&)

On Statistically Convergent and Statistically Cauchy Sequences in Non-
Archimedean Fields

Suja Krishnamurthy, Srinivasan Vaithinathasamy
Department of Mathematics Assistant Professor SRM University, India
hari_se04@rediffmail.com
Department of Mathematics Professor SRM University, India

drvsrinivas.5@gmail.com

ABSTRACT

In this paper, K denotes a complete, non-trivially valued non-archimedean field. In the present paper, statistical
convergence of sequences and statistically Cauchy sequences are defined and a few theorems on statistically convergent
sequences are proved in such fields K.
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INTRODUCTION

The concept of statistical convergence was introduced by Fast in 1951. It was further studied, in detail by Kolk, Maddox,
Bulut and Huseyin Cakalli [5]. The purpose of this paper is to give characterizations of statistical convergence of
sequences and statistical Cauchy sequences in Non-Archimedean fields, which are analogous to the work of D. Rath and
B.C. Tripathy [7], in classical case.

Definition 1.

Let K be a complete, non-trivially valued non-archimedean field.

A sequence x = {x;.} in K is said to be statistically convergent to a limit ‘!’ if for any e€>o0,
limn_)wil{k <nllx,— Ul =€} =0

tat
Symbolically we write stat-limx;, = [ (or)  xg =1
n—e

Definition 2.

x = {x, } is a statistically Cauchy sequence if forany € > o0, there existsan n € N such that

. 1
limy, e ;l{k S nilxpyr — x,0l = €} =0

Theorem 1.

A sequence {x, } is statistically convergent if and only if the following condition is satisfied:
. 1 r
limy, o~ |{k Snk'< |l — x00] 2 e}| =0
where {x,,,} is a subsequence of {x,} such that  limiik, .y =
Tr—00
Proof:

Let a sequence {x,} be statistically convergent .

; 1
Toprove lim,_ . 5

{k Sn k'S n|x = x| 2 e}| =0
(1)
is satisfied.

By definition of statistical convergence of a sequence {x,} to limit [ ,we have,
limy, oo~k < n: |l — Ul = €}/ = 0 -
. 1 r
Now, lim,,_,« ;l{k <nk'<nix — xk'(r)” > e}

= lim i|{k Snk'<n:||x — x4y + 1= 1| 2 €}

n—o

= lim-|{k < n k"< n: |G — D) + U = x| = €}

nowo n

IA

lim e < n: Iy, — Ul > €} + lim e < [t = x| = €}
< max [nlirll %I{k <n:|lx, =1l = €}, nlilll %|{k' <n ||xk'(r) - l|| > 6}”
< max [0, im ~|{e < sy — 1l = €] ....(3) (using (2))
It is given that limx ..y = L.
Since it is convergent, it is also statistically convergent.
Therefore we can write
lim ~|{k'< n: |y — U =€} =0 e (4)
In view of (3) & (4)

lim Tl—l|{k <nk'<n: ||xk - xk'(r)” > e}| =0

n—eo
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Conversly, let

lim l|{k <nk'<n: ||xk — xkv(r)” > €}| =0

n—oe N
To prove that the sequence {x,} is statistically convergent.

To this end, consider

lim <|{k < n:llx, — | = €}l
n—oo N

= rlll_rg % {k <nk'<ni|x — Te'ey ¥ X'y — U = e}|
< rlllgolo %Hk <nk'<n:x — xk'(r)” =
. Lifps
+ lim k' < n:lx o — 1] 2 €
< maxifilim =|{k <n,k'<n:|x = x, 00l 2 €}]

n-
lim - 2{k' < il — 1] 2 €]

smax [0, lim ~|{k'< n:||x, ) — 1| 2 €}|1 , (using (5))
implies that ~ lim “|{k < n:llx, = lll = €} =0, (using (4))

This implies that the sequence {x,} is statistically convergent.

Theorem 2.
If l{lirﬂlc x, =land stat— }(igrgoyk =0, then
stat — Ai_r>r°1°(xk + yr)= Il(mxk :
Proof.
Given Il{l_r)r; x, =1

@i.e) llx, =1l =0,as k -
Also , stat — }(1{20 Ve =0
That is ]l(i_r)r}oil{n <k:lly,—0|l =€} =0
Now,
Let stat = lim (x + y,)= I
Therefore,
stat = Jim e + )= lim £ 1{n < k:llCe, +7,) = U1l 2€}] =0
This implies that

. , . 1
Jim el = 2 4 limg e £l < ks lly = 011 2631 = 0
Thatis max| lim [l — 11, lim % ln < k:lly, —0ll = €}|[=0

That is max[ Ill_r}}o [l — Ul 0] =0, (using (2)
which implies that IP_‘E llx, = U1l =0

Thatis limx, =1' .But limx, =L This = I'=1
From (8) & (10) , it is proved that

stat — lim o(o + yi) =limg e xp

Theorem 3.

If a sequence x = {x;} is statistically convergent to [, then there are sequences
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.. (8)

..(9)

....(10)
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vy = {y} and z = {z,} such that Lm}o Y =Lx=y+2z and

lim %I{k <n:x #y 3l =0and z = {z.}is a statistically null sequence.

n—o
Proof.

Given a sequence x = {x, } is statistically convergentto [ ,

That is lim %I{kSn: llx, = Ul =€} =0 ... (11)
n—e
To prove
0] there exist sequences y = {y,}and z = {z,} such that

lly, =1l = 0,k = = where x =y + 2z, x = {x;}

(ii) lim < |{k <n:x =y, =0 and
n-—e

(iii) lim =|{k <n:llz, — 0l = €}| =0
n—e

@) lim=|{k < n: ll, — Il = €} =0
n-e

which we write as

stat — ]lirrolaxk = || ... (12)
Now,

. . g
stat — limXy  eans that }}E}J [{in<k:llx, =1l =€}=0

k—e

That is }(in}oil{ns killxy =L+, —vall =€}l =0

That is }(iggoil{n < kllGo =) + O — DIl Z €} =0

1 1
Therefore m<kilx, =yl =€} + lkimeI{n <k:lly,=lU =€} =0

"
..

implies that max[ ll(irjlm% {n < k:|lx, —yull = €}, lkir_r,]m% {n < k:|ly, = Ul = e}l] =0

That is max[ lgrlqmil{n < k:llx, —yll =€} ,0] =0 (since 111_1‘20 Yo =1)

Hence l]ir_{lw% {n < k:|lx, — y.ll = €}| =0,

which implies that 1}33305{71 < k:llx, — yall » 0} =0

That is }(ig}oil{n <kix, #y,}l =0

(o) lim Ik < mixe # v}l =0

Since }CI_I’EO v, =landsincex=y+z

and }liinm% {k < n:x, # y 3|l =0 , in view of previous theorem,

we have that

implies that stat — }(imzk must be =0

(ie) z = {z,} is a statistically null sequence.
Definition3.
For a sequence x = {x,} , let B, denote the set

B, ={b€K/x; >b}
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Similarly
A, ={a€K/x, <a}.

Definition 4.
If x = {x, } is a sequence, then statistical limit superior of x is given by
stat — limsupx = {supr if By =0
{—oo ’ lf Bx = Q)
Definition 5.

If x = {x,} is a sequence, then statistical limit superior of x is given by
stat — liminfx = {supr if A, # 0

{+ Jif A, =0
Theorem 4.
If B = stat — limsupx is finite, then for every € > 0,
Eg}o:—ll{kSn:B+e<xk<ﬁ—e}|=O ....(14)

Conversly, if (14) holds, then B = stat — limsupx.

Proof.
Given B = stat — limsupx s finite .... (15)
To prove lim %I{kSn:,8+e<xk</?—e}|=0

n—oeo

Let us consider the case of statistical limit superior as

stat — limsupx = —~ , ifB, =0
(i.e) if |By | =1{b € k:x;, >b} =0 ....(16)
> lim rl—ll{kSn:,B+e<xk<B—e}|=O ... (17)
n—o

Conversly,
let us suppose that
Liinwil{kSn:ﬁ+6<xk <B-¢€}=0

To prove

B = stat — limsupx
We know that |B, | = |{b € k:x;, > b}| = 0, by the definition
Thatis, B, = 0,
Which implies that, lubB, = —
Therefore, f = stat — limsupx
In view of (17) we have that

|, <B—€l+0

Thatis, B, # @

Which implies that, f = lubB, = supB,
Therefore, f = stat — limsupx
In any case, B = stat — limsupx .
Theorem 5.
If « = stat — liminfx is finite, then for every €> 0,
}li_r&il{kSn:a+6<xk<a’—€}|=0 ....(18)

Conversly, if (18) holds, then  a = stat — liminfx.
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Proof.
Given a = stat — liminfx is finite ...(19)
To prove lim %I{kSn:a+e<xk<a—e}|=O

n—

Let us consider the case of statistical limit inferior as

stat — liminfx =+, ifA, =¢

That is, if A, | ={a€k:ix, <a} =0 ... (20)
= lim %I{kSn:a+e<xk<a—e}|=0 ...(21D)
n—oe
Conversly,

let us suppose that

lim %I{kSn:a+e<xk<a—e}|=0

n—oo

To prove

a = stat — liminfx

We know that |A, | = |{a € k:x; < a}| =0, by the definition

Thatis A, =@,

which implies that, a = lubA, = +

Therefore, a = stat — liminfx

In view of (21) we have that

|x, >a+¢€l#0

Thatis, A, # @

which implies that, lubA, = infx .
Therefore, a = stat — liminfx
In any case, a = stat — liminfx .
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