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Abstract 

The topological view for connectedness is more general and is applied for topologies on discrete sets. Rough thinking is 
one of the topological connections to uncertainty. The purpose of this paper is to introduce connectedness in 
approximation spaces using semi-open sets and rough set notions. The definition of semi-rough connected topologized 
approximation space is introduced. 
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1. Preliminaries 

This section presents a review of some fundamental notions of topological spaces and rough set theory. 

A topological space [4] is a pair  ,X  consisting of a set X  and family   of subsets of X  satisfying the following 

conditions: 

(T1)    and X . 

(T2)   is closed under arbitrary union. 

(T3)   is closed under finite intersection. 

Throughout this paper  ,X  denotes a topological space, the elements of X  are called points of the space, the 

subsets of X  belonging to   are called open sets in the space, the complement of the subsets of X  belonging to   

are called closed sets in the space, and the family of all  closed subsets of X  is denoted by 
* . The family   of 

open subsets of X  is also called a topology for X . A subset A  of X  in a topological space  ,X  is said to be 

clopen if it is both open and closed in  ,X . 

A family   is called a base for  ,X  iff every nonempty open subset of X  can be represented as a union of 

subfamily of   . Clearly, a topological space can have many bases. A family S  is called a subbase iff the family of 

all finite intersections of S  is a base for  ,X . 

The  -closure of a subset A  of X  is denoted by 
A   and it is given by }and:{ * FFAXFA . 

Evidently, 
A  is the smallest closed subset of X  which contains A . Note that A  is closed iff 

 AA . The  -interior 

of a subset A  of X  is denoted by 
A  and it is given by }and:{  GAGXGA

. Evidently, 
A  is the 

largest open subset of X  which contained in A . Note that A  is open iff 
AA  . 

A subset A  of X  in a topological space  ,X  is called semi-open [6] (briefly s -open) if 
 AA . The complement 

of a s -open set is called s -closed. The family of all s -open (resp. s -closed) sets is denoted by )(XOS  (resp. 

)(XCS ). The s -closure of a subset A  of X  is denoted by 
sA   and it is defined by 

 )(and: XCSFFAXFA s 
. Evidently, 

sA  is the smallest s -closed subset of X  which 

contains A . Note that A  is s -closed iff 
 sAA . The s -interior of a subset A  of X  is denoted by 

sA  and it is 

defined by  )(and: XOSGAGXGA s 
. Evidently, 

sA  is the largest s -open subset of X  which 

contained in A . Note that A  is s -open iff 
sAA  .0  

Motivation for rough set theory has come from the need to represent subsets of a universe in terms of equivalence classes 

of a partition of that universe. The partition characterizes a topological space, called approximation space  RXK , , 

where X  is a set called the universe and R  is an equivalence relation [7, 8]. The equivalence classes of R  are also 

known as the granules, elementary sets or blocks. We shall use xR  to denote the equivalence class containing Xx , 

and RX /  to denote the set of all elementary sets of R . In the approximation space  RXK , , the upper (resp. 

lower) approximation of a subset A  of X  is given by 

  ARXxAR x:    ARXxAR x  :resp. . 

Pawlak noted [8] that the approximation space  RXK ,  with equivalence relation R  defines a uniquely topological 

space  ,X  where   is the family of all clopen sets in  ,X  and RX /  is a base of  . Moreover, the upper ( resp. 

lower ) approximation of any subset A  of X  is exactly the closure ( resp. interior ) of A . 

If R  is a general binary relation, then the approximation space  RXK ,  defines a uniquely topological space 

 KX ,  where K  is the topology associated to K  (i.e. K  is the family of all open sets in  KX ,  and 

 XxxR  :S  is a subbase of K , where  yRxXyxR : ) [2, 5]. 
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Definition 1.1 [2]. Let  RXK ,  be an approximation space with general relation R  and 
K  is the topology 

associated to K . Then the triple  KRX  ,,  is called a topologized approximation space. 

 

Definition 1.2 [2]. Let  KRX  ,,  be a topologized approximation space and XA . The upper (resp. 

lower ) approximation of A  is denoted by AR           (resp. AR ) and it is defined by  

 AAR  (resp. 
AAR  ). 

Proposition 1.1 [2]. Let  KRX  ,,  be a topologized approximation space. If A  and B  are two subsets of 

X , then 

i) ARAAR  . 

ii)   RR  and XXRXR  . 

iii) If BA , then BRAR  . 

iv) If BA , then BRAR  . 

v)   ARXAXR  . 

vi) ARXAXR  )( . 

Definition 1.3 [2]. Let  KRX  ,,  be a topologized approximation space and XA . The s -upper (resp. 

s -lower) approximation of A  is denoted by AR s  (resp. ARs ) and it is defined by  

 s
s AAR  (resp. 

s
s AAR  ). 

Proposition 1.2 [2]. Let  KRX  ,,  be a topologized approximation space. If A  and B  are two subsets of 

X , then 

i) ARAAR ss   

ii)   ss RR  and XXRXR ss  . 

iii) If BA , then BRAR ss  . 

iv) If BA , then BRAR ss  . 

v)   ARXAXR ss  . 

vi)   ARXAXR ss  . 

2. Semi-rough connected topologized approximation spaces 

The present section is devoted to introduce the concept of semi-rough connectedness in approximation spaces with 

general binary relations. The following two definitions introduce concepts of definability for a subset A  of X  in a 

topologized approximation space  KRX  ,, . 

Definition 2.1 [2]. Let  KRX  ,,  be a topologized approximation space and XA . Then 

i) A  is called totally R definable (exact) set if ARAAR  , 

ii) A  is called internally R definable set if ARA , 
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iii) A  is called externally R definable set if ARA  , 

iv) A  is called R indefinable (rough) set if ARA  and ARA  . 

Definition 2.2 [1]. Let  KRX  ,,  be a topologized approximation space and XA . Then 

i) A  is called totally s -definable ( s -exact) set if ARAAR ss  , 

ii) A  is called internally s -definable set if ARA s , 

iii) A  is called externally s -definable set if ARA s , 

iv) A  is called s -indefinable ( s -rough) set if ARA s  and ARA s . 

 

Remark 2.1. Let  KRX  ,,  be a topologized approximation space and XA . 

 If A  is exact set, then it is both internally R definable and externally R definable set. 

 If A  is s -exact set, then it is both internally s -definable and externally s -definable set. 

 AR  is the largest internally R definable set contained in A . 

 ARs  is the largest internally s -definable set contained in A . 

 AR  is the smallest externally R definable set contains A . 

 AR s  is the smallest externally s -definable set contains A . 

Lemma 2.1. Let  KRX  ,,  be a topologized approximation space and XA . Then 

i) A  is exact set if and only if AX   is exact. 

ii) A  is s -exact set if and only if AX   is s -exact. 

iii) A  is internally R definable (resp. externally R definable) set if and only if AX   is externally 

R definable (resp. internally R definable) set. 

iv) A  is internally s -definable (resp. externally s -definable) set if and only if AX   is externally s -definable 

(resp. internally s -definable) set. 

Proof. By using Proposition 1.1 and Proposition 1.2, the proof is obvious.      □ 

The following definition introduces the concept of semi-rough disconnected topologized approximation space. 

Definition 2.3. Let  KRX  ,,  be a topologized approximation space. Then   is said to be semi-rough 

(briefly s -rough) disconnected if there are two nonempty subsets A  and B  of X  such that 

 BARBRAXBA ssand . 

The space  KRX  ,,  is said to be s -rough connected if it is not s -rough disconnected. 

Proposition 2.1. Let  KRX  ,,  be a topologized approximation space. If  X  has a nonempty s -exact 

proper subset A , then  KRX  ,,  is s -rough disconnected. 

Proof. Suppose that A  is a nonempty s -exact proper subset of X . Then by Lemma 2.1, we get AXB   is also 

a nonempty s -exact proper subset of X . Hence XBA   and  BARBABRA ss . 

Thus  KRX  ,,  is s -rough disconnected.      □ 
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Example 2.1. Let  KRX  ,,  be a topologized approximation space such that },,,{ dcbaX   and 

 ),(),,(),,(),,(),,( abbaddbbaaR  . Then bRbaaR  },{ , cR  and }{ddR  . Hence 

 },{},{, badS ,  },{},{,, badX  ,  },,{},,{},{,, dbabadXK   ,  

  dbacbadcbadXXSO ,,},,,{},,{},,{},{,,)(   

and 

 .}{},{},,{},,{},,,{,,)( cdbadccbaXXCS   

Since },{ dcA   is a nonempty s -exact proper subset of X , then the space  KRX  ,,  is s -rough 

disconnected. 

Proposition 2.2. Let  KRX  ,,  be a s -rough disconnected topologized approximation space, then there is 

a nonempty s -exact proper subset of X . 

Proof. Let  KRX  ,,  be a s -rough disconnected topologized approximation space. Then there exist two 

nonempty subsets A  and B  of X  such that 

 BARBRAXBA ssand . But ARA s , hence  BA . Thus BXA  . Also 

BRXA s , since  BRA s  and XBABRA s  . Hence ARA s  and BRB s . Similarly 

BRB s  and ARA s . Therefore there exists a nonempty s -exact proper subset A  of X .      □  

Theorem 2.1. A topologized approximation space  KRX  ,,  is s -rough disconnected if and only if there 

exists a nonempty s -exact proper subset of X . 

Proof. By using Proposition 2.1 and Proposition 2.2, the proof is obvious.      □ 

Definition 2.4 [3]. Let  KRX  ,, 1 ,  
QRY ,, 2Q  be two topologized approximation spaces. Then a 

mapping Q:f  is called s -rough continuous if    VfRVRf
s

1

12

1    for every subset V  of Y in Q . 

In Definition 2.4, 
1f  does not mean the inverse function, but it means the inverse image. 

Theorem 2.2. Let Q:f  be a mapping from a topologized approximation space  KRX  ,, 1  to a 

topologized approximation space  
QRY ,, 2Q . Then the following statements are equivalent. 

i)  f  is s -rough continuous. 

ii) The inverse image of each internally 2R definable set in Q  is internally s -definable set in  . 

iii) The inverse image of each externally 2R definable set in Q  is externally s -definable set in  . 

iv)    AfRARf
s 21   for every subset A  of X in  . 

v)    BRfBfR
s 2

11

1

   for every subset B  of Y in Q . 

Proof. 

(i) (ii) Let f  be s -rough continuous and let V  be an internally 2R definable set in Q . Then VVR 2  

and  Vf 1
 is a subset of X  in  . By (i), we get 

     VfRVRfVf
s

1

12

11   . Then 

   VfRVf
s

1

1

1   . But    VfVfR
s

11

1

  . Hence 
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   VfRVf
s

1

1

1   . Therefore  Vf 1
 is internally s -definable set in  . 

(ii) (i) Let A  be a subset of Y  in Q . Since AAR 2
, then    AfARf 1

2

1   . But AR2  is 

internally 2R definable set in Q , then by (ii), we get  ARf 2

1
 is internally s -definable set in   contained 

in  Af 1
. Hence      AfAfRARf

s

11

12

1   , since  AfR
s

1

1


 is the largest internally s -

definable set contained in  Af 1
. Thus    AfRARf

s

1

12

1    for every subset A  of Y  in Q . 

Therefore f  is s -rough continuous. 

(ii) (iii) Let F  be an externally 2R definable set in Q , then by Lemma 2.1, we get FY   is internally 

2R definable. Thus by (ii), we have  FYf 1
 is internally s -definable set in  . 

Since    FfXFYf 11   , then  FfX 1  is internally s -definable set in  . Hence  Ff 1
 

is externally s -definable set in  . 

Similarly we can prove (iii) (ii). 

(ii) (iv) Let A  be a subset of X  in  , then  AfR2  is an externally 2R definable set in Q . Hence 

 AfRY 2  is internally 2R definable set in Q . Thus by (ii), we get 

     AfRfXAfRYf 2

1

2

1    is internally s -definable set in  , and so   AfRf 2

1
 is 

externally s -definable set containing A  in  . Thus   AfRfARA
s 2

1

1

 , since AR
s1  is the 

smallest externally s -definable set containing A  in  . Hence 

       AfRAfRffARf
s 22

1

1  
. 

Therefore    AfRARf
s 21   for every subset A  in  . 

(iv) (v) Let B  be a subset of Y  in Q . Let  BfA 1 , then A  is a subset of X  in  . By (iv), we get 

       BRBffRAfRARf
s 2

1

221  
. 

Hence  BRfAR
s 2

1

1

 . Thus    BRfBfRAR
ss 2

11

11

  . 

Therefore    BRfBfR
s 2

11

1

   for every subset B  of Y  in Q . 

(v) (ii) Let G  be an internally 2R definable set in Q , then GYB   is externally 2R definable set in 

Q . Thus by (v), we get 

   BRfBfR
s 2

11

1

  . 

Since B  is externally 2R definable set, then    BfBRf 1

2

1   . Thus    BfBfR
s

11

1

  . But 

   BfRBf
s

1

1

1   , then    BfBfR
s

11

1

  . Hence  Bf 1
 is externally s -definable set in  . 

Since      GfXGYfBf 111   , then  GfX 1  is externally s -definable set in  . 

Therefore  Gf 1
 is internally s -definable set in  .      □ 

Example 2.2. Let  KRX  ,, 1 ,  
QRY ,, 2Q  be two topologized approximation spaces such that 

},,,{ dcbaX  , },,,{ 4321 yyyyY  ,  

 ),(),,(),,(),,(),,(1 abbaddbbaaR   and  ),(),,(),,( 2144112 yyyyyyR  . Then  
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 },,{},,{},{,, dbabadXK    and  },,{},,{},{,, 421214 yyyyyyYQ   . Hence 

  dbacbadcbadXXSO ,,},,,{},,{},,{},{,,)(  . 

Define a mapping Q:f   such that 

3421 )(and)(,)(,)( ydfycfybfyaf  . 

Then f  is not a s -rough continuous mapping, since }{ 4yV   is an internally 2R definable set in Q , but 

  }{1 cVf 
 is not an internally s -definable set in  . 

Proposition 2.3. Let  KRX  ,, 1  and  
QRY ,, 2Q  be two topologized approximation spaces. If 

Q:f  is a s -rough continuous mapping, then the inverse image of each exact set in Q  is s -exact set in  . 

Proof.Let A  be an exact set in Q , then A  is both internally and externally 2R definable set in Q . Hence by 

Theorem 2.2, we get  Af 1
 is both internally and externally s -definable set in  . Therefore  Af 1

 is a s -exact 

set in  .      □ 

3. Conclusions 

In this paper, we used s -open sets to introduce the definition of s -rough connected topologized approximation space. 
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