ISSN 2347-1921

DGJ method for fractional initial-value problems

Huan Li, Yue Hu
College of Mathematics and Information Science, Henan polytechnic University, Jiaozuo 454000, China

College of Mathematics and Information Science, Henan polytechnic University, Jiaozuo 454000, China
Abstract

In this paper, a new iterative method (DGJM) is used to solve the nonlinear fractional initial-value problems(flVPs). The
fractional derivative is described in the Caputo sense. Approximate analytical solutions of the fIVPs are obtained. The
results of applying this procedure to the studied cases show the high accuracy and efficiency of the approach.
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1 INTRODUCTION

In the last few years, fractional differential equations (FDES) are gaining importance owing to their applications in the field
of visco-elasticity, feed-back amplifiers, electrical circuits, electroanalytical chemistry, fractional multipoles, neuron
modelling, encompassing different branches of Physics, Chemistry and Biological Sciences[1-5]. The Fractional differential
equations have recently been addressed by several researchers for a variety of problems[6, 7]. Some analytic methods for
solving nonlinear problems were invented, including the Adomian decomposition method (ADM)[8-11, 27], Homotopy-
perturbation method (HPM)[12, 13], Variational iteration method (VIM)[14, 15], Homotopy analysis method (HAM)[16-20,
28] and a new iterative method-DGJM [23-25].

In the present paper, DGJM is applied to solve the nonlinear fractional initial-value problems (flVPs). A nonlinear example
shall be presented to show the efficiency and accuracy of DGJM. Furthermore, the Taylor series expansion shall be
employed to avoid the difficulties with radical nonlinear terms.

2 Preliminaries

In this section, we give some definition and properties of the fractional calculus[21].

Definition 1. A real function g(X), X >0, is said to be in the space C,,, 4 € R, if there exists a real number
P> 1, such that g(x) = x"g,(x), where g,(x) € C(0,0), and it is said to be in the space CJ, if and only if

g(")eCﬂ, neN.

Definition 2. The Riemann-Liouville fractional integral operator (J“) of order @0, of a function g € C ,, 44, is
defined as

Yo g ﬁjox(x_f)a_lg(f)dr(a >0),
J°g(x) =g(x)

where F(Z) is the well-known Gamma function. Some of the properties of the operator J“, which we will need here,
are as follows:

1)

ForgeC,, u—1, a, 0 and J1:
@ J*37g(x) = 3* g(x),
@J3737g(x)=J373“g(x).

C(y+1)
IMNa+y+1)

a+ty

1) J X =

Definition 3. The fractional derivative (D“) of g(X) in the Caputo’s sense is defined as

D"g(0=3""D"9() = o [ (- gV (e, 2

forn—1<a, n,neN, x>0,geC",.

The following are two basic properties of the Caputo’s fractional derivative[22]:

n

()Let g C", neN.Then D“g, 0,, &, N is well defined and D“g € C ;.

n

Letn—=1<a, n,neN,and geC,,

1. Then

(7D)g(9 = 9~ 3 9" 0) @
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3 New iterative method-DGJM

Daftardar-Gejji and Jafari[23] first proposed a New Iterative Method (DGJM) to solve non-linear functional equations in
2006. They have considered the following functional equation:

u=f+Lu)+N(u), 4
where L is alinear operator, N is a nonlinear operator and f is a known function.

We are looking for a solution U of Eq.(4) having the series form:

u=>u. (5)

0
I
i=0

Since L is alinear operator,
L(ZUJ =S, ©
i=0 i=0

The nonlinear operator N is decomposed as[23-25]

N[iui] = N(up) +{N(uy +u;) = N (uy)}+{N(u, +u, +u,) = N (U, +u,)}

+{N(Uo +Ul+u2+u3)—N(u0+ul+u2)}+... R

From Egs.(5)—(7), Eq.(4) is equivalent to

gui = f +L(iuij+ N(U0)+§{N{§ujj—N(§uj} "

. =0

We define the recurrence relation

= T,
U, = L(uy)+ N(up),
U, =LUu,)+{N(,+---+u)-N(u,+---+u, —1)} 9)

= L(un)+{N[Zn:ujj— N(rj_lujj}, n=12,....

i=1 i=

Then,

and

i=0 i=0

It is clear from Eq.(11) that X.,U; is solution of Eq.(4). Where U,,i =0,1,2,..., are given by algorithm (9). Also, the

K -term approximate solution of Eq.(4) can be given by

4 Convergence of DGJM
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In[26], S. Bhalekar and V. Daftardar-Gejji presented the following theorems for convergence of DGJM.

Theorem 4.1.1f N is C in aneighborhood of U, and
PN®™ (u,)P = Sup{N ™ (u,)(h,....h,) :PhP <1,1<i<n}<L, 12)

for any N and for some real L>0 and PUP <M <1/e,i=12,..., then the series X,_,G, is absolutely
convergent, and moreover,

PGP<LM"e""(e-1), n=12,. (13)
where G issuchthat G, = N(Z_,u.)—N(Zou.),n=1.2,..

Theorem 4.2, it N is C* and PN™(U,)P<M <e™, for all n, then the series X7.,G, is absolutely

convergent.

5 Numerical Example

In this section, we shall illustrate the applicability of DGJM to nonlinear flVPs. We consider the following
nonlinear fIVPs:

D“u :%\/U+u, <o, tO0,

(14)
u(0) =1, u’(0)=2.
The exact solution of the initial-value problem (14) for ¢ = 2, is
05  ,-05 z
u(t):%Pe2 +e6 — } ! (15)

In the case, Behiry obtained the series solution of the fIVPs by using differential transformation [27]. In general
circumstances, Hashim etl. obtained the HAM series solution of the fIVPs by using homotopy analysis method [28]. Now

we solve the flVPs with DGJM. Firstly, expanding the nonlinear term, \/U in (14) by using the Taylor series, we get
«/_~1+ (u 1)——(u 1)? + (u 1)°. (16)

Then, the flvPs (14) can be approximated by

45 199 45 , 9
— + —U——UuF—ut (17)
64 64 64 64

According to the DGJM, in view of the algorithm(9), we construct the following recurrence relation:

o
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Up(t) = 1,
u (t)= 2t
_ 61t” 199t
u,(t) = + :
16T (e +1) 32I'(a +2)
L= - 63" s 709253911 (3¢x + 4)t*** . 1647T (o + 3)t***2
* 32I(a+2) 2097152[[(a +2)PT (4 +4) 256 (a +1)[(2cx +3)
1069227T (2¢x + 4)t3*** 356409T"(2¢ + 3)t3**? N 3383t%**
32768[[(a + 2)'T (B +4) 32768['(a +2)'T'(3a +3) 256I" (2cx +2)

1791 (o + 3)t***2 . 53730 (o + 4)t°**2 5497 (o + 2)t>*

2560 (o + 2)I' (2 +3)  512T (e + )T (2 +4) 1287 (x +1)I'(2cx + 2)
_109251r 2o +2)t*** . 3277531 (20 + 3)t°*+ . 27t
IMNa+DIN'(a+2)I'Ba+2) 8192I'(a+1)I'(ax+2)I' (3 +3) 4AI'(a+4)
199929331 (3¢ + 2)t*** s 2042829T" (3cx +1)t* ot~

524288[[(a +2)°IT (4 +2) 262144[(a +1)I’'T (4 +1) 16I'(a +1)
1037t 33489 2a + 1)t . 100457T (2ar + 2)t3**

128F(2a +1) 8192[[(a +2)PT (B +1)  8192[[(e +1)I’T' (3cx +2)
ot*+2 652228471 (3¢ + 3)t***2

AT (a+3) 1048576[F(a + )P (a@+1)(da +3)
Then, the DGJIM series solution of the initial-value problem (14) can be approximated as

61t e . 709253911 (3¢ + 4)t*** ot«+?

16T (x +1) 4F(a +2)  2097152[[(ar + 2)FT (4o +4) 4T(cr +3)
1647T (o + 3)t%**2 . 10692271 (2a + i 356409I (2 +3)t3**2

2560 (a + 1) (2 +3)  32768['(x + 2)'T'(Bcx +4) 32768[[ (e + 2)°T'(3cx +3)
3383t 1791l (a +3)t** . 5373 (o + 4)t*** i 2715

256F(2a +2) 256I(a+2)[(2a+3) 512I(a+2)T(2a+4) Al(a+4)
109251I" (2cr + 2)t** B 327753 (2a + 3)t°** ¥ 1037t

- MNa+1)I'(a+2)IT'(Ba+2) 8192I'(a+1)['(a+2)I'(Ba+3) 128'(2a+1)

ut)= 1+2t+

. 19992933 (3 + 2)t*** " 652228471 (3¢ + 3)t***? R
524288[[(a +2)°IT (4 +2) 1048576[[(a + 2)*'T (e +1)I (4 +3) 16T(cx +1)
_ 33489r (2a +1)t* L 2042829r B +1)t** 549D (a +2)t***
8192[[(a+2)’T (3 +1) 262144[I (o +1)’T (4 +1) 128T(ar +1)I'(2cx +2)
1004577 (2¢r + 2)t3*
8192[['(a +1)J*T' (3x + 2)

(18)
For the particular case & = 2,

13t? +17t3 749t*  1817t° N 63479t° 20227t 8401277t8

ut)= 1+2t+ + +
24 3072 30720 983040 229376 117440512 (19)
4542175t°  2415661t"°  7880599t™

+ + + +
301989888 251658240 5536481280
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Table 1: Approximate solution of (12) for some values of & using the 4-term DGJM approximation

t

a=125 a=15 a=1.75 a=2(DGIV) |a =2 HAM)Ref.|a = 2 (Exact)

[28]

0.0

1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
1

1.37836275 1.28266260 1.23784129 1.21698338 1.21288993 1.21697814
2

1.87256490 1.65206467 1.53461631 1.47108115 1.45375932 1.47099037
3

2.47577265 2.10126029 1.89032411 1.76756504 1.72601125 1.76704923
4

3.20808013 2.63904388 2.31109936 2.11264153 2.03325161 2.11074085
5

4.10959976 3.28316063 2.80697386 2.51389524 2.37939713 2.50828745
6

5.24986919 4.06387321 3.39325199 2.98109536 2.76882583 2.96661654
7

6.74211990 5.03100449 4.09358872 3.52757869 3.20658281 3.49343764
8

8.76231359 6.26447112 4.94501176 4.17250918 3.69865784 4.09732727
9

11.5736021 7.88903647 6.00549352 4.94442762 4.25235505 4.78782299
0

15.5570562 10.0943002 7.36491769 5.88665211 4.87678065 5.57552765

Numerical results with comparison to Ref.[28] is given in Table 1 on the [0,1] . We can see that the numerical solution is

in very good agreement with the exact solution when « = 2. Therefore, we hold that the solution for & =1.25,
a =15 and a =1.75 is also credible.

6 Conclusions

In this work, new iterative method-DGJM was used to derive approximate analytical solutions of the nonlinear fIVPs. The

nonlinear terms involving radical powers were expanded by Taylor series. The DGJM is effective for the nonlinear
fractional initial-value problems (flVPs), and hold very great promise for its applicability to other nonlinear fractional
differential equations.

References
[1] B.J.West, M. Bolognab, P. Grigolini, Physics of Fractal Operators, Springer, New York, 2003.

[2] Baleanu, O. Alipous, N. and Jafari, H., The Bernstein Operational Matrices for Solving the Fractional Quadratic Riccati
Differential Equations with The Riemann-Liouville Derivative, Abstract and Applied Analysis, 2013.

[3] Luchko Y, Gorenflo R. The initial-value problem for some fractional differential equations with Caputo derivative.
Preprint Series A08-98. Fachbereich Mathematik und Informatic, Berlin, Freie Universitat; 1998.

[4] Arikoglu, A. and Ozkol, I, Solution of Fractional Differential Equations by Using Differential Transform Method, Chaos,
Solutons and Fractab, 34(5): 1473-1481, 2007.

[5] Odibat, Z. and Momani, S, Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional
Order, Int. J. Nonlinear Sci. Num. Simulation, 7(1): 27-34, 2006.

[6] Merdan, M., On the solutions of Fractional Riccati Differential Equations with Modified Riemann-Liouville Derivative,
Int. J. Diff. Equations, 2012.

[7] Yuzbasi, S., Numerical Solutions of Fractional Riccati type Differential Equations by Means of the Bernstein
Polynomials, Applied Math. Comput, 219(11); 6238—6343, 2013.

[8] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, 1994,

5113 |Page September 01, 2015



&J ISSN 2347-1921

[9] Y. Hu, Y. Luo, Z. Lu, Analytical solution of the linear fractional differential equation by Adomian decomposition method,
J. Comput. Appl. Math, doi:10.1016/j. cam. 2007.04.005.

[10] S. Momani, Z. Odibat, Numerical approach to differential of fractional order, J. Comput. Appl. Math, doi: 10. 1016/].
cam. 2006. 07. 015.

[11] S. Momani, Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order,
Chaos, Solitons and Fractals, doi: 10. 1016/j. chaos. 2005. 10. 068.

[12] J.-H. He, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng. 178 (1999) 257-262.

[13] J.-H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J.
Nonlinear Mech. 35 (2000) 37—43.

[14] J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Meth.
Appl. Mech. Eng. 167 (1998) 57-68.

[15] Cang, J, Tan, Y, Xu, H and Liao, S.J, Series Solutions of Nonlinear Riccati Differential Equations with Fractional
Order, Chaos, Solutons and Fractals, 40(1), 1-9, 2009.

[16] Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. Ph. D thesis, Shanghai
Jiao Tong University; 1992.

[17] Liao SJ. An approximate solution technique which does not depend upon small parameters: a special example. Int J
Nonlinear Mech 1995; 30: 371-80.

[18] Liao SJ, Campo A. Analytic solutions of the temperature distribution in Blasius viscous flow problems. J Fluid Mech
2002; 453: 411-25.

[19] Liao SJ. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J
Fluid Mech 2003; 488: 189-212.

[20] Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004; 147: 499-513.
[21] I. Podlubny, Fractional Differential Equations, Academic, New York, 1999.

[22] Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order. In: Fractals and
fractional calculus in continuum mechanics. Wien and New York: Springer-Verlag; 1997. p. 223-76.

[23] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations J. Math. Anal. Appl, 316,
pp. 752—-763, 2006.

[24] S. Bhalekar, V. Daftardar-Gejji, New iterative method: Application to partial differential equations Appl. Math. Comput.
203, pp. 778-783, 2008.

[25] S. Bhalekar, V. Daftardar-Gejji, Solving evolution equations using a new iterative method, Numer. Methods Partial
Differ. Equations, 26, pp. 906-916, 2010.

[26] S. Bhalekar, V. Daftardar-Gejji, Convergence of the New lIterative Method, International Journal of Differential
Equations, 10, pp. 1155, 2011.

[27] S. H. Behiry, Differential transform method for nonlinear initial-value problems by Adomian polynomials, Applied &
Computational Mathematics, 3(2012), 1-6.

[28] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Communications in nonlinear
science and numerical simulation, 14(2009), 674—684.

5114 |Page September 01, 2015



