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Abstract : In this paper we shall study some existence theorems of solutions for a coupled system  of  

functional integral equations of Urysohn type. 
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1   INTRODUCTION 

The topic of functional integral (integration  of  Urysohn type) integral equations is a one ofthe  most  important and  useful 
branch  of  mathematical analysis .Integral equations of var-ious types create the significant subject of several 
mathematical  investigations  and  appearoften in many applications , especially in solving numerous problems in physics, 
engineeringand economics [1][3][10]. 

Consider the coupled system of  functional  integral equations 

 

 
Here we prove 

The existence of solution x, y  C[0; 1] and x, y  [0; 1] of the coupled  

2  Existence of a unique solution of (1)  

Let i : [0,1]  [0, 1] are continuous and consider the functional integral equations (1) with 

the following assumptions: 

(i)  fi : [0, 1]  R  R+ are continuous in [0,1] and satisfies the Lipschitz condition, 

 
where Li  is positive constant. 

(ii)  ui : [0, 1]  [0, 1]  R  R+ are continuous in t  [0; 1], measurable in s [0; 1] and satisfies, for 

every (t, s, x), (t, s, y)  [0, 1]  [0, 1]  R, the Lipschitz condition, 

 

 

(iii)  

 

 

 

Now for the existence of a unique positive continuous solution of the coupled systems offunctional integral equations (1) 
we have the following Theorem. 

Theorem 2.1 Let the assumptions (i)-(iii)  be satisfied. If  LiMi < 1 , then the coupledsystem of functional equations (1) 

has a unique continuous solution  in 

X.  

 

where 
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This proves that  

Simillarly  
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This proves that  

Hence  

 

 

 

 

then  

 

Now to prove that F is a contraction, we have the following.  
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then  
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Since M1L1 < 1, then F1 is a contraction. 

By a similar way we can prove that 

 

 

then  

 

 

Since M2L2 < 1, then F2 is a contraction. 

Hence 

 

 

 

 

 

and max(L1M1,L2M2) < 1 then by using Banach fixed point Theorem , the operator F has a unique fixed point in X of the 
coupled systems of equations (1)   

 

 

( )      fi : [0, 1]  R R+ be measurable in t  [0, 1], fi(t, 0)  L1[0,1] and satisfy the 

              Lipschitz condition, with constant Li, i = 1; 2 

 

 

and  

 

( )    ui : [0, 1]  [0, 1]  R R+ are measurable in t, s  [0, 1] and satisfy, that for every 

           (t, s,,x), (t, s, y)  [0; 1]  [0; 1]  R, the Lipschitz condition 

 

 

with  
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( ) i : [0, 1]  [0, 1] is  nondecreasing  and there axists  > 0 such that  

 

 

 

Theorem 3.2     Let the assumptions (i)-(iv) be satisfied. If     coupled system of functional equations (1) 

has a unique  integrable  solution   in Y . 

Proof. Define the operator T by,  

 

    where  
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then  

 

 

Then by changing the order  of  integration , we get 
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This proves that  

 Hence 
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 T : Y  Y.                                                                                                                                                        

Now to prove that  T  is a contraction, we have the following.  

  

 

 

then  

 

 

 then 

 

 

 

 

 

 

 

 

 

 

But  
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then 

 

Since   , then T1 is a contraction. 

Simillarly 

 

 

then 

 

 

Since  , then T2 is a contraction.  

 

Hence 

 

 

 

 

and   by using Banach fixed point Theorem , the operator T  has a unique  fixed  point in Y of 

the coupled systems of equations (1) 

 

Example: 

Let 

 

then the coupled system (1) will take  the form 

 

 

Which  is a coupled  system  of  Unysohn  type  integral equations. 



                                                                     ISSN 2347-1921                                                           

 

4079 | P a g e                                                        A u g u s t  2 4 ,  2 0 1 5   

REFERENCES 

[1]   J. Appell and Implicit function, nonlinear integral equations and the measure of non- compactness of the superposition 
operator J. Math. Anal. Appl., 83, (1981), pp. 251- 263. 

[2]    Andrei Horvat-Marc, Cosmin Sabo, and Cezar Toader, Positive solutions of Urysohn  integral equations, Proceedings 
of the 7th WSEAS International Conference on Systems Theory and Scienti_c Computation, Athens, Greece, August 24-
26, (2007). 

[3]    J. Bana_s, Integrable solutions of Hammerstein and Urysohn integral equations, J.   Austral. Math. Soc. (Series A) 46 
(1989), 61-68. 

[4]   M. A. Darwish, On integral equation of Urysohn- Volterra type, Appl. Math. comput. 136 (2003), 93-98. 

[5]    W. G. EL-Sayed, A. A. El-Bary, and M. A. Darwish, Solvability of Urysohn integral equation, Applied Mathematics and 
Computation, 145 (2003) 487-493. 

[6]   K. Goebel, and W. A. Kirk, Topics in metric _xed point theory, Cambridge University Press, (1990). 

[7]   Ibrahim Abouelfarag Ibrahim, On the existence of solutions of functional integral equa- tion of Urysohn type, 
Computers and Mathematics with Applications 57 (2009), 1609- 1614. 

[8]   Donal O_regan, Radu Precup, Existence criteria for integral equations in Banach spaces, J. of Inequal. and Appl., 
(2001), Vol. 6, pp. 77-97. 

[9]   Donal O_regan, Volterra and Urysohn integral equations in Banach spaces, Journal of Applied Mathematics and 
Stochastic Analysis, 11:4 (1998), 449-464. 

[10]   P. P Zabreiko, A. I. Koshelev, M. A. Kransel`skii, S. G. Mikhlin, L. S. Rakovshchik and V. J. Stetsenko, Integral 
equations, Nauka, Moscow,.(1968), [English Translation:  Noordho_, Leyden 1975].. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


