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Abstract: In this paper we prove some conditions for equivalent Cauchy sequences in partial metric spaces. These
conditions are necessary and sufficient for 0-equivalent 0-Cauchy sequences in partial metric spaces. Some examples are
given to illustrate the observed results.
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1. Introduction.

The notion of a partial metric space was introduced by G.S. Metthews [7, 8] in 1992. The partial metric space is a
generalization of the usual metric spaces in which the distance of a point from itself may not be zero. Recently, many
authors have been focused on the partial metric spaces and its topological properties. [1, 9,10].They show that partial
metric spaces have many applications both in mathematics and computer science [5, 10]. The concept of Cauchy
sequences and equivalent Cauchy sequences are very important in functional analysis and especially in fixed point theory.

In 1983 Leader [6] obtained a sufficient and necessary condition as a characterization of equivalent Cauchy sequences.

In 2001 Bushati [2] has given some new conditions for two sequences to be equivalent Cauchy in metric spaces. In
2014,Hoxha at all [3] generalized these condition in dislocated metric spaces and quasi-dislocated metric spaces.

In this paper we will show some condition about equivalent sequences and equivalent Cauchy sequences and O-
equivalent 0-Cauchy sequences in partial metric spaces.

2. Preliminaries.

For convenience we start with the following definitions, lemmas, and theorems.

Definition 1. [7] A function p: X x X — R™ is a partial metric on X if, for all X, Y,z € X , the following condition
hold:

p1) X =Yifand only if p(X,X) = p(X, y) = p(y, ),

P2) P(X,X) < p(X,y)

ps) P(X,y)=p(y, X),

pa) P(X,Y) < p(x,2) + p(z,y) - p(z, 2)

In this case, the pair (X, p)is called a partial metric space.

It is clear that if p(X,y)=0then from (p1) and (pz), X=1Y. But, if X=Y, P(X,Yy) may not be 0. As example of partial
metric space is, (R, p) where p(X,y)=max{Xx, y}.

Each partial metric p on X generates a T -topology on X , which has as base the family of open p -balls
{Bp(x,&):xe X,&>0} , where By (X, &) ={y e X :p(X, y) <&+ p(X,X)}orall xe X and &>0

Definition 2. [7,8] A sequence {x,} in a partial metric space (X, p) is said to be:

(iy p-convergenttoapoint X€ X if lim p(x, x,)= p(X, X) ;
n—o0
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(i) p -Cauchy sequenceif lim p(Xy,,X,) exists and is finite.
n,Mm-—o0

Notice that the limit of sequence in partial metric space is not necessary unique.

Proposition 3. [8] Every partial metric p defines a metric d,, where

dp (% ¥)=2p(x, y) = p(x, X) = p(y,y) forall x,yeX.
The metric d p is called the metric associated with partial metric p .

Lemma 1. [7,9]

(1) A sequence {Xn} isa p -Cauchy sequence in a partial metric space (X, p) if and only if it is a Cauchy sequence in

the metric space (X,d,).

Definition 4. The sequences (X,) and (Y,) in a metric space (X,d) are called equivalent if

limd(x,,y,)=0.
N—o0

Definition 5. The sequences (X,) and (Y,) in a partial metric space (X, p) are called equivalent if
lim p(X,,Y,) exists and is finite.
N—o0

Definition 6. The sequences (X,) and (Y,) in a partial metric space (X, p) are called equivalent Cauchy if they
are Cauchy and equivalentin (X, p).

Definition 7. Let (X, p) be a partial metric space

i) A subset A in X is called bounded if there exists a real number M>0 such that p(X,y) <M forall X,y € A;

i) If A is bounded set of X, than the diameter of A is denoted by §(A) and

S(A) =sup{p(x, y); X, y € A}

Lemma 2. [4]. Let (X, p) be a partial metric space. A sequence {Xn} isa P -Cauchy sequence in a partial metric

space (X, p) if and only if it satisfies the following condition:

(*) for each £>0 there is Ny € N such that P(X,, Xy, ) — P(X,, X,,) < & whenever Ng <N <M

Definition 8.. Let (X,p) be a partial metric space. A sequence {x,} in X is called 0-Cauchy if
lim p(Xy,X%,)=0

n,m—oo

Definition 9. The sequences (Xn) and (yn) in a partial metric space (X, p) are called O-equivalent if
lim p(x,,y,)=0.

N—c0

Definition 10. The sequences (Xn) and (yn) in a partial metric space (X, p) are called 0-equivalent 0-Cauchy

if they are 0-Cauchy and 0-equivalent in (X, p).

3. MAIN REZULTS.

Theorem 1. if the sequences (X) and (Yy) are equivalent Cauchy in (X,d,), than they are equivalent Cauchy
in partial metric space (X, p).

Proof. since (X,) dhe (Y,) are equivalent in metric space (X,d ) than nII_rIOIo dy (X, ¥n)=0.

So
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lim[ 2p(x,, ) = P(%ys %) = P(Yas Vo)1 = 0. @

Since P(X,,X,) < p(X,,Y,)and p(Y,,Y,) < p(X,,Y,)and (1) holds, than we have
limEp(x,, ;) = P(%;, %,)] =0 limEp(xX;, ¥o) = P(Yn, ¥a)1 =0 ()
The sequences (X, ) and (Y, ) are Cauchy in (X,d, ), than they are Cauchy in (X, p) .

From lemma 2 we have that the sequences (X, ) and (Y,,) satisfy the condition (*) in Lemma 2.

So, in the same way as in the proof of lemma 2 in [4], we can proof that sequences {p(Xn ) Xn} and {p(yn ) yn}
converges for the Euclidean metric on R*

Letbe lim p(x ,x )=a
nN—o0

Note that |p(X,X)—Pp(Y,y)|<d (X,y) for al X,yeX. So, for X=X, dhe Y=Y we have
[P0 %) = POy Yo < Ay (%30 ¥n) -

By the equivalence of the sequences (X;) and (Y,) in (X,d), we have

lim p(x,,x,) =limp(y,.y,)=a ®)

From (2) and (3) we have MQ p(x,,Y,) = rllm p(x,,X,) = I|m p(y,.y,)=a

We conclude that sequences (X, ) and (Y,,) are equivalent Cauchy in (X, p).

Remark 2.The converse of the theorem 1, is not true. For this we can see the following example.

Example 3.

Let X=R" and define a mapping P : RXR — R" by
P(x,y) = max{x,y}
Then, p is partial metric and (X, p) is a partial metric space.
1 1 1
Take the sequences (X,)=—and (Y, )= (E +-)
n n

These sequences are Cauchy, because

p(xn’ m)_ (1,£)=m {1 i}—>0Wheneverl’]m—)oo
nm nm

1 11 1 1 11 1 1
p(yn,ym)zp(—+—,—+—)=max —+—,—+— —> — whenever N,M — o0
2 n2 m 2 n2 m 2

They are and equivalentin (X, p) because

1 1 1 1 1 1
I|m X, _I|m — =+ _Ilmmax —,=+=}=1Ilim ==
(X, ¥n) p( > ) { PR M[Z nj 5

1 1 1 .
But the sequences (X,)=—and (Y, )= (§+—) although are Cauchy in (X,dp) by the lemma 1, they are not
n n

equivalentin (X,d ) because
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11 1 1 11 1| 11
p( X, X,)=maxq—,—+==—0 p(y,,Y,)=max +— —+4+=t==4=—>= whenever n>w, and
nn n 2 "2 nf 2 n
. . 1 1 1
!mdp(xn’yn):!m[zp(xn'yn)_p(xn’ n) p(yn'yn)] 2- E_O_EZE?&O

Remark 4.1) If the Cauchy sequences (X,) and (Y, ) satisfy the condition

lim p(x,,y,) =limp(x,,X,) = I|m p(y,,Y,) thenthe converse of theoreml is true.
n—o0 N—0

2) If the sequences (X,) and (Y,) are 0- equivalent 0-Cauchy, than they satisfy the condition

limp(x,,y,) =limp(x,,X )= I|m p(Y,,Y,) =0 and then the converse of theorem1 is true.
n—o0 N—

Let (X,) and (Y,) be the sequences in partial metric space (X, p) . Define J; :SUp{ p(X,,Y,):m=ik=> j}
v(@i, j)eN%. (@

Preposition 5.Let (X, p) be a partial metric space and (X,), (Y, ) two sequences in it. If one 3, j, s finite than all
5ij are finite

Proof. Denote A= max{ P(Xy, %, ), 1sm< io} and B = max{ P(Yi, Y 1<k< jo}

We first prove that Oy, is finite.

By (4) we have P(Xy,, Yy ) <3, . for M>i; and K> j;.

For m>i, k < J, we have

P(Xns Yi) < PO%ys Y5 ) + PCYG V) — P(Y,,» Y, ) <6, +B=p(Y;, 0 Y;,)

igJo

For m<i,, K > j, we have

PO Vi) < PO X )+ PO, Vi) = PO %) < A+ 65 - (% %)
For m<i,, K < J, we have
P(Xns Vi) < P X%, )+ PX 0 Y5 )+ PY, Vi) — PO, % ) = PCY;,» Y5,)
<A+35; +B=p(x % )—pP(Y;. Y, )
So, 0, <A+ 5, ; +B-p(x . X ) — p(y;, Y, )isfinte. But &; < & for i, j€ N, s0 §; <+o0.
Corollary 6. Let (X, p) be a partial metric space and (X,), (Y,) two sequences in it.
The sequences (X, ) and (Y, ) are bounded if and only if &4 is finite.
Proof. Denote M, , M, restrictive constants for (X,) and (Y,). Then, for i, j € N we have

P(X, Y;) < p(%, % )+ (%, ¥, )+ P(Y, Vi) — POX, % ) = PCY, . Yi) =

) |0

POG X )+ (P(X s Yi ) =P, X, DHCP(Y, V) - PO, Y ) S My +(p(% Yy ) —P(% %))+ M,

IO' '0

forafixed i, € N. So, ,, <to.

6151 |Page council for Innovative Research
May 2016 www.cirworld.com



& ISSN 2347-1921

Volume 12 Number 4
Journal of Advances in Mathematics

Conversely, if J;; <+ o0, letus show the statement for (X,) .
By the definition 7, 5((X,)) =sup{p(x;,x;0:1, j € N}
P&, X;) < PO, Yi) + PCYis X)) — PCYis Vi)
P(Yi, ¥i) < p(Yi,X;) for je N and p(y;,Y;) 20
P(Yi X)) <8y and p(Yi, X)) = P(Yir Yi) <.
So, P(X,X;) <, +0,<26,;, and S((X,)) =sup{p(X;,x;) i, j€ N}is finite and the sequence(X,) is
bounded. In the same way we can show that the sequence (Y, ) is bounded.

Theorem 7. Let (X, p) be a partial metric space and (X,), (Y,) two sequences in it. If the sequences (X,),

(y,,) satisfy one of the following conditions, than the sequences (X,), (Y, ) are equivalent Cauchy in (X, p).
(1) The sequences (X, ) and (Y, ) are bounded in (X, p)and

Ve >0,3r e N,36 € (0,+0),3¢, € (0, &) such that 5; <&+ = p(X ) < &, whenever i, j € N

i+r? yj+r
(2) The sequences (X,) and (Y, )are bounded in (X, p) and

Ve >0,3r e N,36 € (0, +0) such that &; <&+0 = 9,

i+r, j+r

< &,whenever I, j € N

(3) The sequences (X,) and (Y, )are bounded in (X, p) and

vne N,3¢q, €(0,+0),3r € N, such that &; <&, = 6,

i+r,j+r<ﬁ whenever I, j € N

(4) The sequences (X,) and (Y, )are bounded in (X, p)and

Ve>0,3r e N,35 € (0,+:0),3¢, € (0, &) such that é}j <g+o > 5””” <&, whenever i, j € N

Proof.

Let (X,) and(Y,) be the sequencesin (X, p) satisfying (1). Define
a,=6,,=sup { p(x,y;).izn, j=n}

The sequences (Ocn) is decreasing and positive. Hence it converges and lim a = inf {an ‘Ne N} =a=>0

n—o0

Suppose that & > 0. From the condition (1) for ¢ =a > Otherearer € N, &, € (0,&) and 6 >0
such that 0; <&+ = P(X,,, Y, ) < & whenever i, je N (5)
For this O > Qexists pe N suchthatfor N> p => @, <a+d =+

Fori>2p,j=p wehave §; <a,=0,,<&+0 By () wehave p(X,,,Y;,)<&
But it is obvious that i+Fr=K>p+r,j+r=1>p+r,so p(X.,Y,) <& <&=a4a , which is a contradiction.

Hence we have lima, =inf{a, :neN} =0

nN—oo
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since p(X,,Y,)<e, and lima, =0 hold, then lim p(x,,y,)=0and the sequences (X,) and (Y,) are
N—o0 nN—o0
equivalent. Furthermore P(X;, ¥;) < @4, ;3 @nd consequently lim p(x;,y;) =0 (6)
' i,joo

Now, we show that the sequences (X,) e (Y,) are Cauchy. Since P(X,,X,) < P(X,,Y,) » P(Y,, ¥,) < P(X,, Y,)
and lim p(x,,y,) =0, than

lim p(x,,x,) =0 and lim p(y,. y,) =0. ™
So,

PO %) < P(Xy, Yo ) + P(Yn: %) = Py, ¥y) and

P(Ya» Yi) < P(Yas %)+ P(Xys Vi) = POX0 %) ®

By (6), (7) and (8) we have that nlrirﬂw p(x,,X,)=0, lm pP(Y,,Y,) =0 , than the sequences (X,) e (Y,) are

Cauchyin (X, p).
(2) Let (X,) and (Y,) be the sequencesin (X, p) satisfying (2).

We first shall prove that (2) = (3).

1 1
For € N, take &£ == and by (2) we have that there exists ' € N, 6 >0 and, =5 += such that §; <£+0 =
n n

1 ..
a, =6 <eg=—fori,jeN.
n

Now, suppose (X,) and (Y, ) satisfying (3).
Asin (1) the sequence @, =0, , =SUp { pP(%,Y;)izn, j> n} is a convergent sequence and

lima, =inf{a,:neN}=a>0

n—o0o

y . 1 1 .
Suppose that & > 0 . From the condition (3) for & =a > 0 exists N € N suchthat — <& .For — > Qexists P e N
n n

1 1 1
such that for N> Pwe have £ <@, <&+— . Take &, = &+ — in (3) and we have é}j Sopp=8, <&+—-=
n n ' ' n

a, = o,

n i+r, j+r

1
<—< & =a.But,
n

=0

max{i+r, j+r} max{i+r, j+r}

<9,

et jer < — < & = a, which is a contradiction. Hence we have lim a, = 0.

n n—>o0

a

In the same way as in (1) we can show that the sequences (Xn) and (yn) are equivalent Cauchy in (X, p) .
(4). Let (X,) and (Y,) be the sequences in (X, p)satisfying (4).

It is clear that (4)=(2) and by (2) immediately follows that the sequences (X,) and (Y,) are equivalent Cauchy in

(X, p).

Remark 8. The converse of the theorem 7, is not true. For this we can see again example 3 above.

Let X=R" and define a mapping P:RXR — R" by p(X,y) = max{x, y} as a partial metric.
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The sequences (X, ):l and (Y, )= (%—i—l) are equivalent Cauchy in (X, p). But, 5ij :%fori, je Nandfore = % ,
n n

2¢&.

i+r, j+r

1
forany 0 > Oand r>0,thoughé‘ij25<8+5 we have O, =

N |~

1 1 1
So, the sequences (X,)=— and (Y, )= (E + =) do not satisfy the condition (2).
n n

In the same way we can show that these sequences do not satisfy and the conditions (1), (3) and (4).

Theorem 9. Let (X, p) be a partial metric space and (X,), (Y,) two sequences in it. The sequences (X,),

(yn) are 0-equivalent 0-Cauchy in (X , p) if and only if they satisfy one of the following conditions:
(1) The sequences (X,) and (Y, )are bounded in (X, p)and

Ve >0,3reN,35 € (0,+0),3¢&, €(0,£) suchthat 6; <&+ = p(X ) < &, whenever i, j € N

i+r? yj+r
(2) The sequences (X,) and (Y, )are bounded (X, p) and

Ve >0,3r e N,36 € (0,+00) such that é‘ij <&+0=9,

iar jor <€, whenever I, ] € N

(3) The sequences (X,) and (Y, )are bounded (X, p) and

vne N,3e, €(0,+0),3r € N, such that Oy<a, =6,

i+r,j+r<ﬁ whenever I, j € N

(4) The sequences (X,) and (Y, )are bounded (X, p) and

Ve>0,3r e N,356 € (0,+00),3¢, € (0, &) such that é}j <e+0 =6 < &, whenever i, j e N

i+r, j+r —
Proof. We firs prove the "if" part. Let (Xn) , (yn) be 0-equivalent 0-Cauchy in (X, p).By the remark 4, the sequences
(Xn) , (yn) be equivalent Cauchy in metric spaces (X , dp). By [2] the conditions (1), (2) and (4) are equivalent to

being of sequences (Xn) , (yn) equivalent Cauchy in a metric space.

So, now we can prove that if the sequences (X,), (Y,) are O-equivalent 0-Cauchy in (X, p), than they satisfy the
condition (3).

Indeed, by the definition 8 and 9 we have

!'_)rg p(Xi J yi) = ilji—)moo p(Xi J Xj) = iljiinw p(yi | yj) =0 (®)

So, P(X,Y;) < P(X,X;)+ P(X;,Y;) — P(X;, X;) and by (5) we have iIJ_irﬁnOo p(x,y;)=0.
_ i . 1 1
Than, for N € N there is P € N such that for i > P, j>P we have p(X;,Y;) <— and so &y <— . So for
n n

1
a, >E , T =P we have é}j<an :>5i+r'j+r

So (3) hold.

The converse follows from Theorem 7.

1 .
<Opp <— whenever i, je N.
n

REFERENCE

[1] Altun.l, Sola. F, Simsek. H, Generalized contractions on partial metric spaces. Topology Appl. 157(18), 2010, 2778-
2785.

[2] Bushati. S,. Disa pohime pér vargjet Koshi. Bul.Shk. Univ. Shkodrés, Nr. 53(4), 2001, 5-7.

6154 |Page council for Innovative Research
May 2016 www.cirworld.com



ISSN 2347-1921
Volume 12 Number 4
Journal of Advances in Mathematics

[3] Hoxha.E, Duraj. S, Equivalent Cauchy sequences on generalized metric spaces. International Conference On Recent
Advances In Pure And Applied Mathematics (ICRAPAM 2014) 6-9 November 2014, Antalya, Turkey.

[4] Karapinar.E, Romaguera. S, Nonunique fixed point theorems in partial metric spaces. Published by Fac. of Scie. and
Math., Univ. of Nis, Serbia, 2013, 1305-1314.

[5] Kopperman. R.,Matthews. S.G, and Pajoohesh .H.: What do partial metrics represent?, Spatial representation: discrete
vs. continuous computational models, Dagstuhl Seminar Proceedings, No. 04351, Internationales Begegnungs- und
Forschungszentrumf ” ur Informatik (IBFI), Schloss Dagstuhl, Germany, (2005).

[6] Leader.S, Equivalent Cauchy sequences and contractive fixed points in metric spaces. Studia Math. T.LXVI, 1983, 63-
67

[7] Matthews. S. G., Partial metric topology, Research Report 212, Dept. of Computer Science, University ofWarwick,
(1992).

[8] Matthews. S. G., Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann.
New YorkAcad. Sci. 728 (1994). 183-197.

[9] Oltra.S. and Valero. O., Banach’s fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste 36 (2004),
17-26.

[10] Romaguera. S. and Valero.O, A quantitative computational model for complete partial metric spaces via formal balls,
Math.Struct. Comp. Sci. 19 (2009), 541-563.

[11] Valera. O, On Banach fixed point theoremfor partial metric spaces. Appl. Gen. Topol. 6(2), 2005, 229-240.

International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2014) 6-9 November 2014,
Antalya, Turkey

AUTHOR’S PROFILE
I M.Sc. Sidité Duraj (DOB-19/09/1980)

Completed her M.Sc in Mathematics at Tirana University in 2011, she is a Ph. D student. She works as
a lecturer at Shkodra University, in the Department of Mathematics, Faculty of Natural Science,
Albania for more 5 years. Her subject of teaching is Mathematical Analysis and Functional Analysis.
Her research fields is Functional Analysis.

Dr. Elida Hoxha (DOB-08/01/1961)

Completed her M.Sc. in Mathematics from Tirana University in the year 1984 and completed his Ph.D.
from Tirana University in 1997. She has a teaching experience of more than 29 years. Presently she is
working as Professor in the Department of Mathematics, Faculty of Natural Science, University of
Tirana, Albania.

She is a popular teacher in under graduate and post graduate level. Her subject of teaching is
Mathematical Analysis, Topology, Functional Analysis. Besides teaching she is actively engaged in
research field. Her research fields are Fixed Point Theory, Fuzzy sets and Fuzzy mappings, Topology.

6155 | Page council for Innovative Research
May 2016 www.cirworld.com



