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Abstract

Applying the matrices of inversion for permutations, we show that every element of Sn associates a unique canonical word
in the Hecke algebra Hn_l(Z). That provides an effective and simple algorithm for counting a linear basis of Hecke
algebra Hn, as binary matrices.

KeyWOI’dSZbraid groups; Hecke algebras; Symmetric group;Representation theory of groups; matrix of inversions for a
permutation.

Mathematics Subject Classification 2000: 20F36, 20C30, 05A05.
1 Introduction

The Hecke algebra has nontrivial important properties and applications. We apply the matrices of inversion for permutations,
for constructing a linear basis of Hecke algebra.In section two we give a brief knowledge on braid groups Bn in point of

view of an algebraic and geometric presentations. And how braid group is related to symmetric group Sn. The positive
braids Bn+ , Where each word is a product of positive generators, has a specific subset of positive braids which is known by

positive permutation braids, PPBs S, where each pair of strings cross in a positive sense at most once. The set Sn+ has

interested properties and useful applications for solving the word and conjugacy problems in braid groups. Also we mention
the good relation between braids and knots. We explore the relation between braid groups and a specific type of Hecke

algebras H n (Z) based on symmetric groups.In section three, we will give an explicit set of generators for H n» thatis in
view of matrices of inversions for permutations.

2 Background and notations

In this section we remind some basics from symmetric groups, braid groups, knot theory and Hecke algebras as
representation of braid groups.

2.1 Braid groups and symmetric groups

Braid groups are very powerful and useful in various areas of mathematics such as representation theory of groups, group
algebras, dynamical systems, algebraic geometry, algebraic topology and cryptography [1, 2]. It were firstintroduced by Emil

Artin in 1925, as a group B, with presentation of N—1 generators ¢, =1,2,...,N—1 subject to the relations

0,01,,0; = 01,,00;,1,1 =1,2,..,n=2 and o0, =00, [i— j| =2 [3l.

The geometric approach is a good tool for understanding braids, think of an N braid as a collection of N strands in space.
The strands are disjoint and monotone in the Z -direction. The endpoints of the strands are fixed. Two braids are considered

to be equivalent if they are homotopic relative to top and bottom endpoints. Fig. 1 illustrates the graphs of the generator &,

, the inverse generator O'i_l in B, and a braidwordin B,.
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The symmetric group Sn has a quite similar presentation of N—1 generators T; Z(i i+1), i=12,.,n-1,

subject to the relations 7,77 = 7,407, . 1=12,.n-2 17, :TjTi,|I - j| >2 and

Tiz = id.,i =1,2,...,n—1, the first two relations are braid relations [4]. In fact this presentation makes the symmetric

group Sn as a Coxeter group with Coxeter matrix and Dynkin diagram, as in Fig. 2:
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Figure 2: Dynkin diagram

This suggests a natural homomorphism ¢:B, — S ,¢(o;) = 7,,1 =1,2,...,n—1, hence we have a relation between
braids and permutations. In fact, each N braid defines a permutation of N points, which can be read at the bottom line of

the braid. For example, in Fig. 1, the two graphs (a), (b) have permutation (i i+1) in S_, while the graph (c) has

no
permutation (3421) in S,. Itis remarkable that the homomorphism ¢: B, — S is surjective but not injective.
A braid is said to be positive if it can be written as a product of elements O'ik ,k €N without involving negative powers. The

positive braids Bn+ form a semi-group [1]. Braid in Fig. 1a is positive, in Fig. 1b is negative while in Fig. 1c neither positive
nor negative. A positive braid is called a positive permutation braid, PPB, if each pair of its strings cross in a positive sense at
most once. Let S; be the set of all positive permutation braids, then S: C B; C Bn . A specific PPB where each two
strings cross each other exactly once in a positive sense is called the fundamental braid. It was introduced by F. A. Garside
[5] and denoted A, with

A =1,A,=0,,A; =0,.0,0,A, = A, 10,,0, ,..0,0;

Le. A, = (0'1 )(0'20'1 )---(O'n_z---0'2<71 )(O'n_1<7n_z---0'z‘71)
This can be described as a geometric N braid by imagining the strings attached to a rod which is given a positive half-twist,
as in Fig. 3. The PPB A has the permutation representation ¢(An)= o0=(n=1n—2...21). In fact the center
Z(B,) of the group B, is generated by Azn [1].

Figure 3: The fundamental braid A,
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The set Sn+ of PPBs has many interested properties and so many useful applications. Garside showed that every

element ﬂ in Bn can be represented by a word ,B=A2rP,where I isanintegerand P is a positive word, and I

is maximal for all such representations [5]. Elrifai improved Graside algorithm, he showed that P can be factorized as a
product of PPBs Pl, Pz,..., PS. Elrifai’s form is a unique representation in which the integer S is minimal for all

representations of P as a product of PPBs. Also, each P| is the longest possible PPB in the factorization [6]. The results

in [6] were rewritten and modified by Elrifai and Morton [7]. Also independently, Thurston improved Graside’s algorithm [8].

2.2 Braid groups and knots

A knot is an embedding K : St > S2 of 1-sphere into 3-sphere, while a link is a finite collection of disjoint knots

L:S'US!..US" = S®. Infact, any oriented knot can be viewed as a closed braid. A closed braid can be formed by
connecting opposite ends of the strands of the braid, as in Fig. 4. A comprehensive details about knot and link theory can be

3 e aD

Figure 4: The Hopf link as a closed braid

2.3 Hecke algebras and representation of braid groups

A classical Hecke algebra H(Z) for some Z € C, is the algebra generated by Ci,i €N subject to the relations;

¢’ =z¢+1,i=1,cc; =cc,li—j|>1 and cg;

J .C,.,C =C,,C,C,,;,1 =1, For an integer N the finitely generated

i+171~i+1?

Hecke algebra H n (2) is asubalgebra of H (2), with the presentation,

¢?=1z¢ +1,1<i<n
H,(z)=<c,i=12,.,n cc, :Cjci,|i_j|>1
CiCinCi = GGGy, 1<i<n—-1

i~i+l i+17i i+l
In fact is the symmetric group SnJr1 when Z=0. Also H n can be viewed as a vector space with dimension n! [10].

Since Bn has N—1 generators and Cfl =C; —Z, thenthe braid group BnJr1 can be represented in the Hecke algebra

H,, with p,:B,, > H,, p(c,)=VC forany v ell.

3Basis of Hecke algebra via matrices of inversions for permutations
An inversion of a permutation 77 = (77,77,...77,) in S, is a pair (i, j) with i < j and 7z, > ;. Any permutation
= (72'1722...72'n) in S, has a matrix invariant for its inversion M_=(m;), , where m; =1 if 1< j and

7T > 7T, otherwise m; = 0. In fact the notion "matrix of inversions for a permutation" is introduced and analyzed in [12],
[13]. We refer to example 9, for many operations on matrices of inversions for permutations.

Remark 1in this remark, we summarize some of its properties which will be needed in this work:

1. The set M (F) = {I\/I” reSs,, m; eF = {0,1}} of all possible matrices of inversions for permutations over S

is a group with the operaton M_+M , =M + a*(M,), foreach @, in S_, andif M_ = (m.), then
a Vil a 2 B n a ]
m

od
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0 0>
BM )= B(My) =M 6050y .1 < T, B) < B())
mﬂ(j)/}(i)’i < Jaﬂ(')>ﬁ(l)
2. The set Mn(F) with the above operation is a group and it is isomorphic to Sn, with an isomorphism
w:S,>M,(F), w(r)=M_.forevery 7 in S,.

3. In fact, not every binary matrix is a matrix of inversion for a permutation. A recognition algorithm for such these matrices is
given in [13].

4. An algorithm for writing a canonical word Wﬂ of a permutation 77 in Sn is given by using its matrix of inversions.
Given 7 in Sn, find the matrix of inversion M” for 7. Each row in Mﬂ will contributes by a word as a product of
transpositions 7;, i= 1,2,...,n=1 . The row that all its entries are zeros will contribute by the identity word. If the number

of ones in the entries of the i"row is mi,OSmi <n-i , the corresponding word  will be
W, = 775 T, I<i<n-1,w, =id., hence W_ =W,W, ,..W,. The canonical word W_ of the permutation
7T can be represented diagrammatically, in Fig. 5, as a tower of N—1 floors. The jth floor contains a word

TjTj+l'"Tj+ij—1 starts by T, if I >1, while it will be the identity if I =0.

1 2 i n-2n-1 n

""" | ég ‘

| 71 |

Figure 5: Diagram of a canonical word

Lemma2 M , =x(M,), forevery 7 in S,,.

: _ _ 1 — 1 g
Proof.From the relation M“ﬁ_M“+Mﬁ_M“+mod2a (My), for a=z",B=7m we have

M, = M”{” = l\/lif1 +M_= |\/|7fl + (M) the zero matrix, then Mfl =z(M_) mod2.
Lemma3in S,, the expression W_ =W, ,...W, for a permutation 7 is unique.

Proof.The two groups MH(F), of all possible matrices of inversions for permutations over Sn, and Sn are
isomorphic [12]. And every matrix of inversions for a permutation induces a unique canonical word Wﬂ =W W

Therefore the given associated canonical word W”, forevery 77 in Sn, is unique

Definition 4 Since the symmetric group S, is generated by the transpositions 7;,1 =1,2,...,n—1. For a
n-1

permutation 77 in S, the number () = I(W,) is called the length of 7z, where W_ is the associated canonical
i=1

word for 77, and |(Wi) is the number of transpositions in W, . In fact I(7) is the number of inversions of the
permutation 7.

Now we are ready to give a different version of the Hecke algebra H n (Z) . Instead of Sn , consider its isomorphic version
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M, (F). So we have the Coxeter system (M (F),S), with the operation given in remark 1, where the group

M, (F) is generated by
S=M, iz =(i i+1)1<i<n-1j

Definition 5 For a permutation 77 and for its associated canonical word W_ =W, ,..W, in S,. Let T_ be the

word in H, (z) by replacing each 7, in W_ by C,, and BH, ={T_:7 €S ,}cH, (2). Then we have a 1-1
correspondence,

f:M_,(F)>BH, ={H :7eS } f(M,)=T VreS, ,
Now we are going to prove that the set BH | is a linear basis for H ().

Definition 6 The starting set for a permutation 77 in S, , is a subset S(7) of the generators of S, such that
S(x) = {z’i = Ti7z',7zl €S, ,1=12,..., n—l}.

Theorem 7 The Hecke algebra H, can be viewed as an algebra with basis M (F), as a vector space, via the

operations
(T'”) ='\/ITi +mod2 Ti(M”) ,I(T|7Z')=|(7Z')—|—1
T T =4 ' _
| T(T.ﬁ) +(q _q_l)M L=M_+_  7(M ,,)+(q —q‘l)M _ ,otherwise

Proof.For a permutation 7 = (m,7,... 1, 74,70, 4 7T;,,...7,) in S, and for a transpositon 7;, we have
G = (M 7y Ty T Ty 7,). 7 does not in S(7), then 7 <7, and (z,7)i) =
7., >, =(r,z)i+1). Therefore I(z,z)=1(z)+1. whike, it 7, in S(z), then 7, >z, and (r,7)i)=
7., <, =(z,7)i+1) , hence we missed one inversion. So |(z,7)=1(7)-1<1(z), where 7=7.7 ,7 €S,.

Then 7,7 = 7,7, , which gives ¢T. =¢/T. =(z¢ +1)T.

Example 8 consider the permutation 7z = (613254) in S, then we are going to apply the operations above,

011111
000000
M. =(m)=|0 0 0 100
V7000000
000001
0000 0 0]

the rows in M _ from the first to the sixth contributes by the words W, = 7,7,7,7,7;, W, = Id., W, =7,, w, =1d.,
W; =7; and Wy = Id., respectively. Then the associated canonical word for 77, in SG, is
W_ = wyww,ww,w, = ld.1d.z1d.7;ld.7,7,7,7,7, = 7,.7,.7,7,7,7,75

which can be diagrammatically represented as in Fig. 6, and can be read from top to bottom. From the diagram which is the
unique canonical word for 7.
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X

Figure 6: A diagram of 7

The corresponding word for W_ in H.(z) is H_ =C..C;.c,C,C,C,C5 with T_ =M _, the matrix above. To find the

starting set for this permutation, apply the relations of the given presentation for S, on W_ = 7..7,.7,7,7,7,75, then
T =T T3 00T, T3T T = Tg.T5. T4 Toy 05T, Ty = T1.05.053.T,T3T,T5

so S(x) ={,,75,7,} For 7,,7, whichdonotin S(7),tohave 7,7 and 7,7 justinterchange by 7,7, and by
7,7 in 7, respectively. So 7,7 = (631254), 7,7 = (613524), and

011111 011111
001100 000000
000000 000010

M, = M, =

221000000 % |000011
000001 000000
0000 0 0] 0000 0 0

We can directly compute the matrix M % by interchanging between the second and the third rows in the M - then add

T

by interchanging between the fourth and the

1 in the entry M, 4, in the resulting matrix. Also compute the matrix M T4
fifth rows in the |\/|7Z ,thenadd 1 inthe entry M,g,in the resulting matrix. While, the permutations 7,77, 7,77, 7,77 can be
computed just by interchanging between 7, 7,; 7T, 7,,and by 7,7, in 7, respectively. So 7,7 = (163254),
7,7 = (612354), 7.7 = (613245). To find their matrices of inversions, we put O instead of 1, in the entrees

My, Myy, Myg of M
fourth, the fifth and the sixth, rows respectively, then

then, in the resulting matrix, interchanging between the first and the second, the third and the

!

0 0 0 0 0 O] 001 1 1 1 1] 001 1 1 1 1]
001111 0 00O0OTO O 0 00O0O0ODO
000100 0 00O0OTO O 000100
M__ = M= ,M__ =
7 10 00 00O 10 000O0O0 " 10 000O0O0
0 00O0O012 0 00 O0O0012 0 00O0O0OTDO
10 000 0 O] 10 0 00 0 O] 0 0 00 0 O]
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4Conclusion and future work

We hope that the given basis BH n for H n (Z) offers a simple method for calculating polynomial invariants of knots. Also
it might provide a way for ordering or enumerating permutations.
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