
ISSN 2347-1921 

1044 | P a g e                                                     F e b r u a r y  2 0 ,  2 0 1 4  

Existence And Uniqueness Of Solution Of Inhomogeneous  Semilinear 
Evolution Equation With Nonlocal Condition

1H. L. Tidke, 2R. T. More 
1
Department of Matheamtics,  

North Maharasjhtra University, Jalgaon-425 001, India 

tharibhau@gmail.com 
2
 Department of Mathematics,  

Arts, Commerce and Science College, Bodwad, Jalgaon-425 310, India  

rupeshmore9@yahoo.com   

 

ABSTRACT 

In this paper, we study the existence and uniqueness of solution of inhomogeneous semilinear evolution equation with 
nonlocal condition in cone metric space. The result is obtained by using the some extensions of Banach’s contraction 
principle in complete cone metric space.  
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1. INTRODUCTION  

The purpose of this paper is study the existence and uniqueness of solution of inhomogeneous semilinear evolution 

equation with nonlocal condition in cone metric space of the form: 

][0,=)),(,()()(=)( bJttxtftxtAtx                                                                     (1) 

,=)((0) 0xxgx                                                                                                                 (2) 

where )(tA  is a bounded linear operator on a Banach space X  with domain ))(( tAD , the unknown )(x  takes 

values in the Banach space X ; XXJf : , XXJCg ),(:  are appropriate continuous functions and 0x  is 

given element of X . 

Many authors have been studied the problems of existence, uniqueness, continuation and other properties of solutions of 
these type or special forms of the equations (1)–(2) are studied by different techniques, for example, see [3, 4, 5, 8, 10, 
13] and the references given therein. 

The objective of the present paper is to study the existence and uniqueness of solution of the evolution equation (1.1)–
(1.2) under the conditions in respect of the cone metric space and fixed point theory. Hence we extend and improve some 
results reported in [2, 8, 10, 11, 13]. 

The paper is organized as follows: Section 2, we discuss the preliminaries. Section 3, we dealt with study of existence and 
uniqueness of solution of inhomogeneous evolution equation with nonlocal condition in cone metric space. Finally in 
Section 4, we give example to illustrate the application of our result. 

2.  Preliminaries 

Let us recall the concepts of the cone metric space and we refer the reader to [1, 6, 7, 9, 12] for the more details. 

Let E  be a real Banach space and P  is a subset of E . Then P  is called a cone if and only if,   

    1.  P  is closed, nonempty and {0}P ; 

    2.  ba, , 0, ba , Pyx ,    Pbyax  ; 

    3.  Px  and Px    0=x .  

For a given cone EP , we define a partial ordering relation   with respect to P  by yx   if and only if Pxy  . 

We shall write yx <  to indicate that yx   but yx  , while yx <<  will stand for intPxy  , where intP  

denotes the interior of P . 

The cone P  is called normal if there is a number 0>K  such that yx 0  implies  yKx  , for every 

Eyx , . The least positive number satisfying above is called the normal constant of P . 

In the following we always suppose E  is a real Banach space , P  is a cone in E  with intP , and   is partial 

ordering with respect to P . 

Definition 2.1   Let X  be a nonempty set. Suppose that the mapping EXXd :  satisfies: 

    1.  ),(0 yxd  for all Xyx ,  and 0=),( yxd  if and only if yx = ; 

    2.  ),(=),( xydyxd , for all Xyx , ; 

    3.  ),(),(),( yzdzxdyxd  , for all Xzyx ,, .  

Then d  is called a cone metric on X  and ),( dX  is called a cone metric space. The concept of cone metric space is 

more general than that of metric space.  

The following example is a cone metric space, see [11].  

Example 2.2 Let 
2= E  , 0},:),{(=  yxEyxP , =X , and EXXd :  such that 

|)||,(|=),( yxyxyxd   , where 0  is a constant. Then ),( dX  is a cone metric space.  
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Definition 2.3   Let X  be a an ordered space. A function XX  :  is said to a comparison function if for every 

Xyx , , yx  , implies that )()( yx  , xx  )(  and 0=)(lim  xn
n  , for every Xx .  

Example 2.4  Let 
2= E  , 0},:),{(=  yxEyxP . It is easy to check that EE  : , with 

),(=),( ayaxyx , for some (0,1)a  is a comparison function. Also if 21,  are two comparison functions over 

 , then ))(),((=),( 21 yxyx   is also a comparison function over E .  

3.  Existence and uniqueness of solution 

 Let X  is a Banach space with norm  . Let ),(= XJCB  be the Banach space of all continuous functions from J  

into X  endowed with supremum norm  

}.:)({sup= Jttxx    

 Let 
2=0},:),{(= EyxyxP   be a cone and define ),(=),(    gfgfgfd  , for every 

Bgf , . Then it is easily seen that ),( dB  is a cone metric space. 

Definition 3.1 The function Bx  satisfies the integral equation  

 JtdssxsfsAxgxtx
t

  ,))(,()()(=)(
0

0  (3) 

is called the solution of the evolution equation (1)–(2). 

We need the following lemma for further discussion: 

Lemma 3.2 [11]  Let ),( dX  be a complete cone metric space, where P  is a normal cone with normal constant K . 

Let XXf :  be a function such that there exists a comparison function PP :  such that 

 )),,(())(),(( yxdyfxfd   

for every Xyx , . Then f  has a unique fixed point. 

We list the following hypotheses for our convenience: 

(H1) )(tA  is a bounded linear operator on X  for each Jt , the function )(tAt   is continuous in the uniform 

operator topology and hence there exists a constant K  such that  

 .)(sup=  tAK
Jt

 

(H2) There exist continuous function 
Jp :  and a comparison function 

22:    such that  

)),,(()()),(),(,),(),(( yxdtpytfxtfytfxtf     

and for positive constant G , such that  

)),,(())()(,)()(( yxdGygxgygxg     

for every Jt  and Xyx , . 

(H3)  1.=])([sup
0

dssKpG
t

Jt 
  

Theorem 3.3  Assume that hypotheses )()( 31 HH   hold. Then the evolution equation (1.1)–(1.2) has a unique 

solution x  on J .  

Proof: The operator BBF :  is defined by  

                     .,))(,()()(=)(
0

0 JtdssxsfsAxgxtFx
t

                                                     (4) 
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By using the hypotheses )()( 31 HH  , we have  

))()(,)()((  tFytFxtFytFx   ,))(,())(,()()()((
0

dssysfsxsfsAygxg
t

    

)))(,())(,()()()(
0

dssysfsxsfsAygxg
t

    

   ))()(,)()((  ygxgygxg    

dssysfsxsfsysfsxsfK
t

)))(,())(,(,))(,())(,((
0

              

dssysxsysxsKpyxyxG
t

))()(,)()(()(),(
0

   

dssKpyxyxyxyxG
t

)(),(),(
0   

dssKpyxdyxdG
t

)()),(()),((
0  

])())[,((
0

dssKpGyxd
t

  

  )),,(( yxd                                                                                         (5) 

for every Byx , . This implies that )),((),( yxdFyFxd  , for every Byx  , . Now an application of Lemma 

3.2, the operator has a unique point in B . This means that the equation (1)–(2) has unique solution. This completes the 
proof of the Theorem 3.3. 

4.  Application 

In this section, we give an example to illustrate the usefulness of our result discussed in previous section. Let us consider 
the following evolution equation:  

,[0,1],=,
))()(1(9

)(
)(

8

140
= XxJt

txe

txte
txe

dt

dx
t

t
t 







                                                              (6) 

,=
8

(0) 0x
x

x
x


                                                                        (7) 

 Therefore, we have  

                         ,
8

140
=)( tetA 

 

 XJxt
txe

txte
txtf

t

t






),(,
))()(1(9

)(
=))(,(  

         .,
8

=)( Xx
x

x
xg 


 

Now for ),(, XJCyx   and Jt , we have  

)
)(1

)(

)(1

)(
,

)(1

)(

)(1

)(
(

9
=))()(,)()(( 

ty

ty

tx

tx

ty

ty

tx

tx

e

te
tFytFxtFytFx

t

t












  

    )
))())(1((1

)()(
,

))())(1((1

)()(
(

9
= 

tytx

tytx

tytx

tytx

e

te
t

t













  
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    ))()(,)()((
9

 tytxtytx
e

te
t

t







  

    ),(
9








  yxyx
e

te
t

t

  

    ),(
9

yxd
e

te
t

t






 

    )),,((
10

yxd
t
                                                                         (8) 

 where 
10

=)(
t

tp , which is continuous function of J  into 
  and a comparison function 

22:    such that 

),(=)),(( yxdyxd . 

Similarly, we can have  

          )
))(8(8

,
))(8(8

8())()(,)()((









yx

yx

yx

yx
ygxgygxg








   

                ),(
64

8
 yxyx    

                                                                       ),(
8

1
   yxyx   

                                                                       )),,((
8

1
yxd                                                                     (9) 

where 
8

1
=G , and the comparison function   defined as above. Hence the condition )( 1H  holds with 

8

140
=K . 

Moreover,  

 ]
108

140

8

1
[sup=])([sup

00
ds

s
dsspKG

t

Jt

t

Jt
 



 

              ]
208

140

8

1
[sup=

2t

Jt




 

]
8

7

8

1
[sup= 2t

Jt




 

1.=]
8

7

8

1
[=                                                                                 (10) 

Since all the conditions of Theorem 3.3 are satisfied, the problem (6)–(7) has a unique solution x  on J . 
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