equation is to have a solution, the right hand side must be orthogonal to the null space of the operator L1. This 

implies that the time independent part of the right hand side of the equation (32) must be orthogonal to 𝑆𝑖𝑛(𝜋𝑧). Since f varies 

sinusoidal with time, the only steady term on the right hand side of equation (32) is  𝑘2𝑎2𝐺 𝑧 [ 𝑁3 − 𝑁1𝑁5 𝑘
2 + 2𝑁1]𝑅1 , so that 

𝑅1 = 0 . It follows that all the odd coefficients i.e. 𝑅1 = 𝑅3 =  ……… . . = 0 in equation (25). 

Using equation (28), we find that 

𝐿1 𝑆𝑖𝑛 𝜋𝑧 exp 𝑖 𝑙𝑥 + 𝑚𝑦 − 𝛾𝑡   = 𝐿1 𝛾 𝑆𝑖𝑛 𝜋𝑧 exp 𝑖 𝑙𝑥 + 𝑚𝑦 − 𝛾𝑡  , 

      = 𝑌1 + 𝑖𝑌2 ,    (33) 

where 

𝑌1 =  −
𝑁2𝛾

2

𝑃𝑟
𝑘2   1 + 𝑁1 𝑘

4 +
1

𝑃𝑟
  +  𝑁3𝑘

2 +
2𝑁1

𝑃𝑟
   1 + 𝑁1 𝑘

8 − 𝑘4 𝛾2

𝑃𝑟
 +  𝑁1

2𝑘8 − 𝑅0𝑘
2𝑎2𝐺 𝑧   𝑁3 −

                                            𝑁1𝑁5𝑘2+2𝑁1+𝑅𝑖𝑁2𝛾2𝑃𝑟2𝑘2−𝑁31+𝑁1𝑘8−2𝑁11+𝑁1𝑘6−𝑁12𝑘6 ,  

𝑌2 = 𝛾  
𝑁2

𝑃𝑟
 
𝛾2

𝑃𝑟
𝑘4 −  1 + 𝑁1 𝑘

8 + 𝑅0𝐺(𝑧) −  𝑁3𝑘
2 + 2𝑁1   1 + 𝑁1 𝑘

6 + 
1

𝑃𝑟
𝑘6 − 𝑁1

2𝑘6 +  𝑅𝑖  
𝑁2

𝑃𝑟
 1 + 𝑁1 𝑘

6 +

                                      𝑁3𝑃𝑟𝑘6+2𝑁1𝑃𝑟𝑘4 . 

𝐺(𝑧) =  𝑔(𝑧) 𝑆𝑖𝑛2(𝜋𝑧) 𝑑𝑧
1

0
    

The particular solution of equation (32) is 
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𝑊1 =
𝑅0𝑘

2𝑎2𝐺(𝑧)

 𝐿1(𝛾) 2
 −

𝑁2𝛾

𝑃𝑟
 𝑌1𝑆𝑖𝑛 𝛾𝑡 + 𝑌2𝐶𝑜𝑠 𝛾𝑡  + 𝐴1(𝑌1𝐶𝑜𝑠 𝛾𝑡 − 𝑌2𝑆𝑖𝑛 𝛾𝑡 ) , (34) 

where 𝐴1 = [ 𝑁3 − 𝑁1𝑁5 𝑘
2 + 2𝑁1] . 

The equation of W2is 

𝐿1𝑊2 = 𝑅2𝑘
2𝑎2𝐴1𝐺 𝑧 𝑊0 + 𝑅0𝑘

2𝑎2 𝑁2

𝑃𝑟
𝑓′𝐺 𝑧 𝑊1 + 𝑅0𝑘

2𝑎2𝐴1𝑓𝐺(𝑧)𝑊1    (35) 

Instead of solving this equation (35), we will use this equation to determine 𝑅2. For the existence of a solution of equation (35), 

it is necessary that the steady part of its right hand side is orthogonal to Sin (𝜋𝑧) .This gives 

  𝑅2𝑘
2𝑎2𝐴1𝐺 𝑧 𝑊0 + 𝑅0𝑘

2𝑎2 𝑁2

𝑃𝑟
𝑓′𝐺 𝑧 𝑊1 + 𝑅0𝑘

2𝑎2𝐴1𝑓𝐺(𝑧)𝑊1 𝑆𝑖𝑛 𝜋𝑧 𝑑𝑧 = 0
1

0
 . 

Taking time average, we get 

𝑅2 = −
𝑁2𝑅0

𝐴1𝑃𝑟
𝐺(𝑧)  𝑓′𝑊1𝑆𝑖𝑛 𝜋𝑧 𝑑𝑧

1

0
− 𝑅0𝐺(𝑧)  𝑓𝑊1𝑆𝑖𝑛 𝜋𝑧 𝑑𝑧

1

0
,     (36) 

 

Finally 

𝑅2 = −
𝑅0

2𝑘2𝑎2𝐺(𝑧)

2 𝐿1(𝛺) 2
  

𝑁2

𝑃𝑟
 

2 𝛺2𝑌1

𝐴1
+ 𝐴1𝑌1  .       (37) 

7.MINIMUM RAYLEIGH NUMBER FOR CONVECTION  

The value of Rayleigh number R obtained by this procedure is the eigenvalue corresponding to the eigen function W.  Since R 

is a function of the horizontal wave number a and the amplitude of modulation ε, we have  

𝑅 𝑎, 𝜀 = 𝑅0 𝑎, 𝜀 + 𝜀2𝑅2 𝑎, 𝜀 +  …………………       (38) 

It was shown by Venezian [34] that the critical value of thermal Rayleigh number is computed up to 𝑂(𝜀2), by evaluating 𝑅0 

and 𝑅2 at 𝑎 = 𝑎0 . It is only when one wishes to evaluate 𝑅4 that 𝑎2 must be taken into account where 𝑎 = 𝑎2 minimizes 𝑅2. To 

evaluate the critical value of 𝑅2 (denoted by 𝑅2𝑐) one has to substitute 𝑎 = 𝑎0 in 𝑅2, where 𝑎0 is the value at which 𝑅0 given by 

equation (31) is minimum.  

8.RESULTS AND DISCUSSIONS 

We now comprehend the effect of small amplitude gravity modulation and internal heat generation on the onset of Rayleigh – 

Bénard convection in a horizontal layer of a micropolar fluid for a wide range of frequencies of modulation and the relevant 

parameters. The linear stability problem is solved based on the method proposed by Venezian. Attention is focused on the 

determination of the linear stability criterion.  

The parameters 𝑁1 , 𝑁2, 𝑁3, 𝑁5 arise due to the micropolar fluid, the parameters Pr and Riarise due to the fluid. To study the 

effects of these parameters on gravity modulation, the following range of parameters are considered in this paper 

   0 ≤ 𝑁1 ≤ 1 ,    0 ≤ 𝑁2 ≤ 𝑟 ,      0 ≤ 𝑁3 ≤ 𝑚 , 0 ≤ 𝑁5 ≤ 𝑛 , 

where the quantities r, m and n are finite positive real numbers [see Siddheshwar and Pranesh [21]. The values of Prfor fluid 

with suspended particles are taken greater than the fluid without suspended particles because viscosity increases due to the 

presence of suspended particles. The values of Riare considered to be moderate so that it will determinate the system. 

The solutions obtained are based on the assumption that the amplitude of the gravity modulation is small. The validity of the 

results depends on the value of the modulating frequency γ. When γ < 1 (i.e. the period of modulation is large) the gravity 

modulation affects the entire volume of the fluid resulting in the growth of the disturbance. On the other hand, the effect of 

modulation disappears for large frequencies. This is due to the fact the buoyancy force takes a mean value leading to the 

equilibrium state of the unmodulated case. In view of this, we choose only moderate value of γ in our present study.  

The results obtained in this paper are depicted in the figures (2)-(7).  

Figure (2) is the plot of correction Rayleigh number 𝑅2𝑐  versus frequency of modulation γ for different values of coupling 

parameter 𝑁1. We observe that as 𝑁1 increases, 𝑅2𝑐also increases. The increase in 𝑁1 implies increase in the concentration of 
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suspended particles. These suspended particles consume the greater part of the energy in forming the gyrational velocity and 

as a result 𝑅2𝑐  increases. Thus, increase in 𝑁1 stabilizes the system. 

Figure (3) is the plot of  𝑅2𝑐versus γ for different values of inertia parameter 𝑁2. Increase in 𝑁2 is representative of the increase 

in inertia of the fluid due to the suspended particles.  Thus, as is to be expected, we find that as 𝑁2 increases  𝑅2𝑐 increases 

and thereby stabilizing the system.  

Figure (4) is the plot of 𝑅2𝑐  versus γ for different values of couple stress parameter 𝑁3. Increase in 𝑁3  signifies increase in 

couple stress of the fluid and decrease in gyrational velocities.  Hence, as 𝑁3 increases, we observe that 𝑅2𝑐decreases and 

destabilize the system. 

Figure (5) is the plot of 𝑅2𝑐  versus γ for different values of micropolar heat conduction parameter 𝑁5. When 𝑁5 increases, the 

heat induced into the fluid due to this, microelements also increase, thus reducing the heat transfer from bottom to top. We find 

from the figure that as 𝑁5 increases 𝑅2𝑐  increases and thus stabilizes the system. 

Figure (6) is a plot of 𝑅2𝑐  versus γ for different values of Prandtl number Pr. It is observed that as Pr increases 𝑅2𝑐calso 

increases. It can be inferred from this that the effect of increasing the concentration of the suspended particle is to stabilize the 

system. This means that the fluids with suspended particles are more susceptible to stabilization by modulation than clean 

fluids. 

Figure (7) is the plot of 𝑅2𝑐  versus γ for different values of internal Rayleigh number Ri. We observe that the increase in the 

internal Rayleigh number Ri increases the heat transport in the system thereby advancing the onset of convection. Thus 

increase in Ri destabilizes the system. 

Figure (8) is the plot of amplitude of modulation ε versus Rayleigh number R for different values of γ. From the figure, we 

observe that the amplitude of modulation ε increases, the Rayleigh number R also increases. Thus amplitude of modulation 

stabilizes the system. It can be clearly seen that as γ increases, R increases for smaller values of γ and decreases for 

moderate values of γ.  Thus destabilizes the system.   

From the figures it is observed that since 𝑅2𝑐   remains always positive for all values of γ , gravity modulation leads to delay in 

onset of convection. The results of this study are helpful in the areas of crystal growth under microgravity conditions. 

9. CONCLUSIONS 

The effect of coupling parameter 𝑁1  , inertia parameter 𝑁2 , micropolar heat conduction parameter 𝑁5and  Prandtl number Pris 

to reduce the amount of heat transfer whereas the opposite effect is observed in the case of couple stress parameter 𝑁3  and 

internal Rayleigh number Ri. It is observed that gravity modulation or g-jitter leads to delay in convection and frequency of 

gravity modulation also plays an important role in controlling heat transfer in the system.The effect of internal heat generation 

has significant influence on the Rayleigh – Bénard convection and is clearly a destabilizing factor to make the system more 

unstable. 
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Figure 2: Plot of correction Rayleigh number 𝑅2𝑐versus frequency of gravity 

modulation 𝛾 for different values of coupling parameter 𝑁1. 
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Figure 3: Plot of correction Rayleigh number 𝑅2𝑐versus frequency of gravity 

modulation 𝛾 for different values of inertia parameter 𝑁2. 
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Figure 4: Plot of correction Rayleigh number 𝑅2𝑐versus frequency of gravity 

modulation 𝛾 for different values of Couple stress parameter 𝑁3. 
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Figure 5: Plot of correction Rayleigh number 𝑅2𝑐versus frequency of gravity 

modulation 𝛾 for different values of micropolar heat conductionparameter 𝑁5. 
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Figure 6: Plot of correction Rayleigh number 𝑅2𝑐versus frequency of gravity 

modulation 𝛾 for different values of Prandtl number Pr. 
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Figure 7: Plot of correction Rayleigh number 𝑅2𝑐versus frequency of gravity 

modulation γ for different values of internal Rayleigh number Ri. 
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Figure 8: Plot of amplitude of modulation ε verses Rayleigh number R for 

different values of amplitude of gravity modulation γ. 

 

 

 

 

 

 

 

 


