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1. Introduction. 

The notion of a partial metric space was introduced by G.S. Metthews [7, 8] in 1992. The partial metric space is a 
generalization of the usual metric spaces in which the distance of a point from itself may not be zero. Recently, many 
authors have been focused on the partial metric spaces and its topological properties. [1, 9,10].They show that partial 
metric spaces have many applications both in mathematics and computer science [5, 10]. The concept of Cauchy 
sequences and equivalent Cauchy sequences are very important in functional analysis and especially in fixed point theory. 

In 1983 Leader [6] obtained a sufficient and necessary condition as a characterization of equivalent Cauchy sequences. 

In 2001 Bushati [2] has given some new conditions for two sequences to be equivalent Cauchy in metric spaces. In 
2014,Hoxha at all [3] generalized these condition in dislocated metric spaces and quasi-dislocated metric spaces. 

In this paper we will show some condition about equivalent sequences and equivalent Cauchy sequences and 0-
equivalent 0-Cauchy sequences in partial metric spaces. 

2. Preliminaries. 

For convenience we start with the following definitions, lemmas, and theorems. 

Definition 1. [7] A function :p X X R   is a partial metric on X  if, for all , ,x y z X , the following condition 

hold:  

p1) x y if and only if ( , ) ( , ) ( , )p x x p x y p y y  , 

p2) ( , ) ( , )p x x p x y  

p3) ( , ) ( , )p x y p y x , 

p4) ( , ) ( , ) ( , ) ( , )p x y p x z p z y p z z    

In this case, the pair ( , )X p is called a partial metric space. 

It is clear that if ( , ) 0p x y  then from (p1) and (p2), x y . But, if x y , ( , )p x y may not be 0. As example of partial 

metric space is, ( , )R p
 where ( , ) max{ , }p x y x y . 

Each partial metric p  on X  generates a 0T -topology on X , which has as  base the family of open p  -balls 

{ ( , ) : , 0}pB x x X    , where ( , ) { : ( , ) ( , )}pB x y X p x y p x x     for all x X  and 0   

Definition 2. [7,8] A sequence { }nx  in a partial metric space ( , )X p  is said to be: 

(i) p -convergent to a point x X  if lim ( , ) ( , )n
n

p x x p x x


  ; 
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(ii) p  -Cauchy sequence if 
,
lim ( , )m n

n m
p x x


 exists and is finite. 

Notice that the limit of sequence in partial metric space is not necessary unique.   

Proposition 3. [8] Every partial metric p  defines a metric pd , where 

( , ) 2 ( , ) ( , ) ( , )pd x y p x y p x x p y y      for all ,x y X . 

The metric pd  is called the metric associated with partial metric p . 

Lemma 1. [7,8] 

(1) A sequence { }nx  is a p  -Cauchy sequence in a partial metric space ( , )X p  if and only if it is a Cauchy sequence in 

the metric space ( , )pX d .  

Definition 4. The sequences  ( )nx  and ( )ny  in a metric space ( , )X d  are called equivalent if 

lim ( , ) 0n n
n

d x y


 .    

Definition 5. The sequences ( )nx  and ( )ny  in a partial metric space ( , )X p  are called equivalent if 

lim ( , )n n
n

p x y


 exists and is finite. 

Definition 6. The sequences  ( )nx  and ( )ny  in a partial metric space ( , )X p  are called equivalent Cauchy if they 

are Cauchy and equivalent in ( , )X p .     

Definition 7. Let ( , )X p   be a partial metric space 

i) A subset A in X is called bounded if there exists a real number M>0 such that ( , )p x y M for all ,x y A ; 

ii) If A is bounded set of X, than the diameter of A is denoted by (A) and  

( ) sup{ ( , ); , }A p x y x y A    

Lemma 2. [4]. Let ( , )X p   be a partial metric space.  A sequence { }nx  is a p  -Cauchy sequence in a partial metric 

space ( , )X p  if and only if it satisfies the following condition: 

(*) for each >0 there is 0n N  such that ( , ) ( , )n m n np x x p x x  
 
whenever 0n n m   

Definition 8.. Let ( , )X p   be a partial metric space. A sequence { }nx  in X is called 0-Cauchy if 

,
lim ( , ) 0m n

n m
p x x


   

Definition 9. The sequences  ( )nx  and ( )ny  in a partial metric space ( , )X p  are called 0-equivalent if 

lim ( , ) 0n n
n

p x y


 .     

Definition 10. The sequences  ( )nx  and ( )ny  in a partial metric space ( , )X p  are called 0-equivalent 0-Cauchy 

if they are 0-Cauchy and 0-equivalent in ( , )X p . 

3. MAIN REZULTS. 

Theorem 1. If the sequences  ( )nx  and ( )ny are equivalent Cauchy in ( , )pX d , than they are equivalent Cauchy 

in partial metric space ( , )X p .  

Proof. Since ( )nx dhe ( )ny are equivalent in metric space ( , )pX d than lim ( , ) 0p n n
n

d x y


 . 

So 
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lim[ 2 ( , ) ( , ) ( , )] 0n n n n n n
n

p x y p x x p y y


   .  (1) 

Since ( , ) ( , )n n n np x x p x y and ( , )n np y y ( , )n np x y and (1) holds, than we have  

lim[ ( , ) ( , )] 0n n n n
n

p x y p x x


     lim[ ( , ) ( , )] 0n n n n
n

p x y p y y


   (2) 

The sequences ( )nx  and ( )ny are Cauchy in ( , )pX d , than they are Cauchy in ( , )X p  .  

From lemma 2 we have that the sequences ( )nx  and ( )ny satisfy the condition (*) in Lemma 2.  

So, in the same way as in the proof of lemma 2 in [4], we can proof that sequences  ( ,n np x x  and  ( ,n np y y  

converges for the Euclidean metric on R
 . 

Let be lim ( , )n n
n

p x x a


  

Note that ( , ) ( , ) ( , )pp x x p y y d x y   for all ,x y X . So, for nx x  dhe ny y we have 

( , ) ( , ) ( , )n n n n p n np x x p y y d x y  . 

By the equivalence of the sequences  ( )nx  and ( )ny  in ( , )pX d , we have 

lim ( , ) lim ( , )n n n n
n n

p x x p y y a
 

    (3) 

From (2) and (3) we have lim ( , ) lim ( , ) lim ( , )n n n n n n
n n n

p x y p x x p y y a
  

    

We conclude that sequences ( )nx  and ( )ny are equivalent Cauchy in ( , )X p . 

Remark 2.The converse of the theorem 1, is not true. For this we can see the following example. 

Example 3.  

Let X=R
+
 and define a mapping :p RxR R by 

 ( , ) max ,p x y x y  

Then, p is partial metric and ( , )X p is a partial metric space. 

Take the sequences ( nx )=
1

n
and ( ny )=

1 1
( )
2 n
  

These sequences are Cauchy, because 

1 1 1 1
( , ) ( , ) max , 0n mp x x p

n m n m

 
   

 
 whenever ,n m  

1 1 1 1 1 1 1 1 1
( , ) ( , ) max ,

2 2 2 2 2
n mp y y p

n m n m

 
       

 
 whenever ,n m  

 They are and equivalent in ( , )X p because   

1 1 1 1 1 1 1 1 1
lim ( , ) lim ( , ) lim max{ , } lim

2 2 2 2
n n

n n n n
p x y p

n n n n n   

 
       

 
 

But the sequences ( nx )=
1

n
and ( ny )=

1 1
( )
2 n
 although are Cauchy in ( , )pX d  by the lemma 1, they are not 

equivalent in ( , )pX d  because 
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(p nx , nx )=
1 1 1

max , 0
n n n

 
  

 
( , )n np y y =

1 1 1 1 1 1 1
max ,

2 2 2 2n n n

 
     

 
  whenever n, and  

1 1 1
lim ( , ) lim[ ,2 ) , ) ( , )]( 0

2
( 2 0

2 2
p n n n n n n n n

n n
p x p xd x y y x p y y

 
         

Remark 4.1) If the Cauchy sequences ( )nx and ( )ny satisfy the condition 

lim ( , ) lim ( , ) lim ( , )n n n n n n
n n n

p x y p x x p y y
  

    then the converse of theorem1 is true. 

2) If the sequences ( )nx  and ( )ny  are 0- equivalent 0-Cauchy, than they satisfy the condition 

lim ( , ) lim ( , ) lim ( , )n n n n n n
n n n

p x y p x x p y y
  

  =0 and then the converse of theorem1 is true.  

 

Let  ( )nx  and ( )ny  be the sequences in partial metric space ( , )X p  . Define  sup ( , ) : ,ij m kp x y m i k j   

2( , )i j N  . (4) 

Preposition 5.Let ( , )X p  be a partial metric space and ( )nx , ( )ny two sequences in it. If one 
0 0i j  is finite than all 

ij   are finite   

Proof. Denote  
0, 0max ( ),1m iA p x x m i    and  

0 0max ( , )1k jB p y y k j    

We first prove that 11  is finite. 

By (4) we have ( , )m kp x y <
0 0i j , for 0m i  and 0k j .    

For  0m i 0k j  we have  

0 0 0 0 0 0 0 0
( , ) ( , ) ( , ) ( , ) ( , )m k m j j k j j i j j jp x y p x y p y y p y y B p y y       

For 0 0,  m i k j   we have 

( , )m kp x y 
0,( )m ip x x +

0 0 0
( , ) ( , )i k i ip x y p x x A 

0 0i j 
0 0

( , )i ip x x  

For 0 0,  m i k j   we have 

( , )m kp x y 
0,( )m ip x x +

0 0 0 0 0 0 0
( , ) ( , ) ( , ) ( , )i j j k i i j jp x y p y y p x x p y y       

 
0 0 0 0 0 0

( , ) ( , )i j i i j jA B p x x p y y     .        

So, 11 A 
0 0i j B -

0 0
( , )i ip x x 

0 0
( , )j jp y y is finite. But ij  11 for ,i j N , so ij <+ . 

Corollary 6. Let ( , )X p  be a partial metric space and ( )nx , ( )ny  two sequences in it.  

The sequences ( )nx and ( )ny  are bounded if and only if 11 is finite. 

Proof. Denote 1M  , 2M  restrictive constants for ( )nx and ( )ny . Then, for ,i j N  we have   

( , )i jp x y
0 0 0 0 0 0 0 0

( , ) ( , ) ( , ) ( , ) ( , )i i i i i j i i i ip x x p x y p y y p x x p y y      = 

0
( , )i ip x x + (

0 0
( , )i ip x y

0 0
( , )i ip x x )+(

0
( , )i jp y y -

0 0
( , )i ip y y ) 1M  +(

0 0
( , )i ip x y

0 0
( , )i ip x x )+ 2M   

 for a fixed 0i N .  So, 11  <+ . 



                                                                    I S S N  2 3 4 7 - 1 9 2 1   
                                                           V o l u m e  1 2  N u m b e r  4                                                                                                                                                                                                                    

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6152 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
M a y  2 0 1 6                                                     w w w . c i r w o r l d . c o m                                                                    

Conversely, if 11  <+ , let us show the statement for ( )nx . 

By the definition 7, (( )) sup{ ( , 0 : , }n i jx p x x i j N     

 ( , ) ( , ) ( , ) ( , )i j i i i j i ip x x p x y p y x p y y     

 ( , )i ip y y   ( , )i jp y x  for j N   and ( , )i ip y y 0   

11( , )i jp y x    and ( , )i jp y x  ( , )i ip y y < 11 .  

So,  ( , )i jp x x  11 11   2 11  and (( )) sup{ ( , ) : , }n i jx p x x i j N   is finite and the sequence ( )nx  is 

bounded. In the same way we can show that the sequence ( )ny  is bounded. 

Theorem 7. Let ( , )X p  be a partial metric space and ( )nx , ( )ny  two sequences in it. If the sequences ( )nx , 

( )ny satisfy one of the following conditions, than the sequences ( )nx , ( )ny  are equivalent Cauchy in ( , )X p .  

(1) The sequences ( )nx and ( )ny are bounded in ( , )X p and  

00, , (0, ), (0, )r N            such that ij 0( , )i r j rp x y        whenever ,i j N
 

(2) The sequences ( )nx  and ( )ny are bounded in ( , )X p
 
and 

0, , (0, )r N        such that 
ij ,i r j r        , whenever ,i j N

 

(3) The sequences ( )nx  and ( )ny are bounded in ( , )X p
 
and  

, (0, ), ,nn N r N       such that ij < n  ,i r j r   <
1

n
 whenever ,i j N

 

(4) The sequences ( )nx  and ( )ny are bounded in ( , )X p and  

00, , (0, ), (0, )r N            such that ij     ,i r j r   0  whenever ,i j N  

Proof.  

Let ( )nx  and ( )ny  be the sequences in ( , )X p   satisfying (1). Define  

n = , supn n   ( , ), ,i jp x y i n j n   

The sequences ( )n is decreasing and positive. Hence it converges and  lim inf : 0n n
n

a n N a


     

Suppose that 0a  . From the condition (1) for 0a   there are 0,  (0, ) and 0r N       

such that ij 0( , )i r j rp x y        whenever ,i j N
  

( 5)  

For this 0  exists p N  such that for n p n a       
 

For ,i p j p   we have ij ,p p p        .By (5) we have 0( , )i r j rp x y     . 

But it is obvious that ,i r k p r j r l p r        , so 0( , )k lp x y a     , which is a contradiction. 

Hence we have  lim inf : 0n n
n

a n N


    . 
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Since ( , )n n np x y   and lim 0n
n

a


   hold, then  lim ( , ) 0n n
n

p x y


 and the sequences ( )nx  and ( )ny  are 

equivalent. Furthermore 
min{ , }( , )i j i jp x y a  and consequently 

,
lim ( , ) 0i j

i j
p x y


   (6) 

Now, we show that the sequences ( )nx  e ( )ny  are Cauchy. Since ( , ) ( , ) , ( , ) ( , ) n n n n n n n np x x p x y p y y p x y 

and lim ( , ) 0n n
n

p x y


 , than  

lim ( , ) 0n n
n

p x x


  and lim ( , ) 0n n
n

p y y


 .   (7) 

So,   

( , ) ( , ) ( , ) ( , )n m n n n m n np x x p x y p y x p y y    and  

( , ) ( , ) ( , ) ( , )n m n n n m n np y y p y x p x y p x x     (8) 

By (6), (7) and (8) we have that 
,
lim ( , ) 0n m

n m
p x x


  , lim ( , ) 0n m

n
p y y


  , than the sequences ( )nx  e ( )ny  are 

Cauchy in ( , )X p .  

(2)  Let ( )nx  and ( )ny  be the sequences in ( , )X p   satisfying (2). 

We first shall prove that (2)  (3). 

For n N , take 
1

n
   and by (2) we have that there exists ,  0r N    and n =

1

n
   such that ij    =

n  ij
1

n
   for ,i j N .    

Now, suppose ( )nx  and ( )ny  satisfying (3). 

As in (1) the sequence na =
, supn n   ( , ), ,i jp x y i n j n   is a convergent sequence and  

 lim inf : 0n n
n

a a n N a


     

Suppose that 0a   . From the condition (3) for 0a    exists n N  such that 
1

n
  . For 

1
0

n
 exists P N

such that for n P we have 
1

na
n

     . Take 
1

n
n

    in (3) and we have  , ,i j P P Pa   
1

n
  =

n  ,i r j r   <
1

a
n

  . But, 

    ,max , max , i r j ri r j r i r j r
a       

  
1

a
n

  , which is a contradiction. Hence we have lim 0n
n

a


  .  

In the same way as in (1) we can show that the sequences ( )nx  and ( )ny  are equivalent Cauchy in ( , )X p . 

(4). Let ( )nx  and ( )ny  be the sequences in ( , )X p satisfying (4). 

It is clear that (4)(2) and by (2)  immediately follows that the sequences ( )nx  and ( )ny  are equivalent Cauchy in

( , )X p . 

 

Remark 8. The converse of the theorem 7, is not true. For this we can see again example 3 above. 

Let X=R
+
 and define a mapping :p RxR R  by  ( , ) max ,p x y x y  as a partial metric. 
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The sequences ( nx )=
1

n
and ( ny )=

1 1
( )
2 n
  are equivalent Cauchy in ( , )X p . But, 

ij =
1

2
for ,i j N and for

1

2
  , 

for any 0  and 0r  , though
ij =

1

2
<   we have 

,i r j r  

1

2
   . 

So, the sequences ( nx )=
1

n  

and ( ny )=
1 1

( )
2 n
  do not satisfy the condition (2). 

In the same way we can show that these sequences do not satisfy and the conditions (1), (3) and (4).   

Theorem 9.  Let ( , )X p  be a partial metric space and ( )nx , ( )ny  two sequences in it. The sequences ( )nx , 

( )ny are 0-equivalent 0-Cauchy in ( , )X p if and only if they satisfy one of the following conditions: 

(1) The sequences ( )nx  and ( )ny are bounded in ( , )X p and  

00, , (0, ), (0, )r N             such that 
ij 0( , )i r j rp x y        whenever ,i j N

 

(2) The sequences ( )nx  and ( )ny are bounded ( , )X p  and  

0, , (0, )r N         such that ij ,i r j r        , whenever ,i j N
 

 (3) The sequences ( )nx  and ( )ny are bounded ( , )X p  and  

, (0, ), ,nn N r N        such that ij < n  ,i r j r   <
1

n
 whenever ,i j N

 

(4) The sequences ( )nx  and ( )ny are bounded ( , )X p  and  

00, , (0, ), (0, )r N             such that  ij     ,i r j r   0  whenever ,i j N  

Proof. We firs prove the "if" part. Let ( )nx , ( )ny be 0-equivalent 0-Cauchy in ( , )X p .By the remark 4, the sequences 

( )nx , ( )ny  be equivalent Cauchy in metric spaces ( , )pX d . By [2] the conditions (1), (2) and (4) are equivalent to 

being of sequences ( )nx , ( )ny  equivalent Cauchy in a metric space. 

So, now we can prove that if the sequences ( )nx , ( )ny  are  0-equivalent 0-Cauchy in ( , )X p , than they satisfy the 

condition (3). 

Indeed, by the definition 8 and 9 we have  

, ,
lim ( , ) lim ( , ) lim ( , ) 0i i i j i j
i i j i j

p x y p x x p y y
  

     (5)  

So, ( , ) ( , ) ( , ) ( , )i j i j j j j jp x y p x x p x y p x x   and by (5) we have 
,
lim ( , ) 0i j

i j
p x y


 . 

Than, for n N  there is P N  such that  for ,  j>Pi P  we have 
1

( , )i jp x y
n

  and so  
1

PP
n

   . So for

1
n

n
   , r P  we have ij < n  ,i r j r   <

1
PP

n
   whenever ,i j N . 

So (3) hold.  

The converse follows from Theorem 7. 
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