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Abstract
The topological view for connectedness is more general and is applied for topologies on discrete sets. Rough thinking is
one of the topological connections to uncertainty. The purpose of this paper is to introduce connectedness in

approximation spaces using semi-open sets and rough set notions. The definition of semi-rough connected topologized
approximation space is introduced.
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1. Preliminaries

This section presents a review of some fundamental notions of topological spaces and rough set theory.

A topological space [4] is a pair(X,T) consisting of a set X and family 7 of subsets of X satisfying the following
conditions:

(M) pet and X 7.

(T2) 7 is closed under arbitrary union.

(T3) 7 is closed under finite intersection.

Throughout this paper (X,r) denotes a topological space, the elements of X are called points of the space, the
subsets of X belonging to 7 are called open sets in the space, the complement of the subsets of X belonging to T
are called closed sets in the space, and the family of all 7 — closed subsets of X is denoted by 7. The family 7 of
open subsets of X is also called a topology for X . A subset A of X in a topological space (X,Z’) is said to be

clopen if it is both open and closed in (X ) 2').

A family BC 7 is called a base for (X,T) iff every nonempty open subset of X can be represented as a union of
subfamily of B . Clearly, a topological space can have many bases. A family S < 7 is called a subbase iff the family of

all finite intersections of S is a base for (X,Z’).

The 7 -closure of a subset A of X is denoted by A” anditis givenby A" =~{F c X :AcFand Fer'}.

Evidently, A"~ is the smallest closed subset of X which contains A . Note that A is closed iff A= A". The 7 -interior
of a subset A of X isdenoted by A" anditis givenby A° = {G < X :G < Aand G e z}. Evidently, A’ is the

largest open subset of X which contained in A . Note that A is openiff A= A".

A subset A of X in a topological space (X,T) is called semi-open [6] (briefly S -open) if AC A" . The complement
of a S-open set is called S-closed. The family of all S-open (resp. S -closed) sets is denoted by SO(X) (resp.
SC(X)). The S-closure of a subset A of X is denoted by A°" and it is defined by
A =n {F cX:AcFand F e SC(X)}. Evidently, A°" is the smallest S-closed subset of X which
contains A. Note that A is S-closed iff A= A°". The S -interior of a subset A of X is denoted by A* and it is
defined by A*° =U {G cX:GcAand Ge SO(X)}. Evidently, A®° is the largest S -open subset of X which
contained in A . Note that A is S -openiff A= A°° .0

Motivation for rough set theory has come from the need to represent subsets of a universe in terms of equivalence classes
of a partition of that universe. The partition characterizes a topological space, called approximation space K = (X, R),

where X is a set called the universe and R is an equivalence relation [7, 8]. The equivalence classes of R are also
known as the granules, elementary sets or blocks. We shall use RX to denote the equivalence class containing X € X,

and X /R to denote the set of all elementary sets of R . In the approximation space K = (X, R), the upper (resp.
lower) approximation of a subset A of X is given by

RA={xe X :R nA=¢} (resp. RA={xe X :R, c A}).

Pawlak noted [8] that the approximation space K = (X, R) with equivalence relation R defines a uniquely topological
space (X,T) where 7 is the family of all clopen sets in (X,T) and X /R is abase of 7 . Moreover, the upper ( resp.
lower ) approximation of any subset A of X is exactly the closure ( resp. interior ) of A.

If R is a general binary relation, then the approximation space K :(X, R) defines a uniquely topological space
(X,Z'K) where 7, is the topology associated to K (.e. T is the family of all open sets in (X,TK) and

S={XRZXEX}isasubbaseof Ty . Where xR={yeX :ny})[z, 5].
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Definition 1.1 [2]. Let K = (X,R) be an approximation space with general relation R and 7, is the topology

associated to K . Then the triple K = (X, R, TK) is called a topologized approximation space.

Definition 1.2 [2]. Let k= (X, R,TK) be a topologized approximation space and A < X . The upper (resp.
lower ) approximation of A is denoted by RA (resp. R A) and itis defined by

RA=A" (resp. RA=A"),

Proposition 1.1 [2]. Let kK = (X, R, TK) be a topologized approximation space. If A and B are two subsets of
X, then

i) RAc AcRA.

i) Rp=Rpg=¢pand RX=RX =X.
i) If AcB,then RACRB.

vy If AcB,then RACRB.

v R(X-A)=X-RA.

vi  R(X—-A)=X-RA.

Definition 1.3 [2]. Let k = (X, R, Z’K) be a topologized approximation space and A < X . The S -upper (resp.
S -lower) approximation of A is denoted by Rs A (resp. R, A) and it is defined by

RsA=A° (resp. R;LA=A).

Proposition 1.2 [2]. Let Kk = (X, R, TK) be a topologized approximation space. If A and B are two subsets of
X | then

)  R,AcCACRA

i) R.¢=Rsg=¢and R,X=RsX =X.
i) If AcB,then RRACR,B.

iv) If AcB, then R{AcR:B.

v R(X-A)=X-R:A.

\Y

)  Rs(X—A)=X-R,A.

2. Semi-rough connected topologized approximation spaces

The present section is devoted to introduce the concept of semi-rough connectedness in approximation spaces with
general binary relations. The following two definitions introduce concepts of definability for a subset A of X in a
topologized approximation space K = (X, R, 7« )

Definition 2.1 [2]. Let k = (X, R, rK) be a topologized approximation space and A C X . Then
i) A is called totally R — definable (exact) setif RA= A= RA,

i) A is called internally R — definable setif A=RA,
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iii) A is called externally R — definable setif A=RA,

iv) A iscalled R —indefinable (rough) setif A= RA and A# RA.

Definition 2.2 [1]. Let k¥ = (X, R, Z'K) be a topologized approximation space and A C X . Then
i) A is called totally S -definable (S -exact) setif R, A= A= R A,
iy A is called internally S -definable setif A=R A,
iii) A is called externally S -definable setif A= Rs A,

iv) A is called S -indefinable (S -rough) setif A= R, A and A # RsA.

Remark 2.1. Let x = (X, R, TK) be a topologized approximation space and AC X .
— If A is exact set, then itis both internally R — definable and externally R — definable set.
— If Ais S-exact set, then it is both internally S -definable and externally S -definable set.

- RA isthe largest internally R — definable set contained in A .

- R, A isthe largest internally S -definable set contained in A .
- R A is the smallest externally R — definable set contains A .

- ﬁs A is the smallest externally S -definable set contains A .

Lemma 2.1. Let kx = (X, R, TK) be a topologized approximation space and A X . Then
i) A isexactsetif and only if X — A is exact.
i) Ais S-exactsetifandonlyif X — A is S -exact.

i) A is internally R —definable (resp. externally R —definable) set if and only if X — A is externally
R — definable (resp. internally R — definable) set.

iv) A is internally S -definable (resp. externally S -definable) set if and only if X — A is externally S -definable
(resp. internally S -definable) set.

Proof. By using Proposition 1.1 and Proposition 1.2, the proof is obvious. o

The following definition introduces the concept of semi-rough disconnected topologized approximation space.

Definition 2.3. Let K'=(X, R,TK) be a topologized approximation space. Then X is said to be semi-rough

(briefly S -rough) disconnected if there are two nonempty subsets A and B of X such that
AUB=X and ANRB=RsAnB=4¢.
The space K = (X, R, Z'K) is said to be S -rough connected if it is not S -rough disconnected.

Proposition 2.1. Let k= (X, R,Z'K) be a topologized approximation space. If X has a nonempty S -exact
proper subset A, then K = (X, R, TK) is S -rough disconnected.

Proof. Suppose that A is a nonempty S -exact proper subset of X . Then by Lemma 2.1, we get B = X — A is also
a nonempty S -exact proper subset of X . Hence AUB =X and ANRsB=ANB=RsAnB=¢.

Thus K = (X, R, TK) is S -rough disconnected. o
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Example 2.1. Let K=(X,R,Z‘K) be a topologized approximation space such that X ={a,b,c,d} and
R= {(a, a),(b,b),(d,d),(a, b),(b,a)}. Then aR ={a,b}=bR, cR =¢ and dR={d}. Hence

S = {p.{d}.{a,b}}. B={X,s{d}.{a,b}}. 7, ={X,s.{d}.{a,b}.{a,b,d}},
SO(X) = {X,¢,{d}.{a,b}.{c,d}.{a,b,c},{a,b,d }}

and
SC(X) = {4, X {a,b,c}.{c,d}.{a,b},{d}.{c}}

since A={c,d} is a nonempty S-exact proper subset of X , then the space KZ(X,R,TK) is S -rough
disconnected.

Proposition 2.2. Let k = (X, R, TK) be a S -rough disconnected topologized approximation space, then there is
a nonempty S -exact proper subset of X .

Proof. Let K‘:(X, R,TK) be a S-rough disconnected topologized approximation space. Then there exist two
nonempty subsets A and B of X such that

AUB=X and ANRsB=RsAnB=¢.But ACRsA hence ANB =¢.Thus A= X —B. Also
A=X —RsB,since AMRsB=¢ and AURsBSAUB= X .Hence A=R, A and B = R B . Similarly

B=R,B and A= Rs A. Therefore there exists a nonempty S -exact proper subset A of X . o

Theorem 2.1. A topologized approximation space kK = (X, R,TK) is S -rough disconnected if and only if there
exists a nonempty S -exact proper subset of X .

Proof. By using Proposition 2.1 and Proposition 2.2, the proof is obvious. o

Definition 2.4 [3]. Let K:(X,Ri,Z'K), &= (Y, RZ,TQ) be two topologized approximation spaces. Then a
mapping T : &k — @ is called S -rough continuous if f 71(R2V)<; Rls B (V) for every subset V of Y in &.

In Definition 2.4, f o does not mean the inverse function, but it means the inverse image.

Theorem 2.2. Let f :x —> @ be a mapping from a topologized approximation space K‘:(X,Rl,Z'K) to a

topologized approximation space & = (Y, R2 1 Tg ) Then the following statements are equivalent.
i) f is S-rough continuous.
ii) The inverse image of each internally R, — definable setin & is internally S -definable setin « .

iii) The inverse image of each externally R2 — definable setin & is externally S -definable setin x .
iv) f (ES A)g R_2 f(A) for every subset A of X in k.
V) ES f 71(B)g ft (R_2 B) for every subset B of Y in &@.

Proof.

(iy=>(ii) Let f be S-rough continuous and let V be an internally R, —definable setin & . Then R,V =V

and f 71(V) is a subset of X in &. By (i), we get
(V)= *(RV)cR, V). Then

fAV)cR, f1(V).BuR_f*V)c f (V). Hence

2844 |Page December 23, 2014



)

ISSN 2347-1921

f\V)= R, f (V). Therefore f (V) is intemnally S -definable setin .

(i)=>() Let A be a subset of Y in . Since R, AC A, then f’l(&A)g f *(A). But R A is
internally R, — definable setin &, then by (ii), we get f _l(Rz A) is internally S -definable setin x contained
in f *(A). Hence f ‘1(& A)c R fHA)cf™ (A)_,since R, f (A) is the largest internally S -
definable set contained in f *(A). Thus f ’l(& A)c R, f(A) for every subset A of Y in @.

Therefore f is S -rough continuous.

(i)=> (i) Let F be an externally R, —definable set in &, then by Lemma 2.1, we get Y —F is internally
2
R, — definable. Thus by (ii), we have f - (Y - F) is internally S -definable setin x .

Since f (Y — F): X —f 71(F), then X — f 1 (F) is internally S -definable set in & . Hence f 71(F)

is externally S -definable setin K.

Similarly we can prove (iii) = (ii).

(i)=>(iv) Let A be a subset of X in K, then R_2 f(A) is an externally R, —definable set in ¢ . Hence
Y-R,f(A) is internally R, —definable set in @&. Thus by (i), we get
f (Y ~R, f(A)): X—f™ (ﬁz f(A)) is internally S -definable set in &, and so f _1<R_2 f(A)) is
externally S -definable set containing A in k. Thus AQES Ac f _1(R_2 f(A)), since ES A is the

smallest externally S -definable set containing A in x . Hence
tR.A)c £t (R, f(A)|<R, £(A)
Therefore f (Es A)gR_2 f (A) for every subset A in &
()= (v) Let B beasubsetof Y in @.Let A= f *(B), then A isasubsetof X in i . By (iv), we get
fRL AR, f(A)=R, f(f *(B))<R,B.
Hence Ry, Ac f (R, B). Thus R,A=R,_ f *(B)< f (R, B).
Therefore R f *(B)c f (ﬁz B) for every subset B of Y in &.

(v)=>(ii) Let G be an internally R, —definable setin &, then B =Y —G is externally R, — definable set in
@ . Thus by (v), we get

R.t*(@®)cf(R,B)

Since B is externally R, — definable set, then f ° (ﬁz B): f (B) Thus ﬁls ft (B)g f 71(8). But
f*(B)c ﬁls f *(B), then ES f *(B)=f *(B).Hence f *(B) isextemally S -definable setin & .

since f ! (B)z f (Y —G)z X—-f? (G) then X —f 1 (G) is externally S -definable set in K.

Therefore f (G) is internally S -definable setin K. o

Example 2.2. Let K=(X,R1,Z'K), £?=(Y,R2,TQ) be two topologized approximation spaces such that
X :{a,b,c, d}’ Y ={y1, Y21 Y3, y4},

R =1{(a,a),(b,b),(d,d),(a,b),(b,a)} and R, ={(¥1, 1), (Y4, Va). (V1. ¥2)}. Then
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Tk = {X ,¢.{d}.{a,b}.{a, b’d}} and 75 = {Y,¢,{y4},{y1, Yo AYis Yo y4}}' Hence
SO(X) ={X,¢,{d}{a,b}{c.d}.{a,b,c},{a,b,d}}.

Define a mapping f : x — @ such that
f@=y, fb)=y, f(c)=y, and f(d)=y,.

Then f is not a S-rough continuous mapping, since V ={y,} is an internally R, —definable set in &, but

f (V ) ={cC} is not an internally S -definable setin « .

Proposition 2.3. Let K:(X,Rl,TK) and QZ(Y,RZ,TQ) be two topologized approximation spaces. If

f : kx — @ is a S -rough continuous mapping, then the inverse image of each exact setin & is S -exact setin x .

Proof.Let A be an exact setin &, then A is both internally and externally R, —definable set in & . Hence by

Theorem 2.2, we get f - (A) is both internally and externally S -definable set in & . Therefore f - (A) is a S -exact
setin K. o
3. Conclusions

In this paper, we used S -open sets to introduce the definition of S -rough connected topologized approximation space.
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