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1 Introduction
Let H(U) be the class of functions analyticin U ={z :z €C and |Z | <1} and H[a,k] be the subclass of H(U)
consisting of functions of the form

f(z)=a+a,z" +a,,z""+.. (aeC,peN={,2.1}).

p+1

Let Ap denote the class of functions of the form

f(z):z"+§:akzk (peN, zeU), @)

k=p+1
which are analytic in the open unit disk U , and set A = A, .

For two functions f (z) given by (1) and

9(z)=z"+ > bz", 2)
k =1+p
the hadmard product (or convolution) of f and g is defined by
(f *9)z)=2"+ > ab,z*=(g*f)(z) (peN, zeU). 3
k=p+1

Let T and F be members of H(U), the function f(Z) is said to be subordinate to F(Z), or F(Z) is said to be
superordinate to f(Z), if there exists a function W(Z) analyticin U with W(O) =0 and |W(Z] <1 (Z ceU ) such that

f (Z) = F(W(Z)) In such a case we write f (Z) < F(Z). In particular, if F is univalent, then f (Z) =< F(Z) if and only
it (0)=F(0)and f(U)c F(U)see 1, 2).
Suppose that P and h are two functions in U , let
#(r,s,t;2):C°*xU —»C .

If p and ¢(p (Z ),Zp'(Z ),Z 2p"(Z );Z ) are univalentin U and if P is analyticin U and satisfies the first order
differential superordination

h(z)<¢(p(z),zp'(z),zzp”(z);z) (zeU), )
then P is called a solution of the differential superordination (4).
The univalent function ( is called a subordinant solutions of (4) if < P for all P satisfying (4). A subordinant a that

satisfies ( < Ef for all subordinant ( of (4) is said to be the best subordinant. ( see the monograph by Miller and Mocanu
[14], and [15]).

Recently, Miller and Mocanu [15] obtained sufficient conditions on the functions h g and ¢ for which the following
implication holds:

h(z)<¢(p(z).2p'(z).2°p"(z);z) = a(z)=<p(2)

Using these results, the second author considered certain classes of first-order differential superordinations [7], as well as
superordination-preserving integral operators [6]. Ali et al. [1], using the results from [7], obtained sufficient conditions for

certain normalized analytic functions f to satisfy
zf '(z)

f @)

where (, and (, are given univalent normalized functions in uU.

Gy (z) < <0,(2), (®)

Very recently, Shanmugam et al. [20—22] obtained the such called sandwich results for certain classes of analytic functions.
Further subordination results can be found in [16, 23, 24 and 28].

Let al,Al,...,aq ,Aq and £3,B,,...,.5,,B, (0,s eN= {1, 2}) be positive real parameters such that

1+iBk —iAk > 0. (6)
k=1 k=1

The Wright generalized hypergeometric function (see [25], [26] and [27])
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qTS[(al’Ali 20y )(ﬂl’ BB )Z} \Ps[(%,An)l’q;(ﬁn,Bn)l’s;Z}isdefinedby
¥, [(an,An)lyq;(ﬂn,Bn)lvs;z}:i{ﬁl‘(cx FKA, ng(ﬁn+ksn)}l%(z cU).

k=0 | n=1
(1.7)

If A, zl(i =1,...,q) and Bj :l(j =1,...,S)Wehave
Qv [(an,l)l’q (8,2, ;z]: oF (0 BB ) ®)

which is the generalized hypergemetric function where

-(I1rta )j‘lmr(ﬁn ) o

Hp,q,s [al’ﬁl;Al’ Bl;z ]:QZ P \PS |:(an ’An )1,q !(ﬂn ) Bn )1,5 YA :|

Hr )ﬁr(an +kA,)

:zp+z : HES %P (10)

S
=1
Hr a, [T (B8, +kB, )k!
n=1
Using the Wright hypergeomtric functlon we introduce the following linear operator

pmA [, B ALB]f 1A, - A,

p.a.s
which is defined by the following convolution

Goas[on BB B f (2)=f (2)*6, 4. [ B ALByZ ]
;Iq}; [alwgl’ 1]f (Z): (1_1‘)(1: (Z)*gp,q,s [a]_!ﬂ]_;Ala Bl;z ])

ﬂ/ ! . . ,-
toryle f @ G AiAuBiz])
and
¢;"q|sﬂ- [al'ﬁliAl'B ]f (Z) Sqqls/l( :)nqlsl A[al’ﬁliAl!B ]f (Z )) (11)
iff e Ap , then from (1) and (11), we can easily see that
. o7 HEA (e +(k=p)A, 12
¢|r3n,c’;l,’s/1[a1vﬂ1;A1’Bl]f (z)=2z"+ Z |:p+| ';/1(:( p):| e g ( ) akzk, (12)

[Tr (e[ Ir (8 + (< ~p)B, ) (k = p)!

where meN, =N U{0},] >0,4>0,and peN .
We note that when A, :1(' =1. ..,q) and B; :1(1 = ) the operator
¢;""';"S/l [0(1, ﬁl;l,l]f (z)= Lr;(; i (0!1, ﬂl)f (z) was studied by EIl-Ashwah_ and Aouf [11], also when
A, zl(i =1.. q) B- =1 (j =l,...,S), p =1 and | =0, the operator
n 0 A [al,ﬂl,l 1]f (z)=D7} (al, ﬂl)f (z) was studied by Selvaraj and Karthikeyan [19], and for

Ai =1( = ,...,q)and B, =l(j— ) and M =0, the operator
OV AT B:11)f (z)=H P9, |f (2) is the Dziok—Srivastava operator [10]. Moreover by specializing the
pP.g9.s 1 1 P 1
parameters M, 1, 4,p,q,s, &, A; (i =1...,9) and 5;, B; (j =1...,5), we obtain various new operators from

the operator ¢ . [al,ﬂl,Al, B ]f (z) studied by several authors such as Catas [9], Kamali, and Orhan [12], Kumar
et al. [13], Salagean [18], Al-Oboudi [2] and others.
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It is easily verified from (12) that
2 (910 o B B @) = e [+ 1 AL BT (2)- [——pj bras [on AiALBLE (2)
1
(A >0), @3

Az (,Tq'f[% BiA, B, (Z)) =(p+1)gy i [, BiALB, I (2)=[PA-2) +1]4 ¢ [, B AL B (2)
(1>0). (14)

To prove our results, we need the following definitions and lemmas.

Definition 1 ({14]). Denote by Q the set of all functions (Z) that are analytic and injective on U / E(Q) where
E(Q)={{ edU: Iirrél q(z) = o},
7>
and are such that q'($) # 0 for £ € U / E(Qq) . Further let the subclass of Q for which (|(0) = & be denoted by

Q(a). Q(0) =Q, and Q1) =Q;.

Lemma 1 ([14]). Let q(Z) be univalent function in the unit disc U and let @ and ¢ be analytic in a domain D

containing (U ) with @ ) =0 when w eqU). Set q(z)=2q9'(2)¥Q(z)), h(z) =&q(z)) +Q(z) and
suppose that
i) Q isastarlike functionin U ,

i) Rezh'(z)/Q(z)>0,z €U.
If pis analyticin U with p(0)=q(0), p(U) <D and

(p(z))+zp'(2)p(p(2)) < 0(A(z))+29'(2)e@(z)), (15)
then P(z)=<q(z),and g is the best dominant of (15).

Lemma 2 ([21]). Let ¢ (Z ) be a convex univalent function in U andlet & € C, 1€ C = C\{0} with

i1+ 29 ) >max{0,—9%[gj}.
q'(z) 7
If the function g (Z ) is analyticin U and

og(z)+n29'(z) <0q'(2) +729'(z) ,
then g(z2)=<q(z) and q(z )is the best dominant.

Lemma 3 ([8]). Let ((z ) be univalent function in the unit disc U and let @ and ¢ be analytic in a domain D
containing ¢ (U ) . Suppose that

) Red(q(z))/¢(a(z))>0z eU,
i) h(z)=29'(z2)p(q(2)) is starlike in U .
if peH[q(0),1NQ with plU)<=D, 8(p(z))+zp'(z)p(p(z)) is univalent U , and

0(z))+29'(2)e@(z)) < 0(p(z)) +2p'(2 )p(p(2)), (16)
then Q(z)<p(z),and q is the best dominant of (16).

Lemma 4 ([15]). Let ((Z ) be convex functionin U and let ¥ € C, withRey > 0. if p € H[q(0),1]NQ and
pP(z)+yzp'(z)is univalentin U , then

qz)+7zq9'(z) < p(z)+rzp'(z).
implies q(z) < P(z),and  is the best dominant.

2
Lemma 5 ([17]). The function ((z ) = (l—Z ) is univalent in U if and only if
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|2ab —1| <1 or [2ab +1] <1.

Unless otherwise mentioned, we assume throughout the following sections that al,A reen O A and

B.B...5. B, (q,seN= {1 2.. }) are positive real parameters such that l+ZB —ZA >0,

] k=
meN,|>0, and4>0.

2. Subordination results for analytic functions.

Theorem 1 Let @ € C =C\{0} and ¢(z) be a univalent function in U, with q(0) =1, and suppose that
zq"(z
R 1+q,—() >max{0;—%Re£}, (zeU;peN) 17
q'(z) A«
It f €A, satisfies the subordination

%( ﬁnqlf [a1+1 BiA 1]f (Z)J+ p —(Z(%n,[;,f [al’ﬂl;Al’Bl]f (Z)J-<Q(Z)+aAlzq,(Z) . (18)

" p z"®

o
then

i [alyﬁ;ival]f @) a0,

and the function ( is the best dominant of (18).

Proof. If we consider the analytic function
1,4 ]
h(Z ) | ¢;;n,q,s [al’ﬂl’AD Bl]f (Z)
B '
by differentiating logarithmically with respectto Z , we deduce that
’
1A .
zh'(z) 3 z (¢:q s [al’ﬂPAl’ Bl]f (z ))
= 3 .
h(z) ;r)nqs [al’ﬂl’ 1]f (2)
From (19), by using the identity (13), a S|mple computation shows that
1,4 i .
af fpas [ +LB:ALBf (2) L p-a $pas [ BiALBLF (2)) h(z)+ ahAzh'(z)
P A P z? Py
hence the subordination (18) is equivalent to
ahzh'(z ahAzq'(z
h(z)+1—()<q(z)+L()_
o e
Combining the last relation together with Lemma 2 for the special case 77 = aAl/ Ppa, and o = 1, we obtain our result.

(19)

in Theorem 1, where —1< B < A <1, the condition (17) becomes

Taking (2 ) 1+ Az
akin =
J 1+Bz

9%{1_82 }>max 0:— P4 Re ™ .z eU. (20)
1+Bz A, «a
. . 1-¢ . . .
It is easy to check that the function ¢(¢) = ﬁ’ |§’| < |B |, is convex in U and since
+

() =g(C) for al [£]<|B]. it follows that the image (U ) is a convex domain symmetric with respect to the real
axis, hence

. - 1-B

inf R 1-Bz 2 el »= | |>O. (21)

1+Bz 1+|B|
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Then, the inequality (20) is equivalent to

A “a 1+|B|

hence we obtain the following result:

Corollary 1 Let @ € C" and —1<B <A <1 with

A a 1+|B|

iff e Ap satisfies the subordination

z[%"j [+ Ai By ] (Z)]+ P ‘a[¢£“,a':3 [ AT 2 )]

p z® p z°?
1+Az Aca(A-B)z
+ . (22)
1+BZ  poy(1+B2)
then
B e B ALBLE (2) L L1+Az
zP 1+Bz '
and the function 1+ Az /1+ BZ is the best dominant of (22).
For p=1, A=1and B =-1, the above corollary reduces to:
Corollary 2 Let € C such that
&4 Re1 >0.
A«
iff e Ap satisfies the subordination
m,l, : m
a[¢p’q’f [, +1,8,;A,.B, |f (Z)J+(l—a)[ &l ey, B AL B |f (z)}
VA Z
1+Az Aa(A-B)z
+ (23)

1+Bz ¢ (1+Bz)
then
bros lon BiALBIF (2) 142
z 1-z '
and the function 1+Z/l—Z is the best dominant of (23).

Theorem 2 Let ((z) be a univalent function in U , with q(0) =1 and q(z)#0 forall Z €U , andlet 5, ueC
and v,77 € C with v+7#0, and suppose that f € A and ( satisfy the conditions:

vhras o +1 B ALBLE (2)+ndas [on, Bii AL B f (Z)¢0 7 eV, (24)
v+mz®
and
w12 (2) 0@ 4, v, (25)
q'(z) a()
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vz (40 [on +1 BB, F (2 ))' £z (40 o, B AL BL]E (2 ))'

1+ ou -p
V¢,;n,c}l,ys/1 [al +1, ﬁl;Al' Bl]f (Z )+77¢g],£4','f [al' ﬁl;Al' Bl]f (Z )
<1+5an), (26)
q(z)
then
vhras [on+1 B AL BT (2 )+ gy (o, B ALBLT (2) ! <q(z)
(v+n)z® ’
and the function ( is the best dominant of (26) . (the power is the principal one).
Proof. Let
m,l,A . m,l,A . “
hz) = vl Flon +1, B ALBLF (2)+mds S [en, B ALBLE (2) e on
(v+mz?®
According to (24) the function h is analytic in U , differentiating (27) logarithmically with respect to Z we get
zh'(z) N Vi (¢;T,c}l,’sﬂ [a1+1: BiiAs B1]f (Z )) +nz (¢;T,c}l,’s/1 [a11ﬂl;Al’ Bl]f (Z )) p 28)

h(z) V¢,;n,(’4l,ys/1 [al +1 8 A, Bl]f (Z )+77¢;T,[ql,’sﬂ [alvﬂl;All Bl]f (Z )
In order to prove our result we will use Lemma 1. Considering in this lemma
o
Ow)=1and gw)=—,
w

then & is analyticin C and @@ ) # 0 is analyticin C" . Also, if we let

Q(2)=20'() = p(@(2)) =5 29 2)
q(z)

and

0(2)=0@))+Q)=1+59 7).
q(z)

then, since Q (0) =1 and Q'(0) # 0, the assumption (2.9) yields that Q is a starlike functionin U . From (25) we also

have
5 20'@) :m{H zq"(z)_zq'(z)}>0 b4
Q(z) a'(z) @) :

and then, by using Lemma 1 we deduce that the subordination (26) implies h(z) < (z ) and the function (| is the best
dominant of (26).

1+ Az
1+ Bz

whenever —1< B < A <1, hence we obtain the next results.

Taking v=0,7=0=1 and q(z) =

in Theorem 2 , it is easy to check that the assumption (25) holds

Corollary 3 Let -1<B <A <land pe C . Letf e Ap and suppose that
dros [on BiALBI (2)

; z €U .
Z
If
z (¢;;n,f1l,’sl [aliﬂl;Al’ Bl]f (Z ))' (A-B)z
Lhu o o fiA B (2) I A7)0+ B2)’ 29

then
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zP 1+Bz

{¢;t’1|,'sl [al’ﬂl;Al’Bl]f (Z) g 1+AZ

and the function 1+ Az /14 Bz is the best dominant of (29). (the power is the principal one).

Remarks

1) Puting A, =1 (i :1,...,q) and Bj =1 (j =l,...,S) in Theorem 2 we obtain the corresponding result due to

El-Ashwah and Aouf [11, Theorem 2].

2) Puting v=0,7=p=1,m=0,q=s+1, o =A =1(i =1...,s+1), B, =B, =1 (j =1,

S).

« ~2ab
o=lab (a,b eC ),,u =a,and q(z) = (l—Z ) in Theorem 2, then combining this together with Lemma 5

we obtain the corresponding result due to Obradovi¢ et al. [16, Theorem 1], see also Aouf and Bulboaca [4, Corollary

3.3].
3) Forv=0,p=p=1m=0,q=s+1 o =A =1(i =1...,s+1), B, =B, =1 (j =1,

S).

« 20
o=1b ( beC ),,u =landq(z)= (l— z ) , Theorem 2 reduces to the recent result of Srivastava and

Lashin [24].
4) putingv=0,7=p=6=1m=0,q=s+1, ¢ =A =1(i =1,...,s+1), B, =B, =1

(j =1 ...,S) and q(z)= (1+ Bz )H(AAB)/B (—1£ A<B <1 B =# 0) in Theorem 2, and using Lemma 5 we

get the corresponding result due to Aouf and Bulboaca [4, Corollary 3.4].

5) Puting ¥=0,7=p=1, m=0, q=s+1, ¢ =A =1(i =1...,5+1), 5, =B, =1 (]

=1,...,8),

5=e”/ab cos;/(a,b E(C*;|]/|<7Z'/2),,u:a and q(z)=(1—z )72“05797” in Theorem 2, we obtain the

corresponding result due to Aouf et al. [5, Theorem 1], see also Aouf and Bulboaca [4, Corollary 3.5].

Theorem 3 Let (Z) be a univalent function in U , with q(0)=1, and Let 7, £ C" and v,7,5,Q e C with

v+n#0, and suppose that T € Ap and ( satisfy the conditions:
vglad on +1, B ALBL N (2)+ndy [, BiiALBLF (2) 20

zZ €U,
v+n)z®

and
9%{1+ Zq,”(z)}>max{0;—Reé}, zeU,
q'(z) y
If
@)- vela oo +1 B ALBL N (2)+ndyy [, BiALBLf (2) -
v (v+n)z?®
vz (g e +L A AuBAIF (2)) 472 (970 [en BiALBLT (2))
o+ uy V¢’;n’q|’s/1 [a1+1’:31’ . 1]f ( )+77¢;r)n,ql,s/1 [al’ﬂUAlaBl]f (Z) p ||+,

and

w(z)=0q(z)+yz2q9'(2)+Q,
then

{ v L en +1, B AL B (2 )HT}’TJ’S [, B ALBLf (2 )T <),

(v+n)z

and the function ( is the best dominant of (33) (all the power are the principal ones).

Proof. Let h(z) be defined by (27), the we have from (28)
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oo v (gl [ L B AGBT (2)) +z (4 [ BiAuBUE (2))
" (Z)_ﬂh(Z) l;nqlsl[ 1+1 ﬁl’Al’Bl]f ( )+77¢FT6|,§/1 [al’ﬂl;Al'Bl]f (Z)

Let us consider the following functions:

Ow)=dw +Q, and gw)=y,w €C,

Q) =29'2) = p@@)) =7 ((Z)) cU .
and

9(z)=0@@z)+Q(z)=6q(z)+r29'(2)+, z €U .,

From the assumption we see that Q is starlike in U and, that

229 @) :m{§+1+zq,ﬂ(z )}>o, zeU,
Q(z) y q'(z)

thus, by applying Lemma 1 the proof is completed.

1+Az
Taking q(z) = in Theorem 3, where —1< B <A <1, and according to (2.5),

1+ Bz

the condition (2.15) becomes

max{o Re— } _|B|
1+|B|

Hence, for the special case v =y =0, 77 =0, we obtain the following result:

Corollary 4 Let —1<B <A Sl, 1 €C and 6 eC with
1-[B|
max {0;—Re (&)} < B[

Let f €A, and suppose that

¢;Tc'al,’sl [al’lgl;Al’Bl]f (Z)?&O

Zz U,
7P

and

( ;;nqlsi [ +1 B AL BT (2 )Jy i, Z (¢;ran,cil,'s/l [ew, B ALB, T (2 ))

- -p||+Q
ZR ¢p'(’ll,’s/1 [al’ﬁl;Al' Bl]f (Z )
51+Az (A B)Z, (39)
1+ Bz (1+ Bz)

then

{¢lr:t’1l,g [alugl;Al’ Bl]f (Z )T < 1+Az

zP 1+Bz '

and the function 14+ Az /1+ Bz is the best dominant of (32) (all the powers are the principal ones).

in Theorem 3 we obtain the corresponding

Remark: Taking v=0,n7=y=p=1L a=£=0 and q(z):i_'_Z

result due to Aouf and Bulboaca [4, Corollary 3.7].
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3 Superordination and sandwich results

* a
Theorem 4. Let ((Z ) be convex functionin U with /(0) =1 andlet & € C" with —Rea >0.Let f €A and
1

suppose that ¢$§I,;/1 [Ocl,,Bl;Al, Bl]f (Z )/Z P e H[q(0),2]NQ . If the function
Z(‘f’jn?élél [ +1 ;AL By T (2 )}r p-a (ﬁél,ﬁ [, i ALBf (2 )J
) :

zP p zP

is univalentin U , and

q(z)+ aAqu!(Z) . z(¢gqu [0‘1+1"81’3;A1’ Bl]f (Z )J+ p —a[¢rr:qlsl [al’ﬂl;':‘llBl]f (Z )J’ (35)
po, p z p z
then ¢m’|"1[05 G:A,,B ]f (Z)
q(z)< Zeas 1 PP By ,

Z p
and ( is the best subordinate of (34).
Proof. Let us define the function g by

™Ay, B A, B, f
g(z):¢quyS [al IBZP ] (Z)

From the assumption of the theorem, the function @ is analyticin U , by differentiating logarithmically with respect to
Z the function g , we deduce that

29'(2) ] z (¢;T,£:,§l [a11ﬂl;Al’ Bl]f (Z )),
g(z) ¢,;n,dl,'sﬂ [al’ﬂl;Al’Bl]f (Z )
After some computations, and using the identity (1.13), from (3.2) we get
ahz9'(2) :ﬁ(ﬁ,d? [en+1 B ALBIT (2 )}r P-a (¢rrnn,él,’s/1 [, BiALBI (2 )]
ap(p-p) P z* p Zf ’

and now, by using Lemma 4 we get the desired result.

, 2 eU .

-p. (36)

9(z)+

_ 1+Az _
Taking q(z) = F - in Theorem 4 , where —1< B < A <1, hence we obtain the next results.
+ bZ

Corollary 5 Let -1<B <A <land f €A, . Suppose that m g [al,ﬂl;Al, Bl]f (Z )/Z P eH[q(0),1]. 1

p.g.s
the function

af e la+LAiAGBf (2) ] p-af das (@ AiAuBif (2)
p z” p z° ’

is univalentin U , and

1+Az oA (A-B)z  a B e +1 B ALBf (2) P-a drallon, BiALBLE (2) @)
1+Bz  poy(l+Bz)* p z° p z° '
then

1+Az _ o [@ AiAuBif (2)
1+ Bz z° ’
and 1+ Az /1+ Bz is the best subordinate of (37).

Using arguments similar to those of the proof of Theorem 3, and then by applying Lemma 3 we obtain the following result.
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Theorem 5 Let ((Z ) be convex function in U , with q(0) =1. Let ¥, £ C" and v,n,5,QeC with v+n =0
Re(5/y) >0.Letf € Ap and suppose that T satisfies the conditions:

vgld Hon +1, B ALBL T (2)+ndy (e, BiiALBL T (2)

#0, zeU,
v+n)z®
and
m,l,A . m,l,A . H
V¢p,q,s [alyﬁ1’A1’B1]f (Z )+77¢g,q,s [al’ﬂl'Al’Bl]f (Z) eH[q(0),1NQ
(v+n)z
If the function i/ given by (2.16) is univalent in U ,and
0q)+y729'2)+Q=<yw(z), (38)
then

m,l, . m,l, . H
q(z) < V¢p,q|,s/1 [al +1, B A, B1]f (Z )4‘77¢p,ql,s/1 [aliﬂl’Al’ Bl]f (Z )
(v+n)z® ’
and the function ( is the best subordinate of (38). (all the power are the principal ones).

Combining Theorem 1 with Theorem 4 and Theorem 3 with Theorem 5, we obtain, respectively, the following two
sandwich results:

* o
Theorem 6 Let (], and (, be two convex function in U , with ¢,(0) =0,(0) =1.Let « € C" with —2Rer >0.
1

Let f €A, and suppose that g [al,ﬂl;Al,Bl]f (Z )/Z P eH[q(0),2]NQ . If the function

p.g.s
ﬁ[ﬂ:dlﬁ [ +1. 8 A, B, ]f (2 )]+ p-a (ﬁdl,f [ B AL BT (2 )}
p z* p 2§ ’
is univalentin U , and
ahz0;(z) <Z(¢?c}',; [ +1, B; A, B, ]f (z)J+ p_a{%{ﬁ [, B AL B, F (2 )J
Py P z§ P 2

0,(2)+

<0,(z) +—aAlzq2(z ) , (39)
(04
then ;
AT BiA B |f
ql(z)<¢wbS [ ﬂlzpl Jf (2)

and (; and Q, are, respectively, the best subordinate and the best dominant of (39).

<0,(z),

Theorem 7 Let ¢, and (, be two convex function in U , with §,(0) =(,(0) =1. Let y, z € C  and
v,n,0,QeC with v+n#0 Re(5/y) >0.Letf e Ap and suppose that f  satisfies the conditions:
vegld Hon +1, B ALBLF (2)+ndy (e, BiALBLF (2)
(v+mz?®

#0, zeU,

and
7]

V¢£",a','f [on+1, B;;A,,BL]f (2 )+77¢5;r)n,{1|,'si [, ;AL B f (2) eH[q(0),NQ

(v+mz?®
If the function i given by (2.16) is univalent in U, and
69,(2)+720,(2) +Q=<w(z2) < 80,(2) +y20,(z) + €2, (40)

then
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V¢;T,c}l,’s/1 [al +1 B A, Bl]f (Z )"'77¢,;n,c’4|,’si [al!ﬂl;AU Bl]f (Z ) g
(v+mn)z?®

G, (2) < <0,(2),

and (; and (, are, respectively, the best subordinate and the best dominant of (40).
(all the power are the principal ones).
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