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ABSTRACT

During the last few years, a great deal attention has been focused on lasso and Dantzig selector in high-dimensional linear
regression under a sparsity scenario, that is, when the number of variables can be much larger than the sample size. The
authors [4][11][12] derived sparsity oracle inequalities of lasso and Dantzig selector for the prediction risk and bounds on the

V4 p(lS p= 2) estimation loss under a variety of assumptions. In this paper, we take the restricted eigenvalue conditions,

compatibility condition and UDP condition for examples to show oracle inequalities about lasso and Dantzig selector for high-
dimensional linear regression.
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1. INTRODUCTION

In many modern applications,one has to deal with very large datasets. Regression problems may involve a large number of
covariates, possibly larger than the sample size. In this situation, a major issue lies in dimension reduction, which can be
performed through the selection of a Small amount of relevant covariates. For this purpose, numerous regression methods

has been proposed in the literature, ranging from the classical information criteria such as CP ,AIC, and BIC to the more

recent regularization-based techniques such as the |l penalized least square estimator, known as the lasso and Dantzig

selector[12]. Their popularity might be due to the fact that these techniques are computationally tractable, even for high-
dimensional data when the number of covatiates P is large. Besides, there are much regularization schemes for high-

dimensional regression, for example NNLS is a very simple and effective regularization technique for a certain class of high-
dimensional regression problems[6]. Consider the high-dimensional linear model where one observes a vector Y € R" such
that

y=Xf+¢& (1)

Where ﬂ € R® is an unknown target vector one would like to recover, X € R™P is called design matrix with possibly
much fewer rows than columns, N << P, and &€ € R" is a random error term that contains all perturbations of the
experiment.

A standard hypothesis in high-dimensional regression [14] requires that one can provide a constant /12 eR, as

small as possible, such that

HXTgHOO <A @

With an overwhelming probability. In the case of n-multivariate Gaussian distribution, it is known that Z,g = O(O'm/ Iog p),
where o, > 0 denotes the standard deviation of the noise; (see Lemma A.1.[1])

In general terms, we are interested in accurately estimating the target vector ,3 and X,B from few and corrupted

observations. During the past decade, this challenging issue has attracted a lot of attention among the statistical

society. In 1996, Tibshirani introduced the lasso(see[13]):

AN

'
B, =arg mln{EHY— XAl +1£,||,B||1} ®)
BeRP

Where /1[ >0 is some tuning constant. Two decades later, this estimator continues to play a key role in our understanding

of high-dimensional inverse problems. Its popularity may be due to the fact that this estimator is computational feasibility.
Recently, Candes and Tao [12]have introduced the the Dantzig selector as

B, :arg rRr:in||,B||l st HxT(y_ xﬂ]‘w <A @

Where /1d > Qis a tuning parameter. It is known that it can be recasted as a linear program. Hence , it is also
computationally tractable. Interestingly, both the lasso and the Dantzig selector can be seen as orthogonal projections of 0

into DC(S): {ﬂ eRP, HXT (y — Xﬁj‘ < S},using an /, distance for the Dantzig selector and /, distance for the lasso.

So we also can investigate the properties of estimators defined as projections on DC(S) using general distances[5]. Based

on the linear model, we know that these estimators not only rely on the sparsity of unknown vector and the tuning parameter,
but also rely on the distribution assumptions of random errors. In recent years, authors has out forward new methods to
improve above problems. Such as the method in [2] allows for very weak distribution assumptions and does not require the
knowledge of the variance of random errors. The result in [3] tells us the lasso prediction works well for any degree of
correlations if suitable tuning parameters are chosen.

There are several objectives may be considered by the statistician when we deal with the model given by

Equation(1). Usually, we consider two specific objectives: prediction and estimation in the high-dimensional setting.
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A

The reconstruction of the signal Xﬂ is first considered. The quality of the reconstruction with an estimator ,B is

2
A

X f-Xp

often measured with the squared error , hamely prediction risk. Another thinking is that the estimator

2

A
B iscloseto [ interms of the £, distance for 0 >1,namely bounds on the / p(lS p< 2) estimation loss.

In this paper, under a sparsity case, we introduce some results about lasso and Dantzig selector about prediction

risk and estimation loss for high-dimensional linear regression with noiseless observations.

2.DEFINITIONS AND NOTATIONS

Unless stated otherwise, all through this paper we will assume that & ~ N (O, ol n) o?>0.The analysis of regularized

regression methods for high-dimensional data usually involves a sparsity assumption on ﬂ .Let

= Z I(ﬁ-¢0) = |J(,B} denote the number of nonzero coordinates of ,6’ , Where I{} denotes the indicator function
- ] .

J (ﬁ): {j € {1,..., P}: ﬁj # O} and |J| denotes the cardinality of J . The value M (ﬂ) characterizes the sparsity of the
vector f3. The smaller M (ﬂ) the sparser 3. Foravector & € R” and a subset J — {1,..., P} , we denote by J; the

vectorin R that has the same coordinates as & on J and zero coordinates on the complement J € of J For any

q>1,aeRP" denote ||a||2 :i|ai|q ||a||w = max|a| the K and /_ norms, respectively.

i1 1P

3.RESULTS ABOUT LASSO AND DANTZIG SELECTOR UNDER DIFFERENT
ASSUMPTIONS

Now we will show some results about lasso and Dantzig selector in high-dimensional linear regression under different
assumptions on X .

3.1 X satisfies RE(s,c,) [4]

Assumption RE(S, Co) for some integer L<S< P C, >0, the following condition holds:

x(s,c,)= min_ ~ min %3], >0 (5)
'S e, 520 ” ”
e = Joclsanlesly "

There is an improvement of the restricted eigenvalue condition, it replace the ||5J ||2 with ||5J ||l ([10])
Result 1 assume X satisfies RE(S, Co) and |J (ﬁ) < S consider the lasso defined by (3), we have

(ﬂo +2 X1+ c,)
) x*(s,C,)
2(4, + 2 Ja+c Ws

’((S’Co)

Proof let h =IBAL—ﬂE RP

ﬂL_IB

By optimality, we have
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1 AP
E‘y_XﬂL +4 ﬂ
2

v

1
< ly-xpl: + 21,
It yield

1
SIXRl (X Te,h)+ <Bl;

2|8,
1
Using (2) we can get<XT8, h> < HXTEHOO”h”l < /12||h||l

using the triangle inequality ”ﬂ”l -

A
B <
1

=nl,
1

+ Al < <2+ 2,

1
Then XN < 4,18, = 4, |,

weget [, =],

<(+co)hy [, <@+, Ws|hy

Here X satisfies RE(S,CO) S0 we can get

[Xnl,
2 > x(s,c,)>0
Il 0
Xh
It equals to ||hJ ||2 = J(S,!’E) or ||Xh||2 > l((S,COMhJ ||2
Xh
So —||Xh|| <[+ 2, Jatc Ws|hy[, < (2 +2, N1+, Ws IX G (”: )
0

1
or k(. ), < IXhII <@+ 2, Jarco Wslhy|,

It equals that ||Xh||2 (/1 +/15X](':+Co)\/_ . ||h ” (ﬁ + 4, 51:;:0)\/_
K‘ 0 K ,

I, < @+ ¢, Ws|hy |, < 278+ 2 Ja+c,)'s

So we can get | 17 K'Z(S, Co)

Result 2 assume X satisfies RE (S, Co) and |J (ﬂ) < 'S consider the Dantzig selector defined by (4), we have

A

i < LB +2 )1+ fs

) (S Co)
< (ﬂd +22X1+ co s

2 K(Saco)

N

X ﬂD_Xﬂ

Proof Leth=f,— feR"
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Recall that HXTgH <20, ityields
o0

||Xh||§sMXTXhumnhnf\x <(i+ 20,

T(y—XﬁDj+ XT(Xﬁ—y){

<(L+co )y, < 1+co)\/_||h I,

Here X satisfies RE (S, Co) so we can get

We get ”h”

> k(s,,)>0
IIhJIZ °
Xh
It equals to ||hJ ||2 < IE(S (”:2) or ||Xh||2 > K(S,ComhJ ||2
IR0
Xh
so [Xh[2 < (22 + A, Ja+ coWs|h, |, < (2 + 4, JL+¢, Ws J(S ﬂz)
10
" (s o [} < X[ < (45 + 2, Ja+ e s,
0 0
cone < G2 LS o ) 8 ii“s(Xle? 3
170
A+2 1+c
I, <@ eln |, < B2 M)

So we can get

x*(s,,)
3.2 xsatisfies compatibility condition [8]

Amatrix X € R™P satisfies the Compatibility condition (S, Co) if and only if

Xh
#(S,c,)= min \/»” . >0 (6)

Jcfl,..p} §¢0 ” ”

Result 1 assume that X satisfies the Compatibility condition (S, Co) and |J (ﬁ) <'S consider the lasso defined by (3), we

have
v 20844, Jawc, s
e Y
A 2(4, + 2 J1+c, Ws
X _ < 4 n
x| < #(5.C,)

Proof let h:ﬂAL—,BE RP

By optimality, we have
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1 AP
—‘y—XﬂL +4
2 2

A
Al

1
< ly-xgl;+ 414,
i
It yield

1
S X0l (X7 2. h)+ <A,

A\Be
1

Using (2) we can get<XT6‘, h> < HXTEHOO”hnl < ﬂg”h”l

using the triangle inequality ||,3|| = ||h||

+ A4l < (2 +4, o]

1

1 A
hen X[, < A1, - 4 4.
1

weget [, =,

<(L+c, ), I,

Here X satisfies Compatibility condition (S ! Co) S0 we can get

NEILS P

[y
[Xh], _ Vs
It equals to |h || < \/¢;S . ) ¢(£ C”)
0 0
X[, > 9. ol _ #05.co Ju

N Js

Xh
S0 %||Xh||§ <(B 42, ey )|, < (2 +4, )(1+c0)£” :

#(S.¢,)

1 ¢%(s,c 1
or 5%”“ I g_||xh||§ < (22 + 2, Y1+ )y

2(10 + 4, )(1+c0)f o[ < 2(1 + 4, Y1+, s
K 5 Co) T ¢2(S,CO)

It equals that ||Xh||2

2(2 + 4, N1+c, s
#°(s.¢)

Result 2 assume X satisfies Compatibility condition (S, Co)and |J (ﬂ) <'S consider the Dantzigselector defined by (4), we

<(@+c)h, | <

So we can get ||h||1

have

A+ B Jarc Ws
T 4se)

HX ﬂAD_X
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v (B4 A S, s
Pom P = g scy)

Proof Leth=f,— e R’

Recall that HXTE;H < /12, it yields

||Xh||;ngTXhHw||h||1=|xT <G+ 20

(y—xﬁo]+ XT(Xﬁ—y)L

We get ||h||

<(1+c )y,

Here X satisfies Compatibility condition (S ) Co) SO we can get

Jal,
2860

Jalxnl, _ s|xh,
#(S.c;) — #(S.c,)

”Xh” > ¢(S,Col|h3 ”1 > ¢(S,CO th ”1
o © 4 s

It equals to ||hJ ||1 <

So [ XhE < (22 + 2, JL+co )Yy |, < (2 + 2, N1 +¢, Ws X,

#(s,¢,)

or ZEEINE Cpye < (i3 4o

It equals that ||Xh||2 (/1 4 X1+C0)\/_ or ||h || < (l + 4 Xl"' CO
#(s.¢) #°(s.¢)
(2 + 2, JL+c, s
#°(s.,)
based on the definition of Compatibility condition (S , Co) and the restricted eigenvalue condition, we can deduce that

¢(S, CO)Z RE(S, CO), )

|h||1 < (1+ Co ]|hJ "1 <

So we can get |

x|, < (/1 + 2 JL+Co W's (/10 T 2 L+ WS
2

#s.c,) x(s,C,)
(242, N1+cy)s (20 + 4 L+ Gy )s
ML ) T )

we can proof that the compatibility condition is the weaker than the restricted eigenvalue condition.(see[ 9])
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3.3 xsatisfies UDP(S,, x,,A) [1]

1
UDP(SO,KO,A) Given 1<S; <P and O0<x, < E , we say that a matrix X € R™P satisfies the universal distortion

condition of order So , magnitude kK, and parameter A ifand only if for all 0 € R P for all intergers S € {1 ..... SO}, for all

subsets J  {L,..., P} suchthat [J| =S, it holds

6], < 5|l + x4,

1
Resultl: assume that X satisfies UDP(S K ,A) with K, <= and that (2) holds. Then for any A4, > A° /1—2K it
01 %o 055 0~ 0
holds
2 : 2
<2 min (n&s+], |
JciL,...p} J7lh

- 0
1 1_jv’nj _ ZKO |9|=s.5<S,

v

:BAL_,B

A : B
Hx B~ Xp3 <! lylpp}{M,A\/E + HAi/Q

|9]=s,5<Sy

See theorem 2.1, 2.2.[1]

Proof. Leth=/ —fBcR"and 4, 2 A,

by optimality, we have
2

1 A A 1
EHX By b <5 IX8-yl+ 218,
2 1
It yields
1 A
SIX0l = (X7 &h)+ 2,1, i< A Al
Let J = {1 ..... p}; we have
1 A A
E”thz +4, ﬂLJC < l[(”ﬂ\] ”1_ :BLJ 1}"'/1@”ﬂ3cul+<XTg1 h>

< 2 I |+ B[+ Al

Using(2). Adding ijuﬂjc Hl on both sides, it holds

Xl - 2 )b, i<+ )

h, 248,

JD

Adding (ﬂ[ —/121

hJ Hl on both sides, we can get

S0 + (2, - 2l 2 b, o424

Using (7) , it follows that
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X0+ G, - 2= 22, (as ]t + .l )+ 22, .

1 (1
z—@[z"Xh"M—ﬂﬂ)lhnl}ﬂﬁnmnz+z<o||hnl i

It yields that

22 - o e, s |

<1654]p, |

Using the fact that 2ab—b? < a?, this concludes the proof.

Using his equalty 2_{ X[ + (1, ~ 2 )|h||1} < A3 |Xh, + o B, |
And A, > A2 /1— 2k, we can get

[Xnf, -42,aVs[Xn], <44, |5,

This latter is of the form X* —bX < C which implies that X <b+¢/b . Hence,

[Xh], <42,44s +%

1
Result 2: assume that X satisfies UDP(SO,K‘O,A) with &y < 2 and that (2) holds. Then for any A, > A% /1—4x, | it

holds

ﬁ/\D_ﬂ

4
1W£L&§m*”ﬂf“)

¥ B,-x

.....

\J\ ss<S

m|n [MdA\/g + H'BJC Hl}
p} A

See theorem 2.3, 2.4.[1]
Proof Leth:ﬂ/\D—IBeRp,ljz/ig anng{l ..... p}

Recall that HX Te” <A, ityields
o0

e < x|

(y—X ﬂAD)+ XT(Xﬂ—y)1

i,

< (ﬂ’d + ﬂ?\ )|h||1

Hence we get
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It = (g + 25 e = G+ 2 )

N A
Since [, is feasible, it yields || 3,
1

< ||,B||l Thus

A,

A
Bo,
J

13”183”1_ 1+H'BJ°H1£”hJ ||1+H'BJCH1

Bs

i <
Since thc Hl <

+HﬁJc Hl it yields
1

JC

e[, < Il +2]8,],
Multiply by 24, to both sides we can get

24|, < 22l + 428,

Combing this inequality and ||Xh||§ - (/1d + A 1 h. Hl < (ﬂd + A )|hJ ||1we get

X[ + (2 =22 . |, < (32, + 2, +44, 1.,

Adding (ﬁ,d A ]|hJ ||1 on both sides, we get
X0+ ~ 220, <44, + 44|,
Here X satisfies UDP(S,, x,,A), namely Iy ||1 < A\E”Xh”2 +I(O||h||l so

X0 (2 — 25 Jl, < 42, A5 X, + 42, + 4448,

Thus ﬁ m Xh"z + (ﬂ“d . ﬂ,?] }“‘]”1]S A\E”Xh”z + K0||h||1 ¥ H'BJC Hl

It yields,

Lo A ) e il <| -2+ avsxnl, |15, ]
i - 2 ) Wl

d
2
< ANs+|B,.|,
Using the fact that 2ab—b? < a?, this concludes the proof.

wsilpl

e - e
il I [P B 1—20 |24 Pl=sis<Sy
)] Bl

sing this equality| X[ + (4, — 22 ), < 44, A/s|Xhi], + 42,k ], + 42, |B,. |, and A, > 22 /1~ 4 we can

get

[Xnl, —42,AVs|Xn], <475,
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This latter is of the form X2 —bX < ¢ which implies that X <b + C/b . Hence,

B
po, zaz,ave - 2L

4. SUMMARY

Oracle inequalities for lasso and Dantzig selector in linear models have been established under a variety of different
assumptions on the design matrix.and how the different conditions and concepts relate to see other [9].We know that the
restricted eigenvalue conditions or the slightly weaker compatibility condition are sufficient for oracle results. In this paper, we
not only show these oracle results under eigenvalue conditions, and compatibility condition but also show results under UDP
condition. We also proof that compatibility condition is weaker than the restricted eigenvalue conditions. The UDP condition
is similar to the them, see proposition 3.1.[1]. As a matter of fact, the UDP condition, the restricted eigenvalue conditions,

and compatibility condition are expressions with the same flavor: they aim at controlling the eigenvalues of X on a cone

{5 eR p‘VS e {l,..., p}, S.'[.|§| < S,H5 e, < C||5J ||1 } where C > 0is a tuning parameter.
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