

Differential subordination and superordination for certain subclasses of p-valent functions

Jamal M. Shenan Department of mathematics, Alazhar University-Gaza, P. O. Box 1277, Gaza, Palestine. shenanjm @yahoo.com Ahmed S. Galiz

Department of Mathematics, Alquds Open University-Gaza Branch, P. O. Box 124, Gaza, Palestine. Ahmad2911971@hotmail.com

ABSTRACT

In this paper, we study applications of the differential subordination and superordination of analytic p-valent functions in the open unit disc associated with certain operator defined by the Wright generalized hypergeometric function. Sandwich-type result involving this operator is also derived.

Keywords:. Analytic function; p-valent function; the Wright generalized hypergeometric function; differential subordination and superordination.

2010 Mathematics Subject Classification: 30C80 and 30C45

Council for Innovative Research Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 6, No. 3 editor@cirworld.com www.cirworld.com, member.cirworld.com

1 Introduction

Let H(U) be the class of functions analytic in $U = \{z : z \in C \text{ and } |z| < 1\}$ and H[a,k] be the subclass of H(U) consisting of functions of the form

$$f(z) = a + a_p z^k + a_{p+1} z^{p+1} + \dots \quad (a \in \mathbb{C}, p \in \mathbb{N} = \{1, 2, \dots\}).$$

Let A_n denote the class of functions of the form

$$f(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k} z^{k} \quad (p \in \mathbb{N}, z \in U),$$

$$(1)$$

which are analytic in the open unit disk U , and set $A \equiv A_1$.

For two functions $f\left(z\right)$ given by (1) and

$$g(z) = z^{p} + \sum_{k=1+p}^{\infty} b_{k} z^{k},$$
 (2)

the hadmard product (or convolution) of f and g is defined by

$$(f * g)(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k}b_{k}z^{k} = (g * f)(z) \quad (p \in \mathbb{N}, z \in U).$$
 (3)

Let f and F be members of H(U), the function f(z) is said to be subordinate to F(z), or F(z) is said to be superordinate to f(z), if there exists a function w(z) analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$), such that f(z) = F(w(z)). In such a case we write $f(z) \prec F(z)$. In particular, if F is univalent, then $f(z) \prec F(z)$ if and only if f(0) = F(0) and $f(U) \subset F(U)$ (see [1, 2]).

Suppose that $\,p\,$ and $\,h\,$ are two functions in $\,U\,$, let

$$\phi(r,s,t;z):C^3\times U\to C$$
.

If p and $\phi(p(z),zp'(z),z^2p''(z);z)$ are univalent in U and if p is analytic in U and satisfies the first order differential superordination

$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z) \qquad (z \in U), \tag{4}$$

then p is called a solution of the differential superordination (4).

The univalent function q is called a subordinant solutions of (4) if $q \prec p$ for all p satisfying (4). A subordinant \widetilde{q} that satisfies $q \prec \widetilde{q}$ for all subordinant q of (4) is said to be the best subordinant. (see the monograph by Miller and Mocanu [14], and [15]).

Recently, Miller and Mocanu [15] obtained sufficient conditions on the functions h,q and ϕ for which the following implication holds:

$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z) \rightarrow q(z) \prec p(z)$$

Using these results, the second author considered certain classes of first-order differential superordinations [7], as well as superordination-preserving integral operators [6]. Ali et al. [1], using the results from [7], obtained sufficient conditions for certain normalized analytic functions f to satisfy

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z), \tag{5}$$

where $q_{\scriptscriptstyle 1}$ and $q_{\scriptscriptstyle 2}$ are given univalent normalized functions in U .

Very recently, Shanmugam et al. [20–22] obtained the such called sandwich results for certain classes of analytic functions. Further subordination results can be found in [16, 23, 24 and 28].

Let $\alpha_1, A_1, ..., \alpha_q, A_q$ and $\beta_1, B_1, ..., \beta_s, B_s$ $(q, s \in \mathbb{N} = \{1, 2...\})$ be positive real parameters such that

$$1 + \sum_{k=1}^{s} B_k - \sum_{k=1}^{q} A_k > 0.$$
 (6)

The Wright generalized hypergeometric function (see [25], [26] and [27])

$$_{q}\Psi_{s}\left[\left(\alpha_{1},A_{1},...,\alpha_{q},A_{q}\right);\left(\beta_{1},B_{1},...,\beta_{s},B_{s}\right);z\right]={_{q}\Psi_{s}}\left[\left(\alpha_{n},A_{n}\right)_{1,q};\left(\beta_{n},B_{n}\right)_{1,s};z\right]\text{ is defined by }$$

$${_{q}\Psi_{s}}\left[\left(\alpha_{n},A_{n}\right)_{1,q};\left(\beta_{n},B_{n}\right)_{1,s};z\right]=\sum_{k=0}^{\infty}\left\{\prod_{n=1}^{q}\Gamma\left(\alpha_{n}+kA_{n}\right)\right\}\left\{\prod_{n=1}^{s}\Gamma\left(\beta_{n}+kB_{n}\right)\right\}^{-1}\frac{z^{k}}{k!}\left(z\in U\right).$$

$$(1.7)$$

If $A_i = 1$ (i = 1,...,q) and $B_j = 1$ (j = 1,...,s) we have

$$\Omega_{q}\Psi_{s}\left[\left(\alpha_{n},1\right)_{1,q};\left(\beta_{n},1\right)_{1,s};z\right]={}_{q}F_{s}\left(\alpha_{1},...\alpha_{q},\beta_{1},...\beta_{s},z\right),\tag{8}$$

which is the generalized hypergemetric function

$$\Omega = \left(\prod_{n=1}^{q} \Gamma(\alpha_n)\right)^{-1} \left(\prod_{n=1}^{s} \Gamma(\beta_n)\right). \tag{9}$$

$$\theta_{p,q,s}\left[\alpha_{1},\beta_{1};A_{1},B_{1};z\right] = \Omega z^{p}_{q} \Psi_{s}\left[\left(\alpha_{n},A_{n}\right)_{1,q};\left(\beta_{n},B_{n}\right)_{1,s};z\right]$$

$$= z^{p} + \sum_{k=1}^{\infty} \frac{\prod_{n=1}^{s} \Gamma(\beta_{n}) \prod_{n=1}^{q} \Gamma(\alpha_{n} + kA_{n})}{\prod_{n=1}^{q} \Gamma(\alpha_{n}) \prod_{n=1}^{s} \Gamma(\beta_{n} + kB_{n}) k!} z^{k+p}.$$

$$(10)$$

Using the Wright hypergeomtric function, we introduce the following linear operator

$$\phi_{p,q,s}^{m,l,\lambda}\big[\alpha_{\!_1},\beta_{\!_1};A_{\!_1},B_{\!_1}\big]\!f:\!A_p\to\!A_p$$
 which is defined by the following convolution

$$\phi_{p,q,s}^{0,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z) = f(z) * \theta_{p,q,s} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1}; z \right];$$

$$\phi_{p,q,s}^{1,1,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f(z) = (1 - \lambda) \left(f(z) * \theta_{p,q,s} \left[\alpha_1, \beta_1; A_1, B_1; z \right] \right)$$

$$+\frac{\lambda}{(p+l)^{l-1}}\left(z'f(z)*\theta_{p,q,s}\left[\alpha_{1},\beta_{1};A_{1},B_{1};z\right]\right)';$$

$$\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z) = \phi_{p,q,s}^{m,l,\lambda} \left(\phi_{p,q,s}^{m-1,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z) \right). \tag{11}$$

If $f \in A_n$, then from (1) and (11), we can easily see that

$$\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z) = z^{p} + \sum_{k=p+1}^{\infty} \left[\frac{p+l+\lambda(k-p)}{p+l} \right]^{m} \frac{\prod_{n=1}^{s} \Gamma(\beta_{n}) \prod_{n=1}^{q} \Gamma(\alpha_{n}+(k-p)A_{n})}{\prod_{n=1}^{q} \Gamma(\alpha_{n}) \prod_{n=1}^{s} \Gamma(\beta_{n}+(k-p)B_{n})(k-p)!} a_{k} z^{k},$$
(12)

where $m \in N_0 = N \cup \{0\}, l \ge 0, \lambda \ge 0$, and $p \in N$

We note that when $A_i = 1$ (i = 1,...,q) and $B_i = 1$ (j = 1,...,s), the operator

 $\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{\!_{1}},\beta_{\!_{1}};1,1\right]\!f\left(z\right.)=L_{p,q,s\lambda}^{m,l}\left(\alpha_{\!_{1}},\beta_{\!_{1}}\right)\!f\left(z\right.)\ \text{was studied by El-Ashwah_ and Aouf [11], also when }$

$$A_i=1$$
 $\left(i=1,\ldots,q\right)$, $B_j=1$ $\left(j=1,\ldots,s\right)$, $p=1$, and $l=0$, the operator

 $\phi_{1,q,s}^{m,0,\lambda}\left[\alpha_{1},\beta_{1};1,1\right]f\left(z\right)=D_{\lambda}^{m}\left(\alpha_{1},\beta_{1}\right)f\left(z\right)$ was studied by Selvaraj and Karthikeyan [19], and for

$$A_{i}=1$$
 $\left(i=1,...,q\right)$ and $B_{j}=1$ $\left(j=1,...,s\right)$, and $m=0$, the operator

 $\phi_{p,q,s}^{0,l,\lambda}\left[lpha_{_{1}},eta_{_{1}};1,1
ight]\!f\left(z
ight.)=H_{p}^{p,q}\left[lpha_{_{1}}
ight]\!f\left(z
ight.)$ is the Dziok–Srivastava operator [10]. Moreover by specializing the parameters m,l,λ,p,q,s , α_{i} , A_{i} (i=1,...,q) and β_{j} , B_{j} (j=1,...,s), we obtain various new operators from

the operator $\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_1,\beta_1;A_1,B_1\right]f(z)$ studied by several authors such as Catas [9], Kamali, and Orhan [12], Kumar et al. [13], Salagean [18], Al-Oboudi [2] and others.

It is easily verified from (12) that

$$z\left(\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)\right)' = \frac{\alpha_{1}}{A_{1}}\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f(z) - \left(\frac{\alpha_{1}}{A_{1}}-p\right)\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)$$

$$(A_{1}>0), \quad (13)$$

$$\lambda z \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z) \right)' = (p+l) \phi_{p,q,s}^{m+l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z) - \left[p(1-\lambda) + l \right] \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z)$$

$$(\lambda > 0). \tag{14}$$

To prove our results, we need the following definitions and lemmas.

Definition 1 ([14]). Denote by Q the set of all functions q(z) that are analytic and injective on \overline{U} / E(q) where $E(q) = \{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \},$

and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial U / E(q)$. Further let the subclass of Q for which q(0) = a be denoted by Q(a), $Q(0) \equiv Q_0$ and $Q(1) \equiv Q_1$.

Lemma 1 ([14]). Let q(z) be univalent function in the unit disc U and let θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. Set $q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$ and suppose that

- i) Q is a starlike function in U ,
- ii) Re $zh'(z)/Q(z) > 0, z \in U$.

If p is analytic in U with p(0) = q(0), $p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)), \tag{15}$$

then $p(z) \prec q(z)$, and q is the best dominant of (15).

Lemma 2 ([21]). Let q(z) be a convex univalent function in U and let $\alpha \in \mathbb{C}, \ \eta \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with

$$\Re\left\{1+\frac{z\ q''(z)}{q'(z)}\right\} > \max\left\{0,-\Re\left(\frac{\sigma}{\eta}\right)\right\}.$$

If the function g(z) is analytic in U and

$$\sigma g(z) + \eta z g'(z) \prec \sigma q'(z) + \eta z q'(z)$$
,

then $g(z) \prec q(z)$ and q(z) is the best dominant.

Lemma 3 ([8]). Let q(z) be univalent function in the unit disc U and let θ and ϕ be analytic in a domain D containing q(U). Suppose that

- i) $\operatorname{Re}\theta(q(z))/\phi(q(z)) > 0 \ z \in U$,
- ii) $h(z) = zq'(z)\varphi(q(z))$ is starlike in U.

If $p \in H[q(0),1] \cap Q$ with $p(U) \subseteq D$, $\theta(p(z)) + zp'(z)\varphi(p(z))$ is univalent U, and

$$\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z)), \tag{16}$$

then $q(z) \prec p(z)$, and q is the best dominant of (16).

Lemma 4 ([15]). Let q(z) be convex function in U and let $\gamma \in \mathbb{C}$, with $\operatorname{Re} \gamma > 0$. If $p \in H[q(0),1] \cap Q$ and $p(z) + \gamma z p'(z)$ is univalent in U, then

$$q(z) + \gamma z q'(z) \prec p(z) + \gamma z p'(z)$$
,

implies $q(z) \prec p(z)$, and q is the best dominant.

Lemma 5 ([17]). The function $q(z) = (1-z)^{-2ab}$ is univalent in U if and only if

$$|2ab - 1| \le 1$$
 or $|2ab + 1| \le 1$.

Unless otherwise mentioned, we assume throughout the following sections that $\alpha_1, A_1, ..., \alpha_a, A_a$ and

$$\beta_1, B_1, \dots, \beta_s, B_s \ (q, s \in \mathbb{N} = \left\{1, 2 \dots\right\}) \text{ are positive real parameters such that } 1 + \sum_{k=1}^s B_k - \sum_{k=1}^q A_k > 0,$$

$$m \in N_0, \ l \geq 0, \text{ and } \lambda > 0.$$

2. Subordination results for analytic functions.

Theorem 1 Let $\alpha \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and q(z) be a univalent function in U, with q(0) = 1, and suppose that

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\left\{0; -\frac{p\alpha_1}{A_1}\operatorname{Re}\frac{1}{\alpha}\right\}, \quad \left(z \in U; p \in \mathbb{N}\right)$$
(17)

If $f \in A_p$ satisfies the subordination

$$\frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1} + 1, \beta_{1}; A_{1}, B_{1} \right] f(z)}{z^{p}} \right) + \frac{p - \alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z)}{z^{p}} \right) \prec q(z) + \frac{\alpha A_{1} z q'(z)}{p \alpha_{1}}, (18)$$

then

$$\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)}{z^{p}} \prec q(z),$$

and the function q is the best dominant of (18).

Proof. If we consider the analytic function

$$h(z) = \frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_1,\beta_1;A_1,B_1\right]f(z)}{z^p},$$

by differentiating logarithmically with respect to $\,z\,$, we deduce that

$$\frac{zh'(z)}{h(z)} = \frac{z\left(\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)\right)'}{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)} - p.$$
(19)

From (19), by using the identity (13), a simple computation shows that

$$\frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f(z)}{z^p} \right) + \frac{p - \alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f(z)}{z^p} \right) = h(z) + \frac{\alpha A_1 z h'(z)}{p \alpha_1}$$

hence the subordination (18) is equivalent to

$$h(z) + \frac{\alpha A_1 z h'(z)}{p \alpha_1} \prec q(z) + \frac{\alpha A_1 z q'(z)}{p \alpha_1}.$$

Combining the last relation together with Lemma 2 for the special case $\eta = \alpha A_1/p\alpha_1$ and $\sigma = 1$, we obtain our result.

Taking $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 1, where $-1 \le B < A \le 1$, the condition (17) becomes

$$\Re\left\{\frac{1-Bz}{1+Bz}\right\} > \max\left\{0; -\frac{p\alpha_1}{A_{1-1}}\operatorname{Re}\frac{1}{\alpha}\right\}, \quad z \in U.$$
(20)

It is easy to check that the function $\phi(\zeta) = \frac{1-\zeta}{1+\zeta}$, $|\zeta| < |B|$, is convex in U and since

 $\phi(\overline{\zeta}) = \overline{\phi(\zeta)}$ for all $|\zeta| < |B|$, it follows that the image $\varphi(U)$ is a convex domain symmetric with respect to the real axis, hence

$$\inf \left\{ \Re\left(\frac{1 - Bz}{1 + Bz}\right); z \in U \right\} = \frac{1 - |B|}{1 + |B|} > 0.$$
 (21)

Then, the inequality (20) is equivalent to

$$\frac{p\alpha_1}{A_1}\operatorname{Re}\frac{1}{\alpha} \ge \frac{1-|B|}{1+|B|},$$

hence we obtain the following result

Corollary 1 Let $\alpha \in \mathbb{C}^*$ and $-1 \le B < A \le 1$ with

$$\max\left\{0; -\frac{p\alpha_1}{A_1}\operatorname{Re}\frac{1}{\alpha}\right\} \le \frac{1-|B|}{1+|B|}.$$

If $f \in A_n$ satisfies the subordination

$$\frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1} + 1, \beta_{1}; A_{1}, B_{1} \right] f(z)}{z^{p}} \right) + \frac{p - \alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f(z)}{z^{p}} \right) \\
 \qquad \qquad \frac{1 + Az}{1 + Bz} + \frac{A_{1}\alpha(A - B)z}{p\alpha_{1}\left(1 + Bz\right)^{2}}, \tag{22}$$

then

$$\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}} \prec \frac{1+Az}{1+Bz},$$

and the function 1+Az/1+Bz is the best dominant of (22).

For p = 1, A = 1 and B = -1, the above corollary reduces to:

Corollary 2 Let $\alpha \in \mathbb{C}^*$ such that

$$\frac{\alpha_1}{A_1} \operatorname{Re} \frac{1}{\alpha} \ge 0.$$

If $f \in A_n$ satisfies the subordination

$$\alpha \left(\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f(z)}{z}\right) + \left(1-\alpha\right)\left(\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)}{z}\right)$$

$$\leq \frac{1+Az}{1+Bz} + \frac{A_{1}\alpha(A-B)z}{\alpha_{1}\left(1+Bz\right)^{2}},$$

$$(23)$$

then

$$\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z}\prec\frac{1+z}{1-z},$$

and the function 1+z/1-z is the best dominant of (23).

Theorem 2 Let q(z) be a univalent function in U, with q(0)=1 and $q(z)\neq 0$ for all $z\in U$, and let $\delta,\mu\in\mathbb{C}^*$ and $\nu,\eta\in\mathbb{C}$ with $\nu+\eta\neq 0$, and suppose that $f\in A_p$ and q satisfy the conditions:

$$\frac{\nu\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{\left(\nu+\eta\right)z^{p}}\neq0\quad z\in U,$$
(24)

and

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0 \quad z \in U.$$

lf

then

$$\left[\frac{\nu\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{(\nu+\eta)z^{p}}\right]^{\mu}\prec q(z),$$

and the function q is the best dominant of (26) . (the power is the principal one)

Proof. Let

$$h(z) = \left[\frac{\nu \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f(z) + \eta \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f(z)}{(\nu + \eta) z^p} \right]^{\mu}, \ z \in U.$$
 (27)

According to (24) the function h is analytic in U , differentiating (27) logarithmically with respect to z we get

$$\frac{zh'(z)}{h(z)} = \mu \left[\frac{vz \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f(z) \right)' + \eta z \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f(z) \right)'}{v \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f(z) + \eta \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f(z)} - p \right].$$
(28)

In order to prove our result we will use Lemma 1. Considering in this lemma

$$\theta(w) = 1$$
 and $\phi(w) = \frac{\delta}{w}$,

then θ is analytic in $\mathbb C$ and $\phi(w) \neq 0$ is analytic in $\mathbb C^*$. Also, if we let

$$Q(z) = zq'(z) = \varphi(q(z)) = \delta \frac{zq'(z)}{q(z)},$$

and

$$g(z) = \theta(q(z)) + Q(z) = 1 + \delta \frac{zq'(z)}{q(z)},$$

then, since Q(0)=1 and $Q'(0)\neq 0$, the assumption (2.9) yields that Q is a starlike function in U . From (25) we also have

$$\Re \frac{zq'(z)}{Q(z)} = \Re \left\{ 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right\} > 0 \ z \in U,$$

and then, by using Lemma 1 we deduce that the subordination (26) implies $h(z) \prec q(z)$ and the function q is the best dominant of (26).

Taking $\nu=0,\,\eta=\delta=1$ and $q(z)=\frac{1+Az}{1+Bz}$ in Theorem 2 , it is easy to check that the assumption (25) holds whenever $-1\leq B< A\leq 1$, hence we obtain the next results.

Corollary 3 Let $-1 \leq B < A \leq 1$ and $\ \mu \in \mathbb{C}^*$. Let $f \in A_p$ and suppose that

$$\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}}\neq0 \qquad z\in U.$$

lf

$$1 + \mu \left[\frac{z \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right) \right)'}{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right)} - p \right] \prec 1 + \frac{(A - B)z}{(1 + Az)(1 + Bz)}, \tag{29}$$

then

$$\left\lceil \frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}}\right\rceil^{\mu} \prec \frac{1+Az}{1+Bz},$$

and the function 1+Az/1+Bz is the best dominant of (29). (the power is the principal one).

Remarks

- 1) Putting $A_i=1$ (i=1,...,q) and $B_j=1$ (j=1,...,s) in Theorem 2 we obtain the corresponding result due to El-Ashwah and Aouf [11, Theorem 2].
- 2) Putting $\nu=0$, $\eta=p=1$, m=0, q=s+1, $\alpha_i=A_i=1$ (i=1,...,s+1), $\beta_j=B_j=1$ (j=1,...,s), $\delta=1/ab$ $(a,b\in\mathbb{C}^*)$, $\mu=a$, and $q(z)=(1-z)^{-2ab}$ in Theorem 2, then combining this together with Lemma 5 we obtain the corresponding result due to Obradović et al. [16, Theorem 1], see also Aouf and Bulboacă [4, Corollary 3.3].
- 3) For $\nu=0$, $\eta=p=1$, m=0, q=s+1, $\alpha_i=A_i=1$ $\left(i=1,...,s+1\right)$, $\beta_j=B_j=1$ $\left(j=1,...,s\right)$, $\delta=1/b$ $\left(b\in\mathbb{C}^*\right)$, $\mu=1$ and $q(z)=\left(1-z\right)^{-2b}$, Theorem 2 reduces to the recent result of Srivastava and Lashin [24].
- 4) Putting $\nu=0,\ \eta=p=\delta=1,\ m=0$, q=s+1, $\alpha_i=A_i=1$ $(i=1,\ldots,s+1)$, $\beta_j=B_j=1$ $(j=1,\ldots,s)$ and $q(z)=(1+Bz)^{\mu(A-B)/B}$ $(-1\leq A< B\leq 1,\ B\neq 0)$ in Theorem 2, and using Lemma 5 we get the corresponding result due to Aouf and Bulboacă [4, Corollary 3.4].
- Putting v=0, $\eta=p=1$, m=0, q=s+1, $\alpha_i=A_i=1$ (i=1,...,s+1), $\beta_j=B_j=1$ (j=1,...,s), $\delta=e^{i\lambda}/ab\cos\gamma(a,b\in\mathbb{C}^*;|\gamma|<\pi/2)$, $\mu=a$ and $q(z)=(1-z)^{-2a\cos\gamma e^{-i\gamma}}$ in Theorem 2, we obtain the corresponding result due to Aouf et al. [5, Theorem 1], see also Aouf and Bulboacă [4, Corollary 3.5].

Theorem 3 Let q(z) be a univalent function in U, with q(0)=1, and Let $\gamma, \mu \in \mathbb{C}^*$ and $\nu, \eta, \delta, \Omega \in \mathbb{C}$ with $\nu + \eta \neq 0$, and suppose that $f \in A_p$ and q satisfy the conditions:

$$\frac{\nu\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{\left(\nu+\eta\right)z^{p}}\neq0\quad z\in U,$$
(30)

and

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\left\{0; -\operatorname{Re}\frac{\delta}{\gamma}\right\}, z \in U, \tag{31}$$

lf

$$\psi(z) = \left[\frac{\nu \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f\left(z\right) + \eta \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f\left(z\right)}{(\nu + \eta) z^p} \right]^{\mu}$$

$$\times \left[\delta + \mu \gamma \left(\frac{vz \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1} + 1, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right) \right)' + \eta z \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right) \right)'}{v \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1} + 1, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right) + \eta \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right)} - p \right) \right] + \Omega,$$

$$(32)$$

and

$$\psi(z) \prec \delta q(z) + \gamma z q'(z) + \Omega,$$
 (33)

then

$$\left[\frac{\nu\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{(\nu+\eta)z^{p}}\right]^{\mu}\prec q(z),$$

and the function q is the best dominant of (33) (all the power are the principal ones).

Proof. Let h(z) be defined by (27), the we have from (28)

$$zh'(z) = \mu h(z) \left[\frac{vz \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f\left(z\right) \right)' + \eta z \left(\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f\left(z\right) \right)'}{v \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f\left(z\right) + \eta \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f\left(z\right)} - p \right].$$

Let us consider the following functions:

$$\theta(w) = \delta w + \Omega$$
, and $\phi(w) = \gamma$, $w \in \mathbb{C}$,

$$Q(z) = zq'(z) = \varphi(q(z)) = \gamma \frac{zq'(z)}{q(z)}, z \in U,$$

and

$$g(z) = \theta(q(z)) + Q(z) = \delta q(z) + \gamma z q'(z) + \Omega, z \in U.$$

From the assumption we see that ${\it Q}$ is starlike in ${\it U}$ and, that

$$\Re \frac{zg'(z)}{Q(z)} = \Re \left\{ \frac{\delta}{\gamma} + 1 + \frac{zq''(z)}{q'(z)} \right\} > 0, \ z \in U,$$

thus, by applying Lemma 1 the proof is completed.

Taking $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 3, where $-1 \le B < A \le 1$, and according to (2.5),

the condition (2.15) becomes

$$\max\left\{0; -\operatorname{Re}\frac{\delta}{\gamma}\right\} \leq \frac{1-|B|}{1+|B|}.$$

Hence, for the special case v = y = 0, $\eta = 0$, we obtain the following result:

Corollary 4 Let $-1 \le B < A \le 1$, $\mu \in \mathbb{C}^*$ and $\delta \in \mathbb{C}$ with

$$\max\left\{0; -\operatorname{Re}(\delta)\right\} \leq \frac{1-|B|}{1+|B|}.$$

Let $f \in A_p$ and suppose that

$$\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}}\neq0, \qquad z\in U,$$

and

$$\left(\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}}\right)^{\mu}\left[\delta+\mu\left(\frac{z\left(\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)\right)'}{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}-p\right)\right]+\Omega$$

$$\prec\delta\frac{1+Az}{1+Bz}+\Omega+\frac{(A-B)z}{\left(1+Bz\right)^{2}},$$
(34)

then

$$\left\lceil \frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}}\right\rceil^{\mu} \prec \frac{1+Az}{1+Bz},$$

and the function 1+Az/1+Bz is the best dominant of (32) (all the powers are the principal ones).

Remark: Taking v=0, $\eta=\gamma=p=1$, $\alpha=\beta=0$ and $q(z)=\frac{1+z}{1-z}$ in Theorem 3 we obtain the corresponding result due to Aouf and Bulboacă [4, Corollary 3.7].

Superordination and sandwich results

Theorem 4. Let q(z) be convex function in U with q(0)=1 and let $\alpha\in\mathbb{C}^*$ with $\frac{\alpha_1}{A}\operatorname{Re}\alpha>0$. Let $f\in A_p$ and

$$\frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1} + 1, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right)}{z^{p}} \right) + \frac{p - \alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1} \right] f\left(z\right)}{z^{p}} \right),$$

is univalent in U , and

$$q(z) + \frac{\alpha A_1 z q'(z)}{p \alpha_1} \prec \frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1\right] f\left(z\right)}{z^p} \right) + \frac{p - \alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1\right] f\left(z\right)}{z^p} \right), \tag{35}$$

$$q(z) \prec \frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_1,\beta_1;A_1,B_1\right]f(z)}{z^p},$$

and q is the best subordinate of (3-

Proof. Let us define the function g by

$$g(z) = \frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)}{z^{p}}, z \in U.$$

From the assumption of the theorem, the function g is analytic in U , by differentiating logarithmically with respect to z the function g , we deduce that

$$\frac{zg'(z)}{g(z)} = \frac{z\left(\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)\right)'}{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f(z)} - p.$$
After some computations, and using the identity (1.13), from (3.2) we get

$$g(z) + \frac{\alpha A_1 z g'(z)}{\alpha_1 p(p-\beta)} = \frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1\right] f(z)}{z^p} \right) + \frac{p-\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1\right] f(z)}{z^p} \right),$$

and now, by using Lemma 4 we get the desired result.

Taking $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 4, where $-1 \le B < A \le 1$, hence we obtain the next results.

 $\textbf{Corollary 5} \quad \text{Let } -1 \leq B < A \leq 1 \text{ and } f \in A_p \text{ . Suppose that } \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1,\beta_1;A_1,B_1\right] f\left(z\right) \middle/ z^p \in H\left[q(0),1\right] \text{ . If } f\left(z\right) = 0$ the function

$$\frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1 + 1, \beta_1; A_1, B_1 \right] f\left(z\right)}{z^p} \right) + \frac{p - \alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1, \beta_1; A_1, B_1 \right] f\left(z\right)}{z^p} \right),$$

is univalent in \boldsymbol{U} , and

$$\frac{1+Az}{1+Bz} + \frac{\alpha A_1(A-B)z}{p\alpha_1(1+Bz)^2} \prec \frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1+1,\beta_1;A_1,B_1\right] f\left(z\right)}{z^p} \right) + \frac{p-\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_1,\beta_1;A_1,B_1\right] f\left(z\right)}{z^p} \right), \tag{37}$$

then

$$\frac{1+Az}{1+Bz} \prec \frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_1,\beta_1;A_1,B_1\right]f\left(z\right)}{z^p},$$

and 1+Az/1+Bz is the best subordinate of (37).

Using arguments similar to those of the proof of Theorem 3, and then by applying Lemma 3 we obtain the following result.

Theorem 5 Let q(z) be convex function in U, with q(0)=1. Let $\gamma,\mu\in\mathbb{C}^*$ and $\nu,\eta,\delta,\Omega\in\mathbb{C}$ with $\nu+\eta\neq 0$ $\operatorname{Re}\big(\delta/\gamma\big)>0$. Let $f\in A_p$ and suppose that f satisfies the conditions:

$$\frac{\nu\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{(\nu+\eta)z^{p}}\neq0,\quad z\in U\;,$$

and

$$\left\lceil \frac{v\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{\left(\nu+\eta\right)z^{p}}\right\rceil^{\mu}\in H\left[q\left(0\right),1\right]\cap Q$$

If the function ψ given by (2.16) is univalent in U , and

$$\delta q(z) + \gamma z q'(z) + \Omega \prec \psi(z), \tag{38}$$

then

$$q(z) \prec \left\lceil \frac{v\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_1+1,\beta_1;A_1,B_1\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_1,\beta_1;A_1,B_1\right]f\left(z\right)}{(\nu+\eta)z^p}\right\rceil^{\mu},$$

and the function q is the best subordinate of (38). (all the power are the principal ones).

Combining Theorem 1 with Theorem 4 and Theorem 3 with Theorem 5, we obtain, respectively, the following two sandwich results:

 $\text{ Theorem 6} \quad \text{Let } q_1 \text{ and } q_2 \text{ be two convex function in } U \text{ , with } q_1(0) = q_2(0) = 1 \text{ . Let } \alpha \in \mathbb{C}^* \text{ with } \frac{\alpha_1}{A_1} \operatorname{Re} \alpha > 0 \text{ .}$

Let $f\in A_p$ and suppose that $\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_1,\beta_1;A_1,B_1\right]f\left(z\right)\!\!\left/z\right.^p\in H\left[q(0),1\right]\bigcap Q$. If the function

$$\frac{\alpha}{p}\left(\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}}\right)+\frac{p-\alpha}{p}\left(\frac{\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{z^{p}}\right),$$

is univalent in U , and

$$q_{1}(z) + \frac{\alpha A_{1}zq_{1}'(z)}{p\alpha_{1}} \prec \frac{\alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1} + 1, \beta_{1}; A_{1}, B_{1}\right] f\left(z\right)}{z^{p}} \right) + \frac{p - \alpha}{p} \left(\frac{\phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}, \beta_{1}; A_{1}, B_{1}\right] f\left(z\right)}{z^{p}} \right)$$

$$\prec q_{2}(z) + \frac{\alpha A_{1}zq_{2}'(z)}{p\alpha_{1}},$$

$$(39)$$

then

$$q_1(z) \prec \frac{\phi_{p,q,s}^{m,l,\lambda}[\alpha_1,\beta_1;A_1,B_1]f(z)}{z^p} \prec q_2(z),$$

and q_1 and q_2 are, respectively, the best subordinate and the best dominant of (39).

Theorem 7 Let q_1 and q_2 be two convex function in U, with $q_1(0)=q_2(0)=1$. Let $\gamma,\mu\in\mathbb{C}^*$ and $\nu,\eta,\delta,\Omega\in\mathbb{C}$ with $\nu+\eta\neq 0$ $\operatorname{Re}\left(\delta/\gamma\right)>0$. Let $f\in A_p$ and suppose that f satisfies the conditions:

$$\frac{\nu\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{(\nu+\eta)z^{p}}\neq0,\quad z\in U\ ,$$

and

$$\left[\frac{\nu\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right]f\left(z\right)+\eta\phi_{p,q,s}^{m,l,\lambda}\left[\alpha_{1},\beta_{1};A_{1},B_{1}\right]f\left(z\right)}{(\nu+\eta)z^{p}}\right]^{\mu}\in H\left[q\left(0\right),1\right]\cap Q$$

If the function ψ given by (2.16) is univalent in U , and

$$\delta q_1(z) + \gamma z q_1'(z) + \Omega \prec \psi(z) \prec \delta q_2(z) + \gamma z q_2'(z) + \Omega, \tag{40}$$

then

$$q_{1}(z) \prec \left\lceil \frac{\nu \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1}+1,\beta_{1};A_{1},B_{1}\right] f\left(z\right) + \eta \phi_{p,q,s}^{m,l,\lambda} \left[\alpha_{1},\beta_{1};A_{1},B_{1}\right] f\left(z\right)}{(\nu+\eta)z^{p}} \right\rceil^{\mu} \prec q_{2}(z),$$

and q_1 and q_2 are, respectively, the best subordinate and the best dominant of (40). (all the power are the principal ones).

References

- [1] Ali, R. Ravichandran, M. V. Khan, M. H. and Subramaniam, K. G. Subramaniam, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (1) (2004) 87–94.
- [2] Al-Oboudi, F. M. On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004) 1429-1436.
- [3] Aghalary, R. R. Ali, M. Joshi ,S. B. and Ravichandran, V. Ravichandran, Inequalities for analytic functions defined by certain liner operator, Internat. J. Math. Sci, 4 (2005), 267-274.
- [4] Aouf, M. K. and Bulboacă, T. Subordination and superordination properties of multivalent functions defined by certain integral operator, J. Franklin Inst. 347 (2010 641-653).
- [5] M. K. Aouf, F. M. Al-Oboudi, M. M. Haidan, On some results for λ -spirallike and λ -Robertson functions of complex order, Publ. Inst. Math. Belgrade 77 (91) (2005) 93–98.
- [6] Bulboacă, T., A class of superordination preserving integral operators, Indag-Math. (New Ser.) 13 (3) (2002) 301–311.
- [7] Bulboacă, T. Classes of first-order differential subordinations, Demonstratio Math. 35 (2) (2002) 287–392.
- [8] Bulboacă, T. Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ, Cluj-Napoca, 2005.
- [9] Catas, A. On certain classes of p-valent functions defined by multiplier transformations, in: Proc. Book of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, August 2007, pp. 241-250.
- [10] Dziok J. and Srivastava, H. M. Classes of analytic functions associated with the generalized hypergeometric function. Applied Mathematics and Computation, 103(1999), 1–13.
- [11] El-Ashwah, R. M. and Aouf M. K., Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comp. Mode. 51 (2010) 349-360.
- [12] Kamali, M. and Orhan, H. On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (1) (2004) 53-71.
- [13] Kumar, S. S. Taneja, H.C. and Ravichandran, V., Classes multivalent functions defined by Dziok_Srivastava linear operator and multiplier transformations, Kyungpook Math. J. (46) (2006) 97109.
- [14] Miller, S. S. and Mocanu, P. T., Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York, Basel, 2000.
- [15] Miller, S. S. and Mocanu, P. T., Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (10) (2003) 815-826.
- [16] Obradović, M. and Aouf, M. K. S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. Belgrade 46 (60) (1989)79–85.
- [17] Royster, W. C., On the univalence of a certain integral, Michigan Math. J. 12 (1965) 385–387.
- [18] Salagean, G. S., Subclasses of univalent functions, in: Lecture Notes in Math., vol. 1013, Springer-Verlag, 1983, pp. 362-372.
- [19] Selvaraj, C. K. and Karthikeyan, R. Differential subordinant and superordinations for certain subclasses of analytic functions, Far East J. Math. Sci. 29 (2)(2008) 419-430.
- [20] Shanmugam, T. N. Ravichandran, and Sivasubramanian, V. S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3 (1) (2006) (e-journal) article 8.

- [21] Shanmugam, T. N., Sivasubramanian, S. and Silverman, H., On sandwich theorems for some classes of analytic functions, Int. J. Math. Math. Sci. 2006, Article ID 29684, 1–13.
- [22] Shanmugam, T. N. Ramachandran, C. Darus, M. and Sivasubbramanian, S., Differential sandwich theorems for some subclasses of analytic functions involving a linear operator, Acta Math. Univ. Comenianae 74 (2) (2007) 287– 294.
- [23] Singh, V. On some criteria for univalence and starlikeness, Indian J. Pure Appl. Math. 34 (4) (2003) 569–577.
- [24] Srivastava, H. M. Lashin, A. Y., Some applications of the Briot–Bouquet differential subordination, J. Inequalities Pure Appl. Math. 6 (2) (2005) 1–7 article 41.
- [25] Srivastava, H. M. Gupta, K. C. and Goyal S. P., The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi and Madras, 1982.
- [26] Srivastava, H. M. Karlsson P. W., Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
- [27] Srivastava, H. M. and Manocha, H. L., A Treatise on Generating Functions. Halsted Press ,Ellis Horwood, Limited, Chichester, 1984.
- [28] Wang, Z. Gao, C. and Liao, M., On certain generalized class of non-Bazilević functions, Acta Math. Acad. Paed. Nyireg. New Ser. 21 (2) (2005) 147–154.

