A Note On Soft Fuzzy Volterra Spaces ### A. Haydar EŞ Department of Mathematics Education, Başkent University, Bağlıca, 06490 Ankara, Turkey haydares@baskent.edu.tr #### **ABSTRACT** In this paper, the concepts of soft fuzzy ε_r -Volterra spaces and soft fuzzy ε_p -Volterra spaces are introduced and studied. We will discuss several characterizations of those spaces. ## Indexing terms/Keywords Soft fuzzy topology; soft fuzzy Volterra spaces; soft fuzzy weakly Volterra spaces; soft fuzzy ε_r -Volterra spaces; soft fuzzy ε_r -Volterra spaces. ## **Academic Discipline And Sub-Disciplines** Mathematics; Topology. #### SUBJECT CLASSIFICATION Mathematics Subject Classification; 54A40, 03E72. #### 1. INTRODUCTION Zadeh introduced the fundamental concepts of fuzzy sets in his classical paper [12]. Chang in [1] introduced and developed the concept of fuzzy topological spaces. Since then much attention has been paid to generalize the basic concepts of general topology in fuzzy setting and thus a modern theory of fuzzy topology has been developed. The concept of Volterra spaces have been studied extensively in classical topology in [3,4]. The concepts of fuzzy Volterra spaces, fuzzy weakly Volterra spaces and generalized fuzzy Volterra spaces in fuzzy topological spaces are introduced and studied by the authors in [5,6]. The concept of soft fuzzy topological space is introduced by I.U.Tiryaki [10]. The concept of almost P-spaces and almost GP-spaces in soft fuzzy setting was introduced by Es [2]. In this paper, in section 3, the concepts of soft fuzzy \mathcal{E}_p -Volterra spaces are introduced and studied. #### 2. PRELIMINARIES We introduce some basic notions and results that are used in the sequel. **Definition 2.1.** [8] Let (X,τ) be a fuzzy topological space. Let λ be any fuzzy set. Then λ is said to be fuzzy G_{δ} set if $\lambda = \bigwedge_{i=1}^{\infty} \mu_i$ where each μ_i is fuzzy open set. The complement of a fuzzy G_{δ} set is fuzzy F_{σ} . **Definition 2.2.** [10] Let X be a set, μ be a fuzzy subset of X and $M \subseteq X$. Then the pair (μ, M) will be called a soft fuzzy subset of X. The set of all soft fuzzy subsets of X will be denoted by SF(X). **Proposition 2.3.** [10] If $(\mu_j, M_j)_{j \in J} \in SF(X)$, then the family $\{(\mu_j, M_j) | j \in J\}$ has a meet, that is greatest lower bound, in $(SF(X), \sqsubseteq)$, denoted by $\prod_{j \in J} (\mu_j, M_j)$ such that $\prod_{j \in J} (\mu_j, M_j) = (\mu, M)$ where $$\mu(x) = \bigwedge_{j \in J} \mu_j(x)$$, $\forall x \in X$, $$M = \bigcap_{j \in J} M_j$$. **Definition 2.4.** [10] Let X be a non-empty set and the soft fuzzy sets A and B in the form, $$A = \{(\mu, M) | \mu(x) \in I^X, \forall x \in X, M \subseteq X\}$$ $$B = \{(\lambda, N) | \lambda(x) \in I^X, \forall x \in X, N \subseteq X\}$$ Then, (i) $$A \subseteq B \Leftrightarrow \mu(x) \le \lambda(x), \forall x \in X, M \subseteq N$$. (ii) $$A = B \Leftrightarrow \mu(x) = \lambda(x), \forall x \in X, M = N$$. (iii) $$A' \Leftrightarrow 1 - \mu(x), \forall x \in X, X \setminus M$$. - (iv) $A \sqcap B \Leftrightarrow \mu(x) \land \lambda(x), \forall x \in X \text{ and } M \cap N, \text{ for all } (\mu, M), (\lambda, N) \in SF(X).$ - (v) $A \sqcup B \Leftrightarrow \mu(x) \lor \lambda(x), \forall x \in X \text{ and } M \cup N, \text{ for all } (\mu, M), (\lambda, N) \in SF(X).$ ### **Definition 2.5.** [10] $(0,\emptyset) = \{(\lambda, N) | \lambda = 0, N = \emptyset\}$ $(1,X) = \{(\lambda, N) | \lambda = 1, N = X\}$ **Definition 2.6.** [11] For $(\mu, M) \in SF(X)$ the soft fuzzy set $$(\mu, M)' = (1 - \mu, X \setminus M)$$ is called the complement of (μ, M) . **Definition 2.7.** [10] A subset $\tau \subseteq SF(X)$ is called an SF-topology on X if (i) $(0,\emptyset)$ and $(1,X) \in \tau$ (ii) $$(\mu_j, M_j) \in \tau, j = 1, 2, ..., n \Rightarrow \prod_{j=1}^n (\mu_j, M_j) \in \tau$$ (iii) $(\mu_j, M_i), j \in J \Rightarrow \coprod_{j \in I} (\mu_j, M_j) \in \tau$. The elements of τ are called soft fuzzy open, and those of $\tau' = \{(\mu, M) | (\mu, M)' \in \tau\}$ soft fuzzy closed. If τ is *SF*-topology on *X* we call the pair (X,τ) *SF*-topological space (in short SFTS). **Definition 2.8.** [10] The closure of a soft fuzzy set (μ, M) will be denoted by $\overline{(\mu, M)}$. It is given by $$\overline{(\mu, M)} = \prod \{(\gamma, N) | (\mu, M) \subseteq (\gamma, N), (\gamma, N) \in \tau \}.$$ Likewise the interior is given by $$(\mu, M)^{\circ} = \sqcup \{(\gamma, N) | (\gamma, N) \in \tau, (\gamma, N) \sqsubseteq (\mu, M)\}.$$ Note: $\overline{(\mu,M)} = cl(\mu,M)$ and $(\mu,M)^{\circ} = int(\mu,M)$. **Definition 2.9.** [11] Let (X,τ) be a soft fuzzy topological space. Let (λ, N) be a soft fuzzy set in (X,τ) . Then - (i) (λ, N) is said to be soft fuzzy regular open if $(\lambda, N) = int(cl(\lambda, N))$. - (ii) (λ, N) is said to be soft fuzzy regular closed if $(\lambda, N) = cl(int(\lambda, N))$. **Definition 2.10.** [7] A fuzzy topological space (X,τ) is called a fuzzy P-space if countable intersection of fuzzy open sets in (X,τ) is fuzzy open. That is, every non-zero fuzzy G_{δ} set in (X,τ) , is fuzzy open in (X,τ) . **Definition 2.11.** [8] A fuzzy topological space (X,τ) is called a fuzzy almost P-space if for every non-zero fuzzy G_{δ} set λ in (X,τ) , $int(\lambda) \neq 0$ in (X,τ) . **Definition 2.12.** 8] A fuzzy topological space (X,τ) is called a weak fuzzy P-space if the countable intersection fuzzy regular open sets in (X,τ) is a fuzzy regular open set in (X,τ) . **Definition 2.13.** [2] A soft fuzzy topological space (X,τ) is called a soft fuzzy weak P-space if the countable intersection soft fuzzy regular open sets in (X,τ) is a soft fuzzy regular open set in (X,τ) . That is, $\prod_{i=1}^{\infty} (\lambda_i, M_i)$ is a soft fuzzy regular open in (X,τ) , where (λ_i, M_i) 's are soft fuzzy regular open sets in (X,τ) . **Definition 2.14.** [2] A soft fuzzy topological space (X,τ) is called a soft fuzzy P-space if countable intersection of soft fuzzy open sets in (X,τ) is soft fuzzy open. That is, every non-zero soft fuzzy G_{δ} set in (X,τ) is soft fuzzy open in (X,τ) . **Definition 2.15.** [2] A soft fuzzy topological space (X,τ) is called a soft fuzzy almost P-space if for every non-zero soft fuzzy G_{δ} set in (X,τ) , $int(\lambda,M) \neq (0,\emptyset)$ in (X,τ) . **Definition 2.16.** [2]A soft fuzzy set (λ, M) in a soft fuzzy topological space (X, τ) is called a soft fuzzy nowhere dense if there exists no non-zero soft fuzzy open set (μ, N) in (X, τ) such that $(\mu, N) \equiv cl(\lambda, M)$. That is, $int(cl(\lambda, M)) = (0, \emptyset)$. **Definition 2.17.** [2] A soft fuzzy set (λ, M) in a soft fuzzy topological space (X, τ) is called a soft fuzzy dense if there exists no soft fuzzy closed set (μ, N) in (X, τ) such that $(\lambda, M) \sqsubseteq (\mu, N) \sqsubseteq (1, X)$. That is, $cl(\lambda, M) = (1, X)$. **Definition 2.18.** [2] A soft fuzzy topological space (X,τ) is called a soft fuzzy submaximal space if for each soft fuzzy set (λ, M) in (X,τ) such that $cl(\lambda, M) = (1,X)$, then (λ, M) in (X,τ) . **Definition 2.19.** [2] A soft fuzzy topological space (X,τ) is called a soft fuzzy almost GP-space if $int(\lambda, M) \neq (0, \emptyset)$, for each non-zero soft fuzzy dense and soft fuzzy G_{δ} set (λ, M) in (X,τ) . That is, (X,τ) is a soft fuzzy almost GP-space if every non-zero soft fuzzy G_{δ} set in (X,τ) with $cl(\lambda, M) = (1,X)$, $int(\lambda, M) \neq (0,\emptyset)$. **Definition 2.20.** [2] A soft fuzzy set (λ, M) in (X, τ) is called a soft fuzzy first category set if $(\lambda, M) = \bigsqcup_{i=1}^{\infty} (\lambda_i, M_i)$, where (λ_i, M_i) 's are soft fuzzy nowhere dense in (X, τ) . #### 3. ON SOFT FUZZY VOLTERRA SPACES **Definition 3.1.** Let (λ, M) be a soft fuzzy first category set in soft fuzzy topological space (X, τ) . Then $(1, X) - (\lambda, M)$ is called a soft fuzzy residual set in (X, τ) . **Definition 3.2.** A SFTS (X,τ) is called a soft fuzzy \mathcal{E}_r -Volterra space if $cl\left(\prod_{i=1}^n (\lambda_i, M_i)\right) = (1,X)$, where (λ_i, M_i) 's are soft fuzzy dense and soft fuzzy residual sets in (X,τ) . **Proposition 3.3.** If the SFTS (X,τ) is a soft fuzzy \mathcal{E}_{r} -Volterra space, then $int(\sqcup_{i=1}^n(\lambda_i,M_i))=(0,\emptyset)$, where the soft fuzzy set (λ_i,M_i) 's are soft fuzzy first category sets such that $int(\lambda_i,M_i)=(0,\emptyset)$ in (X,T). **Proof.** Let (λ_i, M_i) 's (i=1,2,...,n) be soft fuzzy first category sets such that $int(\lambda_i, M_i) = (0, \emptyset)$ in (X, τ) . Then $((1,X) - (\lambda_i, M_i))$'s are soft fuzzy residual sets such that $cl((1,X) - (\lambda_i, M_i)) = (1,X)$ in (X,τ) . Since (X,τ) is a soft fuzzy \mathcal{E}_r -Volterra space, $cl\left(\prod_{i=1}^n\left((1,X)-(\lambda_i,M_i)\right)\right)=(1,X)$. Then $cl\left((1,X)-\bigsqcup_{i=1}^n(\lambda_i,M_i)\right)=(1,X)$ and hence (1,X)- $int\left(\bigsqcup_{i=1}^n(\lambda_i,M_i)\right)=(1,X)$. Therefore, we have $int(\bigsqcup_{i=1}^n(\lambda_i,M_i))=(0,\emptyset)$, where (λ_i,M_i) 's are soft fuzzy first category sets such that $int(\lambda_i,M_i)=(0,\emptyset)$. **Proposition 3.4.** Let (X,T) be a soft fuzzy $\mathcal{E}_{\mathbf{r}}$ -Volterra space. Then (X,T) is a soft fuzzy Volterra space. **Proof.** Let (λ_i, M_i) 's (i=1,2,...,n) be soft fuzzy dense and soft fuzzy $G_{\bar{0}}$ sets in (X,τ) . Then, (λ_i, M_i) 's are soft fuzzy residual sets in (X,τ) . This implies that (λ_i, M_i) 's are soft fuzzy dense and soft fuzzy residual sets in (X,τ) . Since (X,τ) is a soft fuzzy \mathcal{E}_{r} -Volterra space $cl\left(\prod_{i=1}^{n}(\lambda_{i},M_{i})\right)=(1,X)$. Hence (X,T) is a soft fuzzy Volterra space. **Proposition 3.5.** If each soft fuzzy nowhere dense set is a soft fuzzy closed set in a soft fuzzy Volterra space (X,τ) , then (X,τ) is a soft fuzzy \mathcal{E}_{r} -Volterra space. **Proof.** Let (λ_i, M_i) 's (i=1,2,...,n) be soft fuzzy dense and soft fuzzy residual sets in (X,τ) . Since (λ_i, M_i) 's are soft fuzzy residual sets, $((1,X)-(\lambda_i,M_i))$'s are soft fuzzy first category sets in (X,τ) . Now $((1,X)-(\lambda_i,M_i))=\sqcup_{j=1}^{\infty} (\mu_{ij},N_{ij})$ \in T, where (μ_{ij},N_{ij}) 's are soft fuzzy nowhere dense sets in (X,τ) . From the hypothesis, the soft fuzzy nowhere dense sets (μ_{ij},N_{ij}) 's are soft fuzzy closed sets and hence $((1,X)-(\lambda_i,M_i))$'s are soft fuzzy F_0 sets in (X,τ) . Therefore (λ_i,M_i) 's are soft fuzzy F_0 sets in (X,τ) . Since (X,τ) is a soft fuzzy Volterra space, $c(\prod_{i=1}^n (\lambda_i,M_i)) = (1,X)$. Hence (X,τ) is a soft fuzzy $\mathcal{E}_{\mathbf{r}}$ -Volterra space. **Definition 3.6.** A SFTS (X,τ) is called a soft fuzzy nodec space if every non-zero soft fuzzy nowhere dense set (λ, M) is soft fuzzy closed in (X,τ) . That is, if (λ, M) is a soft fuzzy nowhere dense set in (X,τ) , then $((1,X)-(\lambda,M))\in \tau$. **Proposition 3.7.** If the SFTS (X,τ) is a soft fuzzy Volterra space and soft fuzzy nodec space, then SFTS (X,τ) is a soft fuzzy \mathcal{E}_r -Volterra space. **Proof.** Let (X,τ) be a soft fuzzy Volterra space and soft fuzzy nodec space and (λ_i, M_i) 's (i=1,2,...,n) be soft fuzzy dense and soft fuzzy residual sets in (X,τ) . Since (λ_i, M_i) 's are soft fuzzy residual sets's are soft fuzzy first category sets in (X,τ) . Now $(1,X)-(\lambda_i, M_i)=\sqcup_{j=1}^{\infty}(\mu_{ij}, N_{ij})$, where (μ_{ij}, N_{ij}) 's are soft fuzzy nowhere dense sets in (X,τ) . Since (X,τ) is a soft fuzzy nodec space, soft fuzzy nowhere dense sets (μ_{ij}, N_{ij}) 's are soft fuzzy closed in (X,τ) . By the Proposition 3.5, (X,τ) is a soft fuzzy $\mathcal{E}_{\mathbf{r}}$ -Volterra space. **Proposition 3.8.** If the SFTS (X,τ) is a soft fuzzy Volterra space and soft fuzzy submaximal space, then (X,τ) is a soft fuzzy \mathcal{E}_r -Volterra space. Proof. Obvious. **Proposition 3.9.** If the SFTS (X,T) is a soft fuzzy \mathcal{E}_r -Volterra space and soft fuzzy D-Baire space, then $int(\bigsqcup_{i=1}^n (\lambda_i, M_i)) = (0, \emptyset)$, where the (λ_i, M_i) 's are soft fuzzy first category sets in (X,T). **Proof.** Let (X,τ) be a soft fuzzy \mathcal{E}_{r} -Volterra space and soft fuzzy D-Baire space and (λ_{i},M_{i}) 's (i=1,2,3,...,n) are soft fuzzy first category sets in (X,τ) . Since (X,τ) is soft fuzzy D-Baire space, the soft fuzzy first category sets (λ_{i},M_{i}) 's are soft fuzzy nowhere dense sets in (X,τ) and hence $((1,X)-(\lambda_{i},M_{i}))$'s are soft fuzzy dense sets in (X,τ) . Then $((1,X)-(\lambda_{i},M_{i}))$'s are soft fuzzy dense and soft fuzzy residual sets in (X,τ) . By the hypothesis, $cl\left(\prod_{i=1}^{n}\left((1,X)-(\lambda_{i},M_{i})\right)\right)=(1,X)$. This implies that $cl\left((1,X) - \bigsqcup_{i=1}^n (\lambda_i, M_i)\right) = (1,X) - int\left(\bigsqcup_{i=1}^n (\lambda_i, M_i)\right) = (1,X)$. Therefore $int\left(\bigsqcup_{i=1}^n (\lambda_i, M_i)\right) = (0,\emptyset)$, where (λ_i, M_i) 's are soft fuzzy first category sets in (X,τ) . **Definition 3.10.** Let (X,τ) be a SFTS. Then (X,τ) is called a soft fuzzy Baire space if $int((\sqcup_{i=1}^{\infty}(\lambda_i,M_i))=(0,\emptyset)$, where (λ_i,M_i) 's are soft fuzzy nowhere dense sets in (X,τ) . **Proposition 3.11.** If $\bigsqcup_{i=1}^{\infty} (\lambda_i, M_i)$, where the (λ_i, M_i) 's are soft fuzzy nowhere dense sets, is a soft fuzzy nowhere dense set in a soft fuzzy Baire space (X,τ) , then (X,τ) is a soft fuzzy \mathcal{E}_{rr} -Volterra space. **Proof.** The proof is similar to Proposition 3.7. **Proposition 3.12.** If each soft fuzzy first category set is a soft fuzzy closed set in a soft fuzzy Baire space (X,τ) , then (X,τ) is a soft fuzzy \mathcal{E}_{r} -Volterra space. **Proof.** Let (X,T) be a soft fuzzy Baire space and (λ_i,M_i) 's (i=1,2,3,...,n) are soft fuzzy dense and soft fuzzy residual sets in (X,T). Since (λ_i,M_i) 's are soft fuzzy residual sets, $((1,X)-(\lambda_i,M_i))$'s are soft fuzzy first category sets in (X,T). By the hypothesis, the soft fuzzy first category sets $((1,X)-(\lambda_i,M_i))$'s are soft fuzzy closed sets in (X,T) and hence (λ_i,M_i) 's are soft fuzzy open sets in (X,T). Since (λ_i,M_i) 's are soft fuzzy dense and soft fuzzy open sets in (X,T), $((1,X)-(\lambda_i,M_i))$'s are soft fuzzy nowhere dense sets in (X,T). Since (X,T) is a soft fuzzy Baire space, $int(\sqcup_{i=1}^n \left((1,X)-(\lambda_i,M_i)\right)) \equiv int(\sqcup_{i=1}^\infty \left((1,X)-(\lambda_i,M_i)\right)) = (0,\emptyset)$. That is (1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X)=(1,X) **Definition 3.13.** A SFTS (X,τ) is called a soft fuzzy ε_p - Volterra space if $cl(\prod_{i=1}^n (\lambda_i, M_i)) = (1,X)$, where (λ_i, M_i) 's are soft fuzzy pre-open and soft fuzzy G_δ sets in (X,τ) . **Proposition 3.14.** If the SFTS (X,T) is a soft fuzzy \mathcal{E}_p - Volterra space, then $Int((\sqcup_{i=1}^n (\lambda_i, M_i)) = (0,\emptyset))$, where (λ_i, M_i) 's are soft fuzzy pre-closed and a soft fuzzy F_5 sets in (X,T). **Proof.** Let (λ_i, M_i) 's (i=1,2,3,...,n) be soft fuzzy pre-closed and soft fuzzy F_6 sets in (X,τ) . Then $((1,X)-(\lambda_i,M_i))$'s are soft fuzzy pre-open and soft fuzzy G_δ sets in (X,τ) . By the hypothesis, $cl\left(\prod_{i=1}^n\left((1,X)-(\lambda_i,M_i)\right)\right)=(1,X)$. Then $cl\left((1,X)-(\lambda_i,M_i)\right)=(1,X)-int\left(\sqcup_{i=1}^n(\lambda_i,M_i)\right)=(1,X)$. Therefore, we have $int(\sqcup_{i=1}^n(\lambda_i,M_i))=(0,\emptyset)$ where (λ_i,M_i) 's (i=1,2,3,...,n) be soft fuzzy pre-closed and soft fuzzy F_δ sets in (X,τ) . **Proposition 3.15.** If the SFTS (X,τ) is a soft fuzzy ε_p - Volterra space, then (X,τ) is a soft fuzzy Volterra space. **Proof.** Let (λ_i, M_i) 's (i=1,2,3,...,n) be soft fuzzy dense and soft fuzzy G_δ sets in (X,τ) . Since (λ_i, M_i) 's are soft fuzzy dense sets, $cl(\lambda_i, M_i) = (1,X)$. Now int $(cl(\lambda_i, M_i)) = (1,X)$. Then $(\lambda_i, M_i) \equiv int(cl(\lambda_i, M_i))$. Since (X,τ) is a soft fuzzy ε_p -Volterra space and (λ_i, M_i) 's are soft fuzzy pre-open and soft fuzzy G_δ sets in (X,τ) , $cl(\prod_{i=1}^n (\lambda_i, M_i)) = (1,X)$, where (λ_i, M_i) 's are soft fuzzy dense and soft fuzzy G_δ sets in (X,τ) . Hence (X,τ) is a soft fuzzy Volterra space. **Proposition 3.16.** If $preint(\bigsqcup_{i=1}^{n}(\lambda_i, M_i)) = (0, \emptyset)$ where (λ_i, M_i) 's are soft fuzzy pre-closed sets in a soft fuzzy topological space (X,T), then (X,T) is a soft fuzzy \mathcal{E}_n - Volterra space. **Proof.** Let (λ_i, M_i) 's (i=1,2,3,...,n) be soft fuzzy pre-open and soft fuzzy G_δ sets in (X,T). Then $((1,X)-(\lambda_i,M_i))$'s are soft fuzzy pre-closed in (X,T). By the hypothesis , preint($\bigcup_{i=1}^n ((1,X)-(\lambda_i,M_i)))=(0,\emptyset)$. This implies that $(1,X)-precl(\bigcup_{i=1}^n (\lambda_i,M_i))=(0,\emptyset)$ and hence $precl(\prod_{i=1}^n (\lambda_i,M_i))=(1,X)$. Since $precl(\prod_{i=1}^n (\lambda_i,M_i))=cl(\prod_{i=1}^n (\lambda_i,M_i))$, we have $cl(\prod_{i=1}^n (\lambda_i,M_i))=(1,X)$. Therefore $cl(\prod_{i=1}^n (\lambda_i,M_i))=(1,X)$, where (λ_i,M_i) 's are soft fuzzy pre-open and soft fuzzy G_δ sets in (X,T). Hence (X,T) is a soft fuzzy $\mathcal{E}_{\mathcal{D}}$ - Volterra space. **Proposition 3.17.** If $precl(\prod_{i=1}^{n}(\lambda_i, M_i)) = (1, X)$, where (λ_i, M_i) 's are soft fuzzy pre-open sets in a soft fuzzy topological space (X, T), then (X, T) is a soft fuzzy ε_n - Volterra space. **Proof.** The proof is similar to Proposition 3.16. **Proposition 3.18.** If $(\lambda, M) = \bigsqcup_{i=1}^{n} (\lambda_i, M_i)$, where (λ_i, M_i) 's are soft fuzzy pre-closed sets, is a soft fuzzy nowhere dense set in a soft fuzzy topological space (X, T), then (X, T) is a soft fuzzy ε_n . Volterra space. **Proof.** Suppose that $(\lambda, M) = \bigsqcup_{i=1}^n (\lambda_i, M_i)$, where (λ_i, M_i) 's are soft fuzzy pre-closed sets, and (λ, M) is a soft fuzzy nowhere dense sets in (X,T). Then $preint(precl(\lambda, M)) = (0,\emptyset)$. Since $preint(\lambda, M) \equiv preint(precl(\lambda, M))$, we have $preint(\lambda, M) = (0,\emptyset)$. Then $preint(\bigsqcup_{i=1}^n (\lambda_i, M_i)) = (0,\emptyset)$, where (λ_i, M_i) 's are soft fuzzy pre-closed sets in (X,T). Hence by Proposition 3.16, (X,T) is a soft fuzzy $\mathcal{E}_{\mathcal{D}}$ - Volterra space. **Proposition 3.19.** If each soft fuzzy pre-closed set is a soft fuzzy nowhere dense sets in soft fuzzy \mathcal{E}_r -Volterra space (X,τ) , then (X,τ) is a soft fuzzy \mathcal{E}_p - Volterra space. Proof. Obvious. **Proposition 3.20.** If a soft fuzzy ε_p - Volterra space (X,τ) is a soft fuzzy submaximal space, then (X,τ) is a soft fuzzy ε_p -Volterra space. **Proof.** Immediate from the definitions. **Proposition 3.21.** If each soft fuzzy nowhere dense set is soft fuzzy closed set in a soft fuzzy ε_p . Volterra space (X,τ) , then (X,τ) is a soft fuzzy ε_r . Volterra space. **Proof.** It is clear from the definitions. **Proposition 3.22.** If a soft fuzzy ε_p - Volterra space (X,τ) is a soft fuzzy nodec space, then (X,τ) is a soft fuzzy ε_r - Volterra space. **Proof.** Let (X,T) be a soft fuzzy ε_p - Volterra space and a soft fuzzy nodec space. Since (X,T) is a soft fuzzy nodec space, each soft fuzzy nowhere dense set is a soft fuzzy closed set in (X,T). By Proposition 3.21, (X,T) is a soft fuzzy ε_r - Volterra space. #### REFERENCES - 1. Chang, C. L., Fuzzy topological spaces, J.Math.Anal.,Vol. 24, 1968, 182-190. - 2. Eş,A.H., On soft fuzzy almost P-spaces, International Journal of Mathematical Archive,7(5)(2016), 1-5. - 3. Gauld, D., Greenwood, S., Piotrowski, Z., On Volterra spaces II, Ann. New York Acad. Sci., 806(1996), 169-173. - 4. Gauld, D., Piotrowski, Z., On Volterra spaces, Far East J.Math.Sci., 1(1993),209-214. - 5. Thangaraj, G., Soundararajan,S., Generalized fuzzy Volterra spaces, Annals of Fuzzy Mathematics and Informatics , 11(4)(2016),633-644. - 6. Thangaraj, G., Soundararajan, S., On fuzzy Volterra spaces, J. Fuzzy Math., 21(4)(2013), 895-904. - 7. Thangaraj, G., Anbazhagan, C., Some remarks on fuzzy P-spaces, Gen.Math.Notes, 26(1) (2015), 8-16. - 8. Thangaraj, G., Anbazhagan, C., Vivakanandan, P., On fuzzy P-spaces, weak fuzzy P-spaces and fuzzy almost P-spaces, Gen.Math.Notes, 18(2) (2013), 128-139. - 9. Thangaraj, G., Anbazhagan, C., On fuzzy almost GP-spaces, Annals of Fuzzy Mathematics and Informatics, 10(5) (2015), 727-736. - Tiryaki, I.U., Fuzzy sets over the posets I, Hacettepe Journal of Mathematics and Statistics, 37(2) (2008), 143-166. - 11. Visalakshi, V., Uma, M.K., Roja, E., On soft fuzzy G_{δ} pre continuity in soft fuzzy topological space, Annals of Fuzzy Mathematics and Informatics, 8(6) (2014), 921-939. - 12. Zadeh, L.A., Fuzzy sets, Information and Control, 8 (1965), 338-353.