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ABSTRACT 

During the last few years, a great deal attention has been focused on lasso and Dantzig selector in high-dimensional linear 
regression under a sparsity scenario, that is, when the number of variables can be much larger than the sample size. The 
authors [4][11][12] derived sparsity oracle inequalities of lasso and Dantzig selector for the prediction risk and bounds on the 

 21  pp  estimation loss under a variety of assumptions. In this paper, we take the restricted eigenvalue conditions, 

compatibility condition and UDP condition for examples to show oracle inequalities about lasso and Dantzig selector for high-
dimensional linear regression. 
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1. 1. INTRODUCTION 

In many modern applications,one has to deal with very large datasets. Regression problems may involve a large number of 
covariates, possibly larger than the sample size. In this situation, a major issue lies in dimension reduction, which can be 
performed through the selection of a Small amount of relevant covariates. For this purpose, numerous regression methods 

has been proposed in the literature, ranging from the classical information criteria such as PC ,AIC, and BIC to the more 

recent regularization-based techniques such as the 1l  penalized least square estimator, known as the lasso and Dantzig 

selector[12]. Their popularity might be due to the fact that these techniques are computationally tractable, even for high-

dimensional data when the number of covatiates p is large. Besides, there are much regularization schemes for high-

dimensional regression, for example NNLS is a very simple and effective regularization technique for a certain class of high-

dimensional regression problems[6]. Consider the high-dimensional linear model where one observes a vector 
nRy  such 

that  

  Xy  (1) 

Where 
pR  is an unknown target vector one would like to recover, 

pnRX   is called design matrix with possibly 

much fewer rows than columns, pn  , and 
nR  is a random error term that contains all perturbations of the 

experiment.  

A standard hypothesis in high-dimensional regression [14] requires that one can provide a constant Rn 
0 , as  

small as possible, such that  

0

n

TX  


   (2) 

With an overwhelming probability. In the case of n-multivariate Gaussian distribution, it is known that  pO nn log0   , 

where 0n denotes the standard deviation of the noise; (see Lemma A.1.[1]) 

In general terms, we are interested in accurately estimating the target vector  and X from few and corrupted  

observations. During the past decade, this challenging issue has attracted a lot of attention among the statistical  

society. In 1996, Tibshirani introduced the lasso(see[13]): 

 














1

2

22

1
minarg 


Xy

pR
L

     

(3) 

Where 0  is some tuning constant. Two decades later, this estimator continues to play a key role in our understanding 

of high-dimensional inverse problems. Its popularity may be due to the fact that this estimator is computational feasibility. 
Recently, Candes and Tao [12]have introduced the the Dantzig selector as 

1minarg 
 pR

D




  s.t.   d

T XyX  


   (4) 

Where 0d is a tuning parameter. It is known that it can be recasted as a linear program. Hence , it is also 

computationally tractable. Interestingly, both the lasso and the Dantzig selector can be seen as orthogonal projections of 0 

into     sXyXRsDC Tp 


 , ,using an 1 distance for the Dantzig selector and 2 distance for the lasso. 

So we also can investigate the properties of estimators defined as projections on  sDC  using general distances[5]. Based 

on the linear model, we know that these estimators not only rely on the sparsity of unknown vector and the tuning parameter, 
but also rely on the distribution assumptions of random errors. In recent years, authors has out forward new methods to 
improve above problems. Such as the method in [2] allows for very weak distribution assumptions and does not require the 
knowledge of the variance of random errors. The result in [3] tells us the lasso prediction works well for any degree of 

correlations if suitable tuning parameters are chosen. 

There are several objectives may be considered by the statistician when we deal with the model given by  

Equation(1). Usually, we consider two specific objectives: prediction and estimation in the high-dimensional setting.  
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The reconstruction of the signal X  is first considered. The quality of the reconstruction with an estimator 



  is 

often measured with the squared error 

2

2

 XX 


, namely prediction risk. Another thinking is that the estimator  



  is close to   in terms of the 
q  distance for 1q ,namely bounds on the  21  pp  estimation loss. 

In this paper, under a sparsity case, we introduce some results about lasso and Dantzig selector about prediction  

risk and estimation loss for high-dimensional linear regression with noiseless observations. 

2.DEFINITIONS AND NOTATIONS 

Unless stated otherwise, all through this paper we will assume that   0,0~ 22  nIN . The analysis of regularized 

regression methods for high-dimensional data usually involves a sparsity assumption on  .Let 

       JIM
p

j
j






1

0  denote the number of nonzero coordinates of  , where .I  denotes the indicator function 

    0:,...,1  jPjJ   and J  denotes the cardinality of J . The value  M  characterizes the sparsity of the 

vector  . The smaller  M , the sparser  . For a vector 
pR  and a subset  PJ ,...,1 , we denote by J  the 

vector in 
pR  that has the same coordinates as   on J  and zero coordinates on the complement

cJ of J For any 

1q ,
pRa ,denote i

pi

p

i

q

i

q

q
aaaa





1

1

max; , the 
q  and   norms, respectively. 

3.RESULTS ABOUT LASSO AND DANTZIG SELECTOR UNDER DIFFERENT 
ASSUMPTIONS 

Now we will show some results about lasso and Dantzig selector in high-dimensional linear regression under different 

assumptions on X . 

3.1 X  satisfies  0,csRE  [4] 

Assumption  0,csRE  for some integer ps 1 , 00 c , the following condition holds: 

 
 

0minmin,

2

2

0,...,1
0

10
1









J

csJ
PJ

X
cs

JcJ









 （ 5）  

There is an improvement of the restricted eigenvalue condition, it replace the 
2J  with 

1J ([10]) 

Result 1  assume X  satisfies  0,csRE  and   sJ   consider the lasso defined by (3), we have 
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
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Proof  let 
p

L Rh 


  

By optimality, we have  
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

L

T hXXh  

Using (2) we can get
1

0

1
, hhXhX n

TT  


 

using the triangle inequality  
1

11
1

hLL 


  

Then  
1

0

1

0
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1

2
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1
hhXh nnL   



 

Based on the inequality 
10

1
JJ

hch C   

We get     
2010

111
11 JJJJ hschchhh C   

Here X satisfies  0,csRE  so we can get  

  0, 0

2

2  cs
h

Xh

J

  

It equals to  
 0

2

2 ,cs

Xh
hJ


  or  

202
, JhcsXh   

So      
 0

2
0

0

20

02

2 ,
11

2

1
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Xh
schscXh nJn


    

Or     
20
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2

2

20
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2

1
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2

1
JnJ hscXhhcs    

It equals that 
  

 0
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 or 
  

 0

2
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0
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J
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So we can get 
 

  
 0

2
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J
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

 

 Result 2 assume X  satisfies  0,csRE   and   sJ   consider the Dantzig selector defined by (4), we have 
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 Recall that 
0

n

TX  


, it yields 
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  Here X satisfies  0,csRE  so we can get  
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3.2 X satisfies compatibility condition [8] 

A matrix 
pnRX   satisfies the  Compatibility condition  0,cS  if and only if  

 
 

0minmin,

1

2

0,...,1
0

10
1









J

hchsJ
pJ h

XhJ
cS

JcJ


 (6) 

Result 1 assume that X  satisfies the Compatibility condition  0,cS  and   sJ   consider the lasso defined by (3), we 

have 
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Proof  let 
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By optimality, we have  



ISSN 2347-1921                                                           

2862 | P a g e                                                   D e c e m b e r  3 0 ,  2 0 1 4  

1

2

2
1

2

2 2

1

2

1
  



XyXy LL  

It yield  

1
1

2

2
,

2

1
  



L

T hXXh  

Using (2) we can get
1

0

1
, hhXhX n

TT  


 

using the triangle inequality  
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Result 2 assume X satisfies Compatibility condition  0,cS and   sJ   consider the Dantzigselector defined by (4), we 

have 
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based on the definition of Compatibility condition  0,cS  and the restricted eigenvalue condition, we can deduce that 

   00 ,, csREcs  , so 
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 we can proof that the compatibility condition is the weaker than the restricted eigenvalue condition.(see[ 9]) 
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3.3 X satisfies  ,, 00 SUDP  [1] 

 ,, 00 SUDP  Given PS  01  and 
2

1
0 0  , we say that a matrix 

pnRX  satisfies the universal distortion 

condition of order 0S , magnitude 0  and parameter   if and only if for all 
pR , for all intergers  0,...,1 Ss , for all 

subsets  pJ ,...,1  such that sJ  , it holds  

1021
  XsJ （ 7）  

Result1: assume that X  satisfies  ,, 00 SUDP  with 
2

1
0   and that (2) holds. Then for any 0

0 21   n , it 

holds 
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1
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,
,...,1

0

0
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0
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2
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SssJ
pJ

n

L s 





 





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
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







 

  







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
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

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



s
sXX

cJ

SssJ
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L
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,
,...,1

2

4min

0


   

See theorem 2.1, 2.2.[1] 

Proof.   Let
p

L Rh 


  and 
0

n   

by optimality, we have 

1

2

2
1

2

2 2

1

2

1
  



yXyX LL  

It yields  
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2
,

2
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
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T hXXh  

Let  pJ ,...,1 ; we have  

1
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1111
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2
,

2

1
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hXXh

nJJ

T

JLJL

c

c
JcJ
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
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
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


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Using(2). Adding 
1

cJ
 on both sides, it holds 

    11

0

1

02

2
2

2

1
c

JcJ
Jnn hhXh   

 

Adding   1

0

J
hn  on both sides, we can get  

  111

02

2
22

2

1
c

J Jn hhXh     

Using （ 7） ， it follows that 



ISSN 2347-1921                                                           

2865 | P a g e                                                   D e c e m b e r  3 0 ,  2 0 1 4  

    11021

02

2
22

2

1
cJn hXhshXh     

  11021

02

22

1
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1
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









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

 

It yields that 

 

 

 

Using the fact that 
222 abab  , this concludes the proof. 

Using this equality   11021
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1
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

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And 0

0 21   n we can get 

12

2

2
44 cJ

XhsXh     

This latter is of the form cbxx 2
 which implies that bcbx  . Hence,  

s
sXh
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
 1

2
4


  

Result 2: assume that X  satisfies  ,, 00 SUDP  with 
4

1
0   and that (2) holds. Then for any 0

0 41   nd , it 

holds 
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See theorem 2.3, 2.4.[1]  

Proof  Let
p

D Rh 
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0
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   
1
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1
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2 JndJnd hhXh c    

Since 



D  is feasible, it yields 
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Since 
1

1
1

c
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c JDJ
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, it yields 
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2 cc JJJ
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Multiply by d2  to both sides we can get 

111
422 cc JdJdJd hh    

Combing this inequality and    
1

0

1

02

2 JndJnd hhXh c   we get 
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Adding  
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Here X  satisfies  ,, 00 SUDP , namely 
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Using the fact that 
222 abab  , this concludes the proof. 

 
 

1

2

,
,...,1

0

0

0

0

1

2

1

0

min

4-1

4

-1
4

1
c

c

Jd

SssJ
pJ

d

n

d

n

Jd
s

s
h 



















































 

Using this equality  
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2
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This latter is of the form cbxx 2
 which implies that bcbx  . Hence,  

s
sXh

cJ

d


 1

2
4


  

4.SUMMARY 

Oracle inequalities for lasso and Dantzig selector in linear models have been established under a variety of different 
assumptions on the design matrix.and how the different conditions and concepts relate to see other [9].We know that the 

restricted eigenvalue conditions or the slightly weaker compatibility condition are sufficient for oracle results. In this paper, we 
not only show these oracle results under eigenvalue conditions, and compatibility condition but also show results under UDP 
condition. We also proof that compatibility condition is weaker than the restricted eigenvalue conditions. The UDP condition 
is similar to the them, see proposition 3.1.[1]. As a matter of fact, the UDP condition, the restricted eigenvalue conditions, 

and compatibility condition are expressions with the same flavor: they aim at controlling the eigenvalues of X on a cone 

  
11

,..,,...,1 JJ

p cstspsR c   , where 0c is a tuning parameter. 
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