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ABSTRACT 

 A mathematical description of growth and branching in fungi can be derived in terms of continuous variables such as 
densities of filaments and tips. The general concept of continuum modeling yields the following equations of fungal growth 
in which a balance is kept for the accumulation of hyphal filaments and their tips.Hyphae are immobile. They are created 
only through the motion of tips-essentially the trail left behind tips as they moves. The rate of local length accumulation 
depends on the number of tips and branches present as well as on their rate of motion. 

This suggests the following equation 

(1.1)
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Here, the variables are as follows: (x, t)p p  : hyphal density in unit of filament length per unit area; 

(x, t)n     : tip density (number per unit area );v  : tips extension rate; (p)d d : hyphal death rate. Tips do 

undergo motion so that the flux of tips enters into the equation for tip densities. Assuming that tip growth is a directed 
motion, in one dimension this equation would take the form : 
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Where (p,n)  - net creation of tips. 
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Introduction  

In this paper, we will study a new type of branching of fungal growth. From the basic tip - growth mechanism: a number of 
tips n growing at the rate v (in length per unit time) gives rise to a hyphal accumulation rate of nv (in hyphal length per unit 

time). [3][4] discussed and analyses the above model when (p,n) 0d  for a variety of biologically relevant functions

(p,n) . More generally, we can describe hyphal growth by the system below: 

                  

 

  

 

 

This second balance equation for tip densities accommodates the fact that tip move (with flux Jn nv ) and are 

moreover created by branching or eliminated by anastomosis [6][5]. The ratio of hyphal length per tips is called the hyphal 

growth unit, with flux Jn nv . 

We investigated from effect hyphal death on development of fugal network, when 1(p) kd p . 

 Now we will focus for new work as this model (FHXW Branching Type with Hyphal Death )  :  
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For solving any system in mathematical with many parameters we need to reduce this parameters, this operation called 

non-dimensionalisation.  The branching and biological type for (p,n)  shows as a table  below:[2][7] 

 

Table : illustrate biological type of branching and version for every case. 

4- Non-dimensionalisation 

Some equations contain many parameters and can be difficult to find accurate values for these parameters that resort to 
non-dimensionalisation as in the following example:  

In the system below (1.4)  

 

 

 

 

 

To facilitate the analysis of this system and to assist in its numerical integration, we non - dimensionalise the equations. 

[1][8]To do so, we choose a reference time T , a reference length scale x  and reference scales for hyphal density, p  , 

and tip density, n . Setting 

Branching Biological type Symbol Version Parameters description 

 

Dichotomous branching Y 
1n  

1    is the number of tips produced per 

tip per unit time  

 

 

Lateral branching 

 

F 

 

2 p  

2 is the number of branches produced 

per unit length hypha per unit time 

 

Tip-hypha  anastomosis  

H 

 

2np   

2 is the rate of tip reconnections per 

unit length hypha per unit time 

 

Tip-tip  anastomosis W 2

1n   
1 is the rate of tip reconnections per unit 

time 

 

 

Tip death 

 

T 

 

3n   
3 is the loss rate of tips (constant for tip 

death) 

 

Tip death due to 
overcrowding 

 

X 

2

3p   
3 is the rate at which overcrowding 

density limitation) eliminates branching 

 

Hyphal death D 
1d p 

1 is the loss rate of hyphal   (constant for 

hyphal  death) 
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And substituting into (4.6) yields 
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Now, setting x Tv   and  
p

x
n
 , (1.6) becomes  
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where 
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The remaining choice of p  or n depends on the exact branching kinetics chosen. 

 In this chapter we will study two cases: 

1- FHXW type with hyphal death , that mean our model becomes FHXWD 

2- FHXW type without hyphal death. 

4.1New Branching Type with Hyphal Death 

In this section, we will study a new type of branching of fungal growth, that’s mean  

(p,n) F H W X .....(1.9)      

Where, F: Lateral Branching, 

            H: Tip – Hypha Anastomosis, 

            W: Tip-tip anastomosis, 

            X: Tip death due to overcrowding.  

 

The model system for FHXWD  is: 
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After dropping stars, choosing 
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Some techniques to solve above system as:  

4-2   The stability of solution  

In this section, we will illustrate stability of system (1.11), as: 

 

 

 

The solution of these equations,  we will find values of (p,n) , the steady state are :(0,0) unstable node,  and 

( , )
2 2

 

    
 : saddle point, see Fig  (1.1) 

 

Figure(1.1): The (np)-plane: note that a trajectory connects the unstable node (0, 0) to the saddle point  

( , )
2 2

 

    

 where ( 1, 1)    . 

4-3Traveling wave solution 
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Hence we seek travelling wave solutions to (1.11). A mathematical way of 

saying this that we seek solutions of the form 

(x, t) P(z)
(1.13)

(x, t) (z)

p

n N

 
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where z x ct   .  

Here (z)P  , (z)N represent density profiles, and c   can be interpreted as the rate of propagation of the colony edge. For 

these to be biologically meaningful, we require P and N to be bounded, non negative functions of z.  

Then (x, t)p  and (x, t)n  are a travelling wave, and it moves at a constant  

speed c in the positive x - direction if c positive. Clearly if ( x ct ) is constant, so are (x, t)p and (x, t)n .It also means 

the coordinate system moves with speed c. 

 The wave speed c generally has to be determined. The dependent variable z is sometimes called the wave variable. 
When we look for travelling wave solutions of an equation or system of equations in x and t in the form (1.13), we have 
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Thus we can reduce the system (1.11) to a set of  two ordinary differential equation: 

2 2

1
[ ]

(1.15)
1
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4-4   Stability of traveling wave solution 

The steady state of system (1.15) are (P,N) (0,0) , and ( , )
2 2

 

    
 here (0, 0) is stable node and 

( , )
2 2

 

    
 is saddle point for all c  positive. 

See figure (1.2).   This information will help us to determine the initial condition of MATLAB pplane7 code, 
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Figure (1.2): The (P, N)-plane: note that a trajectories connects the unstable node 
( , )

2 2

 

    

 to the saddle point (0, 0) 

for all c positive ,  1   and 1   

4-5  Numerical solution 

To solve this system (1.11), we will using pdepe code in MATLAB. To show behavior branch and tips, see Fig (1.3) that 
represented the initial condition of branch (p) and tips (n), 

 

Fig (1.3): The initial condition of (1.13), solution to the system (1.13) with the parameters 1   and 1   
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Fig (1.4) illustrates the traveling waves at the suitable time (t) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (1.4): Solution to the system (1.13) with the parameters 1   and 1   ,for time t=1, 10, 20, …, 200 , where blue 

line represented tips (n). 

 

 

Fig (1.5) : Solution to the system (1.13) with the parameters 1   and 1   , for time t=1, 10, 20, …, 200 , where red 

line represented branches (p). 

 

Fig (1.6):  Solution to the system (1.13) with the parameters 1  , 1   , 0c   and time 1, ,200t     , where blue 

line represented tips (n), red line represented branches (p). 
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Fig ( 1.4) , (1.5) and (1.6) illustrate the solutions of  p and n numerically with take values of 1   , that is very clear 

the travelling wave solution start from left to right and still the same wave .  

 From this operations we get the relationship between traveling wave solution (c) and parameters  , and    where   

increasing the traveling wave solution (c) is increasing, and   increasing the traveling wave solution (c) is decreasing, 

see Fig.(1.8) and  Fig.(1.10) . 

 

 

Fig (1.7):  Solution to the system (1.13) with the parameters 5  , 1   , 0c   and time 1, ,200t     , where blue 

line represented tips (n), red line represented branches (p). 

 

 

Fig (1.8): The relation between waves speed c and   values and suppose   is taking value = 1. 
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Fig (1.9):  Solution to the system (1.13) with the parameters 1  , 5   , 0c   and time 1, ,200t     , where blue 

line represented tips (n), red line represented branches (p). 

 

 

Fig (1.10): The relation between waves speed c and  values and suppose   is taking value = 1. 

5- Discussion  the results 

From above results,   see Fig.(1.8) and  Fig.(1.10) we conclude that the travilling wave  c  increase whenever the values  

of   increase at same time   is still constant. 

So, we know  the value of 
2

2

1

v



  and we notes that  directly proportional with 2  and v , and inversely 

proportional with 1  . 

Biologically, that is mean the growth increases whenever   increases, and finally that means the growth increases 

according to 2 increasing (branches produced per unit length hypha per unit time) and v  increasing.  

From Fig (1.10) we shows  that the travelling wave decrease whenever the value of   increase at same time   is still 

constant. 

So the value of 2 1

2 1

 


 
  and we notes that  directly proportional with 2  

and 1 , and inversely proportional with 1  and 2 . 
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Biologically, that is mean the growth decreases whenever   increases. Finally that means the growth decreases 

according to 2 increasing (branches produced per unit length hypha per unit time) , 1  increasing ( 1  is the rate of tip 

reconnections per unit time) , 1  decreasing(
1 is the loss rate of hyphal   (constant for hyphal  death))and 2  decreasing 

(
2  is the rate of tip reconnections per unit length hypha per unit time). 
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