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ABSTRACT 

During the last few years, a great deal attention has been focused on lasso and Dantzig selector in high-dimensional linear 
regression under a sparsity scenario, that is, when the number of variables can be much larger than the sample size. The 
authors [4][11][12] derived sparsity oracle inequalities of lasso and Dantzig selector for the prediction risk and bounds on the 

 21  pp  estimation loss under a variety of assumptions. In this paper, we take the restricted eigenvalue conditions, 

compatibility condition and UDP condition for examples to show oracle inequalities about lasso and Dantzig selector for high-
dimensional linear regression. 
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1. 1. INTRODUCTION 

In many modern applications,one has to deal with very large datasets. Regression problems may involve a large number of 
covariates, possibly larger than the sample size. In this situation, a major issue lies in dimension reduction, which can be 
performed through the selection of a Small amount of relevant covariates. For this purpose, numerous regression methods 

has been proposed in the literature, ranging from the classical information criteria such as PC ,AIC, and BIC to the more 

recent regularization-based techniques such as the 1l  penalized least square estimator, known as the lasso and Dantzig 

selector[12]. Their popularity might be due to the fact that these techniques are computationally tractable, even for high-

dimensional data when the number of covatiates p is large. Besides, there are much regularization schemes for high-

dimensional regression, for example NNLS is a very simple and effective regularization technique for a certain class of high-

dimensional regression problems[6]. Consider the high-dimensional linear model where one observes a vector 
nRy  such 

that  

  Xy  (1) 

Where 
pR  is an unknown target vector one would like to recover, 

pnRX   is called design matrix with possibly 

much fewer rows than columns, pn  , and 
nR  is a random error term that contains all perturbations of the 

experiment.  

A standard hypothesis in high-dimensional regression [14] requires that one can provide a constant Rn 
0 , as  

small as possible, such that  

0

n

TX  


   (2) 

With an overwhelming probability. In the case of n-multivariate Gaussian distribution, it is known that  pO nn log0   , 

where 0n denotes the standard deviation of the noise; (see Lemma A.1.[1]) 

In general terms, we are interested in accurately estimating the target vector  and X from few and corrupted  

observations. During the past decade, this challenging issue has attracted a lot of attention among the statistical  

society. In 1996, Tibshirani introduced the lasso(see[13]): 
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(3) 

Where 0  is some tuning constant. Two decades later, this estimator continues to play a key role in our understanding 

of high-dimensional inverse problems. Its popularity may be due to the fact that this estimator is computational feasibility. 
Recently, Candes and Tao [12]have introduced the the Dantzig selector as 

1minarg 
 pR

D




  s.t.   d

T XyX  


   (4) 

Where 0d is a tuning parameter. It is known that it can be recasted as a linear program. Hence , it is also 

computationally tractable. Interestingly, both the lasso and the Dantzig selector can be seen as orthogonal projections of 0 

into     sXyXRsDC Tp 


 , ,using an 1 distance for the Dantzig selector and 2 distance for the lasso. 

So we also can investigate the properties of estimators defined as projections on  sDC  using general distances[5]. Based 

on the linear model, we know that these estimators not only rely on the sparsity of unknown vector and the tuning parameter, 
but also rely on the distribution assumptions of random errors. In recent years, authors has out forward new methods to 
improve above problems. Such as the method in [2] allows for very weak distribution assumptions and does not require the 
knowledge of the variance of random errors. The result in [3] tells us the lasso prediction works well for any degree of 

correlations if suitable tuning parameters are chosen. 

There are several objectives may be considered by the statistician when we deal with the model given by  

Equation(1). Usually, we consider two specific objectives: prediction and estimation in the high-dimensional setting.  
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The reconstruction of the signal X  is first considered. The quality of the reconstruction with an estimator 



  is 

often measured with the squared error 

2

2

 XX 


, namely prediction risk. Another thinking is that the estimator  



  is close to   in terms of the 
q  distance for 1q ,namely bounds on the  21  pp  estimation loss. 

In this paper, under a sparsity case, we introduce some results about lasso and Dantzig selector about prediction  

risk and estimation loss for high-dimensional linear regression with noiseless observations. 

2.DEFINITIONS AND NOTATIONS 

Unless stated otherwise, all through this paper we will assume that   0,0~ 22  nIN . The analysis of regularized 

regression methods for high-dimensional data usually involves a sparsity assumption on  .Let 

       JIM
p

j
j






1

0  denote the number of nonzero coordinates of  , where .I  denotes the indicator function 

    0:,...,1  jPjJ   and J  denotes the cardinality of J . The value  M  characterizes the sparsity of the 

vector  . The smaller  M , the sparser  . For a vector 
pR  and a subset  PJ ,...,1 , we denote by J  the 

vector in 
pR  that has the same coordinates as   on J  and zero coordinates on the complement

cJ of J For any 

1q ,
pRa ,denote i

pi

p

i

q

i

q

q
aaaa





1

1

max; , the 
q  and   norms, respectively. 

3.RESULTS ABOUT LASSO AND DANTZIG SELECTOR UNDER DIFFERENT 
ASSUMPTIONS 

Now we will show some results about lasso and Dantzig selector in high-dimensional linear regression under different 

assumptions on X . 

3.1 X  satisfies  0,csRE  [4] 

Assumption  0,csRE  for some integer ps 1 , 00 c , the following condition holds: 

 
 

0minmin,

2
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0,...,1
0

10
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J

csJ
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X
cs

JcJ









 （ 5）  

There is an improvement of the restricted eigenvalue condition, it replace the 
2J  with 

1J ([10]) 

Result 1  assume X  satisfies  0,csRE  and   sJ   consider the lasso defined by (3), we have 
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Proof  let 
p

L Rh 


  

By optimality, we have  
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using the triangle inequality  
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Here X satisfies  0,csRE  so we can get  
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 Result 2 assume X  satisfies  0,csRE   and   sJ   consider the Dantzig selector defined by (4), we have 
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 Recall that 
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3.2 X satisfies compatibility condition [8] 

A matrix 
pnRX   satisfies the  Compatibility condition  0,cS  if and only if  
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Result 1 assume that X  satisfies the Compatibility condition  0,cS  and   sJ   consider the lasso defined by (3), we 

have 
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Result 2 assume X satisfies Compatibility condition  0,cS and   sJ   consider the Dantzigselector defined by (4), we 

have 
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based on the definition of Compatibility condition  0,cS  and the restricted eigenvalue condition, we can deduce that 

   00 ,, csREcs  , so 

  
 

  
 0

0

0

0

0

0

2 ,

1

,

1

cs

sc

cs

sc
Xh dndn







 



  

  
 

  
 0

2

0

0

0

2

0

0

1 ,

1

,

1

cs

sc

cs

sc
h dndn

J






 



  

 we can proof that the compatibility condition is the weaker than the restricted eigenvalue condition.(see[ 9]) 
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3.3 X satisfies  ,, 00 SUDP  [1] 

 ,, 00 SUDP  Given PS  01  and 
2

1
0 0  , we say that a matrix 

pnRX  satisfies the universal distortion 

condition of order 0S , magnitude 0  and parameter   if and only if for all 
pR , for all intergers  0,...,1 Ss , for all 

subsets  pJ ,...,1  such that sJ  , it holds  

1021
  XsJ （ 7）  

Result1: assume that X  satisfies  ,, 00 SUDP  with 
2

1
0   and that (2) holds. Then for any 0

0 21   n , it 

holds 
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See theorem 2.1, 2.2.[1] 
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Using （ 7） ， it follows that 
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Using the fact that 
222 abab  , this concludes the proof. 
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 which implies that bcbx  . Hence,  
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Result 2: assume that X  satisfies  ,, 00 SUDP  with 
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This latter is of the form cbxx 2
 which implies that bcbx  . Hence,  
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4.SUMMARY 

Oracle inequalities for lasso and Dantzig selector in linear models have been established under a variety of different 
assumptions on the design matrix.and how the different conditions and concepts relate to see other [9].We know that the 

restricted eigenvalue conditions or the slightly weaker compatibility condition are sufficient for oracle results. In this paper, we 
not only show these oracle results under eigenvalue conditions, and compatibility condition but also show results under UDP 
condition. We also proof that compatibility condition is weaker than the restricted eigenvalue conditions. The UDP condition 
is similar to the them, see proposition 3.1.[1]. As a matter of fact, the UDP condition, the restricted eigenvalue conditions, 

and compatibility condition are expressions with the same flavor: they aim at controlling the eigenvalues of X on a cone 

  
11

,..,,...,1 JJ

p cstspsR c   , where 0c is a tuning parameter. 
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