THE BESSEL-TYPE WAVELET CONVOLUTION PRODUCT

B.B.Waphare
MITACSC,Alandi,Tal.khed.Dist.Pune,Maharashtra balasahebwaphare@gmail.com,

Abstract:
In this paper the convolution product associated with the Bessel-type Wavelet transformation is investigated.Further,certain norm inequalities for the convolution product are established.

Keywords: Bessel-type Wavelet transform; Convolution product; Hankel-type transformation.
Subject Classification: Mathematics Subject Classification:44A15,46F

Council for Innovative Research

Peer Review Research Publishing System
Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol .9, No. 7
www.cirjam.com , editorjam@gmail.com

1 INTRODUCTION

The Hankel Convolution was studied by many authors from time to time, Cholewinski[1], Haimo[2], Hirshman Jr.[3] studied the Hankel-type convolution for the following form of the Hankel-type transformation of a function $f \in L_{\sigma}^{1}(I)$, where $I=(0, \infty)$ and

$$
\begin{align*}
L_{\sigma}^{1}(I)= & \{f:|f(x)| d \sigma(x)<\infty\} . \text { Namely } \\
& \left(h_{\alpha, \beta} f\right)(x)=\hat{f}(x)=\int_{0}^{\infty} j_{\alpha-\beta}(x t) f(t) d \sigma(t) \tag{1}
\end{align*}
$$

where

$$
j_{\alpha-\beta}(x)=2^{\alpha-\beta} \Gamma(\alpha-\beta) x^{-(\alpha-\beta)} J_{\alpha-\beta}(x)
$$

Here $J_{\alpha-\beta}(x)$ is the Bessel-type function of order $\alpha-\beta$, and

$$
d \sigma(t)=\frac{t^{2(\alpha-\beta)}}{2^{\alpha-\beta} \Gamma(\alpha-\beta+1)} d t
$$

We say that $f \in L_{\sigma}^{p}(I), 1 \leq p<\infty$, if

$$
\|f\|_{p, \sigma}=\left(\int_{0}^{\infty}|f(x)|^{p} d \sigma(x)\right)^{1 / p}<\infty .
$$

If $f \in L_{\sigma}^{1}(I)$ and $h_{\alpha, \beta} f \in L_{\sigma}^{1}(I)$ then the inverse Hankel-type transform is given by

$$
\begin{equation*}
f(x)=\left(h_{\alpha, \beta}^{-1}[\hat{f}]\right)(x)=\int_{0}^{\infty} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} f\right)(t) d \sigma(t) \tag{2}
\end{equation*}
$$

If $f \in L_{\sigma}^{1}(I)$ and $g \in L_{\sigma}^{1}(I)$ then the Hankel-type convolution is defined by

$$
\begin{equation*}
(f \# g)(x)=\int_{0}^{\infty}\left(\tau_{x} f\right)(y) g(y) d \sigma(y) \tag{3}
\end{equation*}
$$

where the Hankel-type translation τ_{x} is given by

$$
\begin{equation*}
\left(\tau_{x} f\right)(y)=\hat{f}(x, y)=\int_{0}^{\infty} D(x, y, z) f(x) d \sigma(z), \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& D(x, y, z)=\int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y t) j_{\alpha-\beta}(z t) d \sigma(t) \\
& =2^{5 \alpha-\beta} \pi^{\alpha-5 \beta}[\Gamma(7 \alpha+5 \beta)]^{2}[\Gamma(\alpha-\beta+1 / 2)]^{-1}(x y z)^{-2(\alpha-\beta)} \times[\Delta(x, y, z)]^{-2(\alpha-\beta)}
\end{aligned}
$$

For $\alpha-\beta \geq-1 / 2$, where $\Delta(x, y, z)$ is the area of a triangle with sides x, y, z, if such a triangle exists and zero otherwise. Here we note that $D(x, y, z)$ is symmetric in x, y, z.

Applying (2) to (4) we get the formula

$$
\int_{0}^{\infty} j_{\alpha-\beta}(z t) D(x, y, z) d \sigma(z)=j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y t)
$$

Setting $t=0$, we get

$$
\int_{0}^{\infty} D(x, y, z) d \sigma(z)=1
$$

Therefore in view of (4),

$$
\begin{equation*}
\|\hat{f}(x, y)\|_{1, \sigma} \leq\|f\|_{1, \sigma} \tag{5}
\end{equation*}
$$

Now, using (4) we can write (3) in the following form,

$$
(f \# g)(x)=\int_{0}^{\infty} \int_{0}^{\infty} D(x, y, z) f(z) g(y) d \sigma(z) d \sigma(y)
$$

Some important properties of the Hankel-type convolution are:

1. If $f, g \in L_{\sigma}^{1}(I)$ then from [2]

$$
\begin{equation*}
\|f \# g\|_{1, \sigma} \leq\|f\|_{1, \sigma}\|g\|_{1, \sigma} \tag{6}
\end{equation*}
$$

2. With the same assumptions,

$$
\begin{equation*}
h_{\alpha, \beta}(f \# g)(x)=\left(h_{\alpha, \beta} f\right)(x)\left(h_{\alpha, \beta} g\right)(x) \tag{7}
\end{equation*}
$$

3. Let $f \in L_{\sigma}^{1}(I)$ and $g \in L_{\sigma}^{p}(I), p \geq 1$,then ($\mathrm{f} \# \mathrm{~g}$) exists, is continuous and from [7] we get the inequality $\|f \# g\|_{p, \sigma} \leq\|f\|_{1, \sigma}\|g\|_{p, \sigma}$
4. Let $f \in L_{\sigma}^{p}(I)$ and $g \in L_{\sigma}^{q}(I), 1 / p+1 / q=1$, then f g exists, is conntinuos and form [7] we have

$$
\begin{equation*}
\|f \# g\|_{\infty, \sigma} \leq\|f\|_{p, \sigma}\|g\|_{q, \sigma} \tag{9}
\end{equation*}
$$

5. Let $f \in L_{\sigma}^{p}(I)$ and $g \in L_{\sigma}^{q}(I), 1 / p+1 / q-1=1 / r$ then f g exists, is conntinuos and form [7] we have

$$
\begin{equation*}
\|f \# g\|_{r, \sigma} \leq\|f\|_{p}\|g\|_{q} \tag{10}
\end{equation*}
$$

6. Let $f \in L_{\sigma}^{p}(I)$ and $g \in L_{\sigma}^{q}(I)$ and $h \in L_{\sigma}^{r}(I)$, then the weighted norm inequality

$$
\begin{equation*}
\left|\int_{0}^{\infty} f(x)(g \# h)(x) d \sigma(x)\right| \leq\|f\|_{p, \sigma}\|g\|_{q, \sigma}\|h\|_{r, \sigma} \tag{11}
\end{equation*}
$$

holds for $1 / p+1 / q+1 / r=2$.
As indicated above, the proof of properties 1-5 are well known. Hence we next give the proof of 6 . Using Holder s inequality, we get

$$
\left|\int_{0}^{\infty} f(x)(g \# h)(x) d \sigma(x)\right| \leq\|f\|_{p, \sigma}\|g \# h\|_{s, \sigma}, 1 / p+1 / s=1
$$

thus by using (9) we get,

$$
\left|\int_{0}^{\infty} f(x)(g \# h)(x) d \sigma(x)\right| \leq\|f\|_{p, \sigma}\|g\|_{q, \sigma}\|h\|_{s, \sigma}, 1 / s=1 / q+1 / r-1
$$

From [4], $h_{\alpha, \beta}$ is isometric on $L_{\sigma}^{2}(I), h_{\alpha, \beta}^{-1} h_{\alpha, \beta} f=f$ then Parseval's formula of the Hankel-type transformation for $f, g \in L_{\sigma}^{2}(I)$ is given by

$$
\begin{equation*}
\int_{0}^{\infty} f(x) g(x) d \sigma(x)=\int_{0}^{\infty}\left(h_{\alpha, \beta} f\right)\left(h_{\alpha, \beta} g\right)(y) d \sigma(y) \tag{12}
\end{equation*}
$$

Furthermore, this relation also holds for $f, g \in L_{\sigma}^{1}(I)$,see [8].
For $\psi \in L_{\sigma}^{1}(I)$, using translation τ_{x} given in [7] and dialation $D_{a} f(x, y)=f(a x, a y)$, the Bessel-type wavelet [6] is defined by

$$
\begin{equation*}
\psi\left(\frac{t}{a}, \frac{b}{a}\right)=D_{1 / a} \tau_{b} \psi(t)=\int_{0}^{\infty} \psi(z) D\left(\frac{t}{a}, \frac{b}{a}, z\right) d \sigma(z) \tag{13}
\end{equation*}
$$

The continuous Bessel-type transform [6] of a function $f \in L_{\sigma}^{1}(I)$ with respect to wavelet $\psi \in L_{\sigma}^{1}(I)$ is defined by

$$
\left(B_{\psi} f\right)(b, a)=a^{-2(\alpha-\beta+1)} \int_{0}^{\infty} \psi\left(\frac{t}{a}, \frac{b}{a}\right) f(t) d \sigma(t), a>0
$$

by simple modification we get

$$
\left(B_{\psi} f\right)(b, a)=(f \# \psi)\left(\frac{b}{a}\right), a>0
$$

From [6] and [7] the continuous Bessel-type wavelet transform of a function $f \in L_{\sigma}^{1}(I)$ can be written in the form:

$$
\begin{equation*}
\left(B_{\psi} f\right)(b, a)=\int_{0}^{\infty} j_{\alpha-\beta}(b w)\left(h_{\alpha, \beta} f\right)(w)\left(h_{\alpha, \beta} \psi\right)(a w) d \sigma(w) \tag{14}
\end{equation*}
$$

Now we state the Parseval formula of the Bessel-type wavelettransform from [6,pp. 245],

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty}\left(B_{\psi} f\right)(b, a)\left(B_{\psi} g\right)(b, a) \frac{d \sigma(b) d \sigma(a)}{a^{2(\alpha-\beta+1)}}=C_{\psi}\langle f, g\rangle \tag{15}
\end{equation*}
$$

for $f \in L_{\sigma}^{2}(I)$ and $g \in L_{\sigma}^{2}(I)$. Now we also state from [3,Theorem 2c,pp.312] and [3,corollay 2c,pp.313] which is useful for our approximation results:
Theorem 1.1:Suppose that

1. $K_{n}(x) \geq 0,0<x<\infty$
2. $\int_{0}^{\infty} K_{n}(x) d \sigma(x)=1, n=0,1,2,3 \ldots$
3. $\lim _{n \rightarrow \infty} \int_{\delta}^{\infty} K_{n}(x) d \sigma(x)=0$, for each $\delta>0$,
4. $\phi(x) \in L_{\sigma}^{\infty}(I)$
5. ϕ is continuous at $x_{0}, x_{0} \in[x-\delta, x+\delta]$ and $\delta>0$

Then

$$
\lim _{n \rightarrow \infty}\left(\phi \# K_{n}\right)\left(x_{0}\right)=\phi\left(x_{0}\right) .
$$

Corollary 1.1: With the same assumptions on $\mathrm{k} _\mathrm{n}(\mathrm{x})$, $\mathrm{f} \mathrm{f}(\mathrm{x}) \in L_{\sigma}^{1}(I)$ then $_\mathrm{n}| | f \# \mathrm{k} _\mathrm{n}-\mathrm{f}| | _1=0$.
Motivated from [5,pp.129-136], we define convolution product for Bessel-type wavelet transform and study some of its properties.

2 THE BESSEL-TYPE WAVELET CONVOLUTION PRODUCT

In this section,using properties(5),(12) and (13) we formally define the convolution product for Bessel-type wavelet transformation by the relation

$$
\begin{equation*}
B_{\psi}(f \otimes g)(b, a)=\left(B_{\psi} f\right)(b, a)\left(B_{\psi} g\right)(b, a) \tag{16}
\end{equation*}
$$

and investigate its boundedness and approximation properties. This in turn implies the product of two Bessel-type wavelet
transforms could be wavelet transform under certain conditions.
Theorem 2.1:Let $f, g, \psi \in L_{\sigma}^{1}(I)$ and $h_{\alpha, \beta}(\psi)(w) \neq 0$. Then the bessel-type wavelet convolution can be written in the form

$$
(f \otimes g)(z)=\int_{0}^{\infty}\left(\tau_{z, a} f\right)(y) g(y) d \sigma(y)
$$

where

$$
\begin{align*}
& \left(\tau_{z, a} f\right)(y)=\int_{0}^{\infty} f(x) D_{a}(x, y, z) d \sigma(x), \\
& D_{a}(x, y, z)=\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi)(\tag{17}
\end{align*}
$$

and

$$
\begin{align*}
& L_{a}(t, \xi, z)=\int_{0}^{\infty} j_{\alpha-\beta}(y t) j_{\alpha-\beta}(y \xi) Q_{a}(y, z) d \sigma(y), \tag{18}\\
& Q_{a}(y, z)=\int_{0}^{\infty} \frac{j_{\alpha-\beta}(w z) j_{\alpha-\beta}(w y)}{\left(h_{\alpha, \beta} \psi\right)(a w)} d \sigma(w) \tag{19}
\end{align*}
$$

Proof:From (14) we have

$$
h_{\alpha, \beta}\left[\left(B_{\psi} f\right)(b, a)\right](w)=\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} f\right)(w)
$$

therefore

$$
\begin{aligned}
& h_{\alpha, \beta}\left[\left(B_{\psi} f \otimes g\right)(b, a)\right](w)=h_{\alpha, \beta}\left[\left(B_{\psi} f\right)(b, a)\left(B_{\psi} g\right)(b, a)\right](w) \\
& =h_{\alpha, \beta} h_{\alpha, \beta}^{-1}\left(\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot) h_{\alpha, \beta}^{-1}\left(\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g\right)(\cdot)\right)(w)\right.
\end{aligned}
$$

By property (7) of the Hankel-type convolution we have,

$$
h_{\alpha, \beta}\left[\left(B_{\psi} f \otimes g\right)(b, a)\right](w)=\left[\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot) \times \#\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g\right)(\cdot)\right](w)
$$

Therefore we get

$$
\begin{equation*}
\left(h_{\alpha, \beta} \psi\right)(a w) h_{\alpha, \beta}[(f \otimes g)](w)=\left[\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot) \times \#\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g\right)(\cdot)\right](w) \tag{20}
\end{equation*}
$$

This gives a relation between Bessel-type wavelet transform convolution and the Hankel-type transform convolution.
Let us set

$$
\begin{aligned}
& F_{a}=\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot) \\
& G_{a}=\left(h_{\alpha, \beta} \psi\right)(\cdot)\left(h_{\alpha, \beta} g\right)(\cdot)
\end{aligned}
$$

Then by (3) and (4) we get

$$
\begin{aligned}
& h_{\alpha, \beta}\left[\left(B_{\psi} f \otimes g\right)(b, a)\right](w)=\int_{0}^{\infty}\left(\tau_{w} G_{a}\right)(\eta) F_{a}(\eta) d \sigma(\eta) \\
& =\int_{0}^{\infty} F_{a}(\eta)\left(\int_{0}^{\infty} D(w, \eta, \xi) G_{a}(\xi) d \sigma(\xi)\right) d \sigma(\eta) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} F_{a}(\eta) G_{a}(\xi) D(w, \eta, \xi) d \sigma(\xi) d \sigma(\eta)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} \int_{0}^{\infty} F_{a}(\eta) G_{a}(\xi) \int_{0}^{\infty} j_{\alpha-\beta}(w y) j_{\alpha-\beta}(\eta y) j_{\alpha-\beta}(\xi y) d \sigma(y) d \sigma(\xi) d \sigma(\eta) \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} F_{a}(\eta) j_{\alpha-\beta}(\eta y) d \sigma(\eta)\right)\left(\int_{0}^{\infty} G_{a}(\xi) j_{\alpha-\beta}(\xi y) d \sigma(\xi)\right) j_{\alpha-\beta}(w y) d \sigma(y) \\
& =\int_{0}^{\infty}\left(h_{\alpha, \beta} F_{a}\right)(y)\left(h_{\alpha, \beta} G_{a}\right)(y) j_{\alpha-\beta}(w y) d \sigma(y)
\end{aligned}
$$

Therefore by the inversion formula of the Hankel-type Transformation we have,

$$
\begin{aligned}
& (f \otimes g)(z)=\int_{0}^{\infty} \frac{j_{\alpha-\beta}(w z)}{\left(h_{\alpha, \beta} \psi\right)(a w)}\left(\int_{0}^{\infty}\left(h_{\alpha, \beta} F_{a}\right)(y)\left(h_{\alpha, \beta} G_{a}\right)(y) j_{\alpha-\beta}(w y) d \sigma(y)\right) d \sigma(w) \\
& =\int_{0}^{\infty}\left(h_{\alpha, \beta} F_{a}\right)(y)\left(h_{\alpha, \beta} G_{a}\right)(y) Q_{a}(y, z) d \sigma(y)
\end{aligned}
$$

where $Q_{a}(y, z)$ is given by (19).
Then by the definition of Hankel-type transformation (1)
$(f \otimes g)(z)=\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(y t)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} f\right)(t) d \sigma(t)\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(h_{\alpha, \beta} g\right)(\xi) d \sigma(\xi)\right) Q_{a}(y, z)$
$=\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(h_{\alpha, \beta} f\right)(t)\left(h_{\alpha, \beta} g\right)(\xi)\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi) j_{\alpha-\beta}(y t) Q_{a}(y, z) d \sigma(y)\right) d \sigma(t) d \sigma(\xi)$

$$
=\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(h_{\alpha, \beta} f\right)(t)\left(h_{\alpha, \beta} g\right)(\xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi)
$$

Therefore
$(f \otimes g)(z)=\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(\int_{0}^{\infty} j_{\alpha-\beta}(x t) f(x) d \sigma(x)\right)\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi) g(y) d \sigma(y)\right) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi)$

$$
\begin{gathered}
=\int_{0}^{\infty} \int_{0}^{\infty} f(x) g(y) \int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi) d \sigma(x) d \sigma(y) \\
=\int_{0}^{\infty} \int_{0}^{\infty} f(x) g(y) D_{a}(x, y, z) d \sigma(x) d \sigma(y)
\end{gathered}
$$

where

$$
D_{a}(x, y, z)=\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi)
$$

If we define the generalized translation by

$$
F_{a}(z, y)=(z, a)(y)=\int_{0}^{\infty} D_{a}(x, y, z) f(x) d \sigma(x)
$$

then

$$
(f \otimes g)(z)=\int_{0}^{\infty}\left({ }_{z, a} f\right)(y) g(y) d \sigma(y)
$$

Thus proof is completed.
Theorem 2.2:Assume that $\inf _{w}\left|\left(h_{\alpha, \beta} \psi\right)(a w)\right|=B_{\psi}(a)>0$. Then

$$
\left\|D_{a}(x, y, z)\right\| \leq \frac{1}{B_{\psi}(a)} a^{-2(\alpha-\beta+1)}\|\psi\|_{1, \sigma}^{2}
$$

Proof: From (17) we have

$$
\begin{gathered}
D_{a}(x, y, z)=\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi) \\
=\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(\int_{0}^{\infty} j_{\alpha-\beta}(\eta t) j_{\alpha-\beta}(\eta \xi) Q_{a}(\eta, z) d \sigma(\eta)\right) d \sigma(t) d \sigma(\xi) \\
=\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) \int_{0}^{\infty} j_{\alpha-\beta}(\eta t) j_{\alpha-\beta}(\eta \xi)\left(\int_{0}^{\infty} \frac{j_{\alpha-\beta}(w z) j_{\alpha-\beta}(\eta w)}{\left(h_{\alpha, \beta} \psi\right)(a w)}\right) \\
\times d \sigma(w)) d \sigma(\eta) d \sigma(t) d \sigma(\xi) \\
=\int_{0}^{\infty}\left(\int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(\eta t)\left(h_{\alpha, \beta} \psi\right)(a t) d \sigma(t)\right)\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi) j_{\alpha-\beta}(\eta \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi) d \sigma(\xi)\right) Q_{a}(z, \eta) d \sigma(\eta) \\
=\int_{0}^{\infty} h_{\alpha, \beta}\left[j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} \psi\right)(a t)\right](\eta) h_{\alpha, \beta}\left[j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi)\right](\eta) \\
\times Q_{a}(z, \eta) d \sigma(\eta) \\
=\int_{0}^{\infty} \int_{0}^{\infty} h_{\alpha, \beta}\left[j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} \psi\right)(a t) \# j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi)\right](\eta) j_{\alpha-\beta}(w z) j_{\alpha-\beta}(\eta w)\left[\left(h_{\alpha, \beta} \psi\right)(a w)\right]^{-1} d \sigma(w) d \sigma(\eta) \\
=\int_{0}^{\infty}\left[j_{\alpha-\beta}(x \cdot)\left(h_{\alpha, \beta} \psi\right)(a \cdot) \# j_{\alpha-\beta}(y \cdot)\left(h_{\alpha, \beta} \psi\right)(a \cdot)\right](w) j_{\alpha-\beta}(w z)\left[\left(h_{\alpha, \beta} \psi\right)(a w)\right]^{-1} d \sigma(w) .
\end{gathered}
$$

Now set $F_{a}(t)=j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} \psi\right)(a t)$ and assume that $\inf _{w}\left|\left(h_{\alpha, \beta} \psi\right)(a w)\right|=B_{\psi}(a)>0$
Since $\left|j_{\alpha-\beta}(z)\right| \leq 1,[2, p p .336]$,we have

$$
\left|D_{a}(x, y, z)\right| \leq \frac{1}{B_{\psi}(a)} \int_{0}^{\infty}\left|\left(F_{a} \# F_{a}\right)(w)\right| d \sigma(w)
$$

Using (6) we have

$$
\begin{aligned}
& \left|D_{a}(x, y, z)\right| \leq \frac{1}{B_{\psi}(a)}\|F\|_{1, \sigma}\|F\|_{1, \sigma} \\
& \leq \frac{1}{B_{\psi}(a)}\left[\int_{0}^{\infty}\left|j_{\alpha-\beta}(x v)\left(h_{\alpha, \beta} \psi\right)(a v)\right| d \sigma(v)\right]^{2} \\
& \leq \frac{1}{B_{\psi}(a)}\left[\int_{0}^{\infty}|\psi(a v)| d \sigma(v)\right]^{2} \\
& \leq \frac{1}{B_{\psi}(a)}\left[\left\|\psi_{a}\right\|_{1, \sigma}\right]^{2}
\end{aligned}
$$

$$
\leq \frac{a^{-2(\alpha-\beta+1)}}{B_{\psi}(a)}\left[\left\|\psi_{a}\right\|_{1, \sigma}\right]^{2}
$$

This completes the proof.
In order to obtain Plancheral formula for the Bessel-type wavelet transform,we define the space

$$
W^{2}(I \times I)=\left\{g(b, a):\|g\|_{W^{2}}=\left(\int_{0}^{\infty} \int_{0}^{\infty}|g(b, a)|^{2} \frac{d \sigma(b) d \sigma(a)}{a^{2(\alpha-\beta+1)}}\right)^{1 / 2}<\infty\right\}
$$

Theorem2.3:Let $f \in L_{\sigma}^{2}(I), \psi \in L_{\sigma}^{2}(I)$ then

$$
\left\|\left(B_{\psi} f\right)(b, a)\right\|_{W^{2}}=\sqrt{C_{\psi}}\|f\|_{2, \sigma}
$$

proof: Proof can be completed by just putting $f=g$ in (15).
Theorem2.4:Let $f, g \in L_{\sigma}^{2}(I), \psi \in L_{\sigma}^{2}(I)$ be a Bessel-type wavelet which satisfies

$$
C_{\psi}=\int_{0}^{\infty}\left|\left(h_{\alpha, \beta} \psi\right)(a w)\right|^{2} \frac{d \sigma(a)}{a^{2(\alpha-\beta+1)}}>0 .
$$

Then $\|f \otimes g\|_{2, \sigma} \leq\|f\|_{2, \sigma}\|g\|_{2, \sigma}\|\psi\|_{2, \sigma}$
Proof:Using formula (16) and (18),we have

$$
\begin{aligned}
& \sqrt{C_{\psi}}\|f \otimes g\|_{2, \sigma}=\left\|B_{\psi}(f \otimes g)\right\|_{W^{2}} \\
& =\left\|B_{\psi} f(b, a) B_{\psi} g(b, a)\right\|_{W^{2}} \\
& =\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|B_{\psi} f(b, a) B_{\psi} g(b, a)\right|^{2} \frac{d \sigma(b) d \sigma(a)}{a^{2(\alpha-\beta+1)}}\right)
\end{aligned}
$$

From (15) and (9) we have

$$
\begin{aligned}
& \left.\left|B_{\psi} g(b, a)\right| \leq \leq \mid g(a \cdot) \# \psi(\cdot)\right)(b / a) \mid \\
& \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma}
\end{aligned}
$$

Applying above results we obtain

$$
\sqrt{C_{\psi}}\|f \otimes g\|_{2, \sigma} \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma}\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|B_{\psi} f(b, a) B_{\psi} g(b, a)\right|^{2} \frac{d \sigma(b) d \sigma(a)}{a^{2(\alpha-\beta+1)}}\right)
$$

From theorem (2.3) we get

$$
\sqrt{C_{\psi}}\|f \otimes g\|_{2, \sigma} \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma} \sqrt{C_{\psi}}\|f\|_{2, \sigma}
$$

Thus

$$
\|f \otimes g\|_{2, \sigma} \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma}\|f\|_{2, \sigma}
$$

Thus proof is completed.

3 WEIGHTED SOBOLEV-TYPE SPACE

In this section we study certain properties of the bessel-type wavelet convolution on a weighted Sobolev-type space defined as below:

Definition 3.1:The Zemanian space $H_{\alpha, \beta}(I), I=(0, \infty)$ is the set of all infinitely differentiable functions ϕ on $(0, \infty)$ such that

$$
\begin{equation*}
\rho_{m, k}^{\alpha, \beta}(\phi)=\sup _{x \in I}\left|x^{m}\left(x^{-1} \frac{d}{d x}\right)^{k} x^{-(\alpha-\beta+1)} \phi(x)\right|<\infty, \tag{21}
\end{equation*}
$$

for all $m, k \in N_{0}$. Then $f \in H_{\alpha, \beta}^{\prime}(I)$ is defined by the following way:

$$
\langle f, \phi\rangle=\int_{0}^{\infty} f(x) \phi(x) d x, \phi \in H_{\alpha, \beta}(I)
$$

Definition 3.2:Let $k(w)$ be an arbitrary weight function.Then a function $\Phi \in\left[H_{\alpha, \beta}(I)\right]^{\prime}$ is said to belong to weighted Sobolev space $G_{\alpha, \beta, k}^{p}(I)$ for $\alpha-\beta \in R, 1 \leq p<\infty$, if it satisfies

$$
\|\Phi\|_{p, \alpha, \beta, \sigma, k}=\left(\int_{0}^{\infty}\left|k(w)\left(H_{\alpha, \beta} \Phi\right)(w)\right|^{p} d \sigma(w)\right)^{1 / p}, \Phi \in L_{\sigma}^{p}(I) .
$$

In what follows we shall assume that $k(w)=\left|\left(H_{\alpha, \beta} \psi\right)(a w)\right|$
Theorem 3.1:Let $f \in G_{\alpha, \beta, k}^{1}(I)$ and $g \in G_{\alpha, \beta, k}^{p}(I), p \geq 1$. Then

$$
\|f \otimes g\|_{p, \alpha, \beta, \sigma, k} \leq\|f\|_{1, \alpha, \beta, \sigma, k}\|g\|_{p, \alpha, \beta, \sigma, k}
$$

Proof:In view of (21), we have

$$
\begin{align*}
& \|f \otimes g\|_{p, \alpha, \beta, \sigma, k} \leq\left\|F_{a}(w)\right\|_{1, \alpha, \beta, \sigma, k}\left\|G_{a}(w)\right\|_{p, \alpha, \beta, \sigma, k} \tag{22}\\
& \leq\left\|\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} f\right)(w)\right\|_{1, \alpha, \beta, \sigma, k}\left\|\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} g\right)(w)\right\|_{p, \alpha, \beta, \sigma, k} \tag{23}
\end{align*}
$$

From definition 3.2 ,we get

$$
\|f \otimes g\|_{p, \alpha, \beta, \sigma, k} \leq\|f\|_{1, \alpha, \beta, \sigma, k}\|g\|_{p, \alpha, \beta, \sigma, k}
$$

Thus proof is completed.
Theorem 3.2: $f \in G_{\alpha, \beta, k}^{p}(I), p \geq 1$ and $g \in G_{\alpha, \beta, k}^{q}(I), 1 \leq p, q<\infty$ and $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-1$. Then

$$
\|f \otimes g\|_{r, \alpha, \beta, \sigma, k} \leq\|f\|_{p, \alpha, \beta, \sigma, k}\|g\|_{q, \alpha, \beta, \sigma, k}
$$

Proof:Using (10) and (21) we get (23).Thus proof is completed.
Approximation properties of the Bessel-type wavelet convolution are given next.
Theorem 3.3:Let $\Psi_{n, a}(w)=\Psi_{n}(a w), n=0,1,2 \ldots$ be the sequence of the basic wavelet functions such that
$\Psi_{n, a}(w) \geq 0,0<w<\infty \int_{0}^{\infty} \Psi_{n, a}(w) d \sigma(w)=1 \lim _{n \rightarrow \infty} \int_{\varepsilon}^{\infty} \Psi_{n, a}(w) d \sigma(w)=0$ foreach $\varepsilon>0\left(h_{\alpha, \beta} \Psi_{n, a}\right)(w) \in L_{\sigma}^{1}(I) h_{\alpha, \beta}^{-1}\left[\left(h_{\alpha, \beta} \Psi_{n}\right.\right.$
Then

$$
\lim _{n \rightarrow \infty}\left\|f(b)-\left(B_{\Psi_{n}} f\right)(b, a)\right\|_{1, \sigma}=0
$$

Proof: Proof follows from [3,pp.315-316].
Theorem 3.4:Let $\quad K_{n}(w)=\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} g_{n}\right)(w) \quad$ for \quad fixed $\quad a>0, n \in N \quad$ and $\phi(w)=\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} f\right)(w)$ satisfy:

$$
K_{n}(w) \geq 0,0<w<\infty \int_{0}^{\infty} K_{n}(w) d \sigma(w)=1, w=0,1,2,3 \ldots \lim _{n \rightarrow \infty} \int_{\delta}^{\infty} K_{n}(w) d \sigma(w)=0 \text { foreach } \delta>0 \phi(w) \in L_{\sigma}^{\infty}(I) \text { фiscontinuousatw }{ }_{0}, \text { and }\left(h_{\alpha, \beta} \psi\right)(\text { aw }
$$

Proof:In view of relation (20) we have

$$
\left(h_{\alpha, \beta} \psi\right)(a w) h_{\alpha, \beta}\left(f \otimes g_{n}\right)(w)=\left(\phi \# K_{n}\right)(w) .
$$

Now using theorem 1.1 we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)=\lim _{n \rightarrow \infty}\left(\phi \# K_{n}\right)\left(w_{0}\right) \\
& =\phi\left(w_{0}\right) \\
& =\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right) .
\end{aligned}
$$

This implies that

$$
\lim _{n \rightarrow \infty} h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)=\left(h_{\alpha, \beta} f\right)\left(w_{0}\right) .
$$

Thus proof is completed.
Theorem 3.5:Let $f, \psi \in L_{\sigma}^{1}(I)$ and $K_{n}(w)$ be the same as theorem 3.4, which satisfies all the four properties of theorem 3.3.Then

$$
\lim _{n \rightarrow \infty}\left\|\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)-\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma}=0
$$

Proof:Using (20) we have
$\lim _{n \rightarrow \infty}\left\|\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)-\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma}=\lim _{n \rightarrow \infty}\left\|\phi\left(w_{0}\right)-\left(\phi \# K_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma}$
Since $f, \psi_{a} \in L_{\sigma}^{1}(I), \phi(w)=\left(h_{\alpha, \beta} \psi_{a}\right)\left(h_{\alpha, \beta} f\right)=h_{\alpha, \beta}\left(f \# \psi_{a}\right)$.
Therefore using the tools of [3,corollary $2 \mathrm{c}, \mathrm{pp} .313-314]$ we have

$$
\lim _{n \rightarrow \infty}\left\|\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)-\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma}=0
$$

Thus proof is completed.

References

[1] Cholewinski F.M.,A Hankel Convolution Complex Inversion Theory,Mem.Amer.Math.Soc.,Vol.58,1965.
[2] Haino D.T.,Integral equations associated with Hankel Convolution,Trans.amer.Math.Soc.116(1965),330-375.
[3] Hirschman Jr. I.I.,Variation Diminishing Hankel Transform,J.Analysis Math.8(1960-1961),307-336.
[4] Kanjin Y.,A translation theorem for the Hankel transformation on the Hardy space,Tohoku Math.J. 57(2005),231-246.
[5] Pathak R.S.,The Wavelet transform,Atlantis Press/world Scientific,2009.
[6] Pathak R.S. and Dixit M.M.,Continuous and discrete Bessel Wavelet transforms,J.Comput. Appl.Math. 160,1-2(2003)241-250.
[7] Pathak R.S. and Pandey P.K.,Sobolev-type spaces associated with Bessel operator,J.Math.Anal.Appl. 215(1997),95-111.
[8] Zemanian A.H.,Generalized Integral Transformations,Interscience Publishers,New York,1968.

