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ABSTRACT

In this paper we introduce the definition of standard fuzzy quasi-metric space then we discuss several properties after
we give an example to illustrate this notion. Then we showed the existence of a standard fuzzy quasi-metric space
which is not bicompletable. Here we prove that every bicompletable standard qussi-metric spaceadmits a unique [ up

to F-isometic ] bicompletion.
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INTRODUCTION

In [1] Kider started the study of a notion of standard fuzzy metric space that constitutesan interesting modification of the
notion of metric fuzziness due to George and Veeramani [2]. In this paper we extend the notion standard fuzzy metric
space to a standard fuzzy quasi-metric space. On the other hand, it was presented in [4] an example of a standard fuzzy
metric space that is not completable, also it has been obtained an internal characterization of completable standard fuzzy
metric spaces. Taking these results into account and the fact that the concept of bicompletion provides a theory of compl-
etion to quasi-metric spaces in the classical sense ( for instance see [5]). It seems natural and interesting to discuss the
problem of characterizing standard fuzzy quasi-metric spaces that are bicompletable. The main purpose of this paper is to

solve this problem. Following the modern terminology ( for instance see Section 11 of [5] ) by a quasi-metric on a set X we

mean a function d:Xx X—*[0,30) such that for all x, y, z € X : (i)d(x,y)=d(y,x)=0 if and only if x=y (ii) d(x,y) = d(x,z) + d(z,y)
Each quasi-metric d on X generates a To-topology T 3 which has a base the family of open balls { HE(x) XEX £ >0}
where B_(x)={y € X:d(xy) < £}.

1.STANDARD FUZZY METRIC SPACE

Definition 1.1:[3] A binary operation *: [0,1] x [0,1] — [0,1] is a continuous t-norm if * satisfies the following
conditions:

1- * is associative and commutative.

2- = is continuous.

3-a*l=aforalla € [0,1].

4- a*b < c*d whenever a < c and b < d where a,b, c,d €[0,1].

Remark 1.2:[2] For any ri>r, we can find rzsuch that ri* rz>r, and for any ry we can find an rs such that rs¥rs = r,

where rq,r2,r3,r4,r5 €(0,1).
We introduce the following definition.

Definition 1.3:[1] A triple (X,M,*) is said to be standard fuzzy metric space if X is an arbitrary set, * is a continuous

t- norm and M is a fuzzy set on X2 satisfying the following conditions:
(FM1) M(x,y) >0forall x,y € X

(FM2) M(x,y)=1lifandonlyifx=y

(FMs) M(xy) = M(y,x) for all x, y € X

(FMg) M(x,z) = M(x,y) ¥M(y,z) for all x, y and z € X

(FMs) M(x,y) is a continuous fuzzy set

Example 1.4:[1] Let X= M, and let a*b = a.b for all a, b €[0,1].

= xs
- X=s
. y

Define M(x,y) =

|4

If y<x

forallx, y M. Then (B M,.) is a standard fuzzy metric space.
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Example 1.5:[1] Let Xx=IK and leta*b = a.b for all a, b  [0,1].

Define M(x,y) = forallx,y € & .Then (B,M,.)is a standard fuzzy metric space.

al®—¥l
Definition 1.6:[1] Let (X,M,*) be a standard fuzzy metric space then M is continuous if whenever x,—x and yn—y
in X then M(Xn,yn) —M(x,y) that is 1irm,, _, .. M(Xn,yn) =M(Xy).

Definition 1.7:[1] Let (X,M,*) be a standard fuzzy metric space .Then B(x,r) ={yeX: M(x,y) > 1-r} is an open ball

with center xeX and radiusr, 0 <r < 1.

Proposition 1.8:[1] Let B(x,r1) and B(x,r2) be two open balls with same center x in a standard fuzzy metric

space (X,M,*).Then either B(x,r1) < B(x,r2) or B(x,r2)c B(X,r1) where rq,r>e(0,1).
Definition 1.9:[1] A subset A of a standard fuzzy metric space (X,M,*) is said to be open if given any point a in A
there exists r, 0 <r < 1 such that B(a,r) c A. A subset B is said to be closed if Bis open .
Definition 1.10:[1] Let (X,M,*) be a standard fuzzy metric space and let A X then the closure of A is denoted
by Aor CL(A) and is defined to be the smallest closed set contains A.
Definition 1.11:[1] A subset A of a standard fuzzy metric space (X,M,*) is said to be dense in X if & = X.
Theorem 1.12:[1] Every open ball in a standard fuzzy metric space (X,M,*) is an open set.
Theorem 1.13:[1] Let (X,M,*) is a standard fuzzy metric space. Define Ty;= {AcX: xeA if and only if there exists
0 <r <1 such that B(x,r) ¢ A} Then Ty, is a topology on X.
Theorem 1.14:[1] Every standard fuzzy metric space is a Hausdorff space.

Definition 1.15:[1] A sequence (x») in a standard fuzzy metric space (X,M,*) is said to be converge to a point x in
X if for each r ,0 <r < 1 there exists a positive number N such that M(x»,x) > (1-r) , foreachn =N .
Theorem 1.16:[1] Let (X,M,*) be a standard fuzzy metric space then for a sequence (x») in X converge to x if and
only if lim, _, .. M(x,x) = 1.

Definition 1.17:[1 ] A sequence (x») in a standard fuzzy metric space (X,M,*) is Cauchy if foreachr, 0 <r<1,

there exists a positive number N such that  M(Xn,Xm) > (1-r), for each m, n = N.

Proposition 1.18:[1] Let (X,d) be an ordinary metric space and let a*b = a.b for all a, b  [0,1]. Define

1
Ms(xy) = PEETE then (X, 3,%) is a standard fuzzy metric space and it is called the standard fuzzy metric

¥)
induced by the metric d.

Proposition 1.19:[1] Let (X,d) be a metric space and let (X, 4,%) be the standard fuzzy metric space induced by d.

Let (Xn:] be a sequence in X. Then (Xn:] converges to xeX in (X,d) if and only if (Xn:] converges to x in (X,M,*%).

. 1
Proposition 1.20:[1] Let (X,d) be a metric space and let M4 (x,¥) = - . Then (%,)) is a Cauchy sequence in

dixy)
(X,d) if and only if () is a Cauchy sequence in (X, I\’Id V).

Definition 1.21:[1] Let (X,M,*) be a standard fuzzy metric space. A subset A of X is said to be F-bounded if there
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exists 0 =2 r <2 1 such that, M(x,y) = 1-r, for all x, yeA.

- 1
Proposition 1.22:[1] Let (X,d) be a metric space and let M4 (x,¥) = T then a subset A of X is F-bounded
(xy

if and only if it is bounded .
Definition1.23:[1] A standard fuzzy metric space (X,M,*) is complete if every Cauchy sequence in X converges to a
point in X.

Definition 1.24:[1] Let (X,My,*) and (Y,My,*) be standard fuzzy metric spaces and A c X. A function f:A—Y is said to
be continuous at acA, if for every 0 < € << 1, there exist some 0 < & < 1, such that My (f(x).f(a)) = (1- £) whenever

xeA and Mx(x,a) > (- 5). If f is continuous at every point of A, then it is said to be continuous on A.
Theorem 1.25:[1] Let (X,My,*) and (Y,My,*) be standard fuzzy metric spaces and AcX. A function f:A—Y is continuous
at acA if and only if whenever a sequence (X,) in A converge to a, the sequence (f(,)) converges to f(a).
Theorem 1.26:[1] A function f:X—Y is continuous on X if and only if f~1(G) is open in X for all open subset G of Y.
Theorem 1.27:[1] A mapping f:X—Y is continuous on X if and only if f ~1(F) is closed in X for all closed subset F of Y.
Lemma 1.28:[1] Let A be a subset of a standard fuzzy metric space (X,M, *) then acA if and only if there is a sequence
(&g) in A such that 2, — a.
Theorem 1.29:[1] Let A be a subset of a standard fuzzy metric (X,M,*) then A is dense in X if and only if for every xeX
there is aeA such that M(x,a) == 1- £ for some 0 <= £ << 1.
Definition 1.30:[4] Let (X,M,,,*) and (Y,M+,*) be any two standard fuzzy metric spaces. A mapping f:X—Y which

is both one-to-one and onto is said to be a homeomorphism if and only if the mapping f and f "L are continuous on

X and Y, respectively. Two standard fuzzy metric spaces X and Y are said to be homeomorphic if and only if there

exists a homeomorphism of X onto Y, and in this case, Y is called a homeomorphic image of X.

Remark 1.31:[4] If X and Y are homeomorphic, the homeomorphism puts their points in one-to-one correspondence
in such a way that their open sets also correspond to one another. For standard fuzzy metric space X and Y, let X~Y
means that X and Y are homeomorphic. It is easily verified that the relation is reflexive, symmetric and transitive.
Definition 1.32:[4] A mapping f from a standard fuzzy metric space (X,M,*) into a standard fuzzy metric space
(Y, My, #) is an F-isometry if My (f(x),f(y)) = My (x,y) for all x, yeX. It is obvious that an F-isometry is one-to

-one and uniformly continuous. X and Y are said to be F-isometric if there exists an F-isometry between them that

is onto. An F-isometry is necessarily a homeomorphism but the converse is not true.

Proposition1.33:[4] Let (X,d) be a metric space and let (X, M3,*) be the induced standard fuzzy metric space .

Let (Y,a) be another metric space and let (Y,Na ,¥) be the induced standard fuzzy metric space. Let :X—Y
be a mapping then f is isometry if and only if f is F-isometry.

Theorem 1.34:[4] Let A be a dense subset of a standard fuzzy metric space (X,M,*). If every Cauchy sequence of
point of A converges in X then (X,M,*¥) is complete.

Proof: Let (x,) be a Cauchy sequence in X, since A is dense then for every X, eX there is &, €A such that M(¥,,, ;) =
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(1- s) for some 0 =< s = 1 by Theorem 1.29 Then by Remark 1.2 there is (1- £)£(0,1) such that
(1- s) #(1- 5) = (1- £).
Since (X,) is Cauchy so (&) is Cauchy so &, —x by assumption. Now M(X, ,X) = M(X,, &,) ¥ M(@,.X) =
(1- s) # (1- s) = (1- £). Hence X, —x W
Definition 1.35:[4] Let (X,M,*) be a standard fuzzy metric space. A completion of (X,M,*) is a complete standard

fuzzy metric space (Y,N,*) such that (X,M,*) is F-isometric to a dense subset of Y.
In [4] it was presented the following example of a standard fuzzy metric space that is not completable.

Example 1.36: Let a=b = max{0, a + b -1} for all a, be[0,1] . Now let {X,;:n = 3,4, 5,... .20} and {¥,,: n = 3,4,...,00}

be two sequences of distinct points such that AMB = @ where A= {£,:n = 3}and B ={¥,: n = 3}. Put X = AUB,

1
define M : XxX— [0,1] as follows : M(Xy,,X,1) = M(Vyy ¥om) = 1- [ - 7 Where n/\m = min{n,m} and nVm =

nf\m
1 1
max{n,m}. M(¥X, ,¥m) = MF . X5) = ; + ;

It was shown that (X,M,*®) is a standard fuzzy metric space and (X,M,#¥) is not completable.
Definition 1.37:[4] A standard fuzzy metric space (X,M,*) is called completable if it admits a completion.

Theorem 1.38:[4] Every completable standard fuzzy metric space admits a completion.
2.STANDARD FUZZY QUAS-METRIC SPACE

Definition 2.1: The triple (X,M,*) is called a standard fuzzy quasi-metric space where X is a nonempty set, * is a
continuous t-norm

and M is a fuzzy set on XxX satisfying the following conditions:
(1) For all x, yeX, M(x,y) = 0

(2) M(x,y) = M(y,x) =1 ifand only if X =y

(3) M(x,y) = M(y,z) = M(x,z) for all x, y, zeX

(4) M is a continuous fuzzy set

Propostion 2.2: If (X,M,*) is a standard fuzzy quasi-metric space then define M~ xxX[0,1] by : MY (xy) = M(y,x)
for all x, yeX.

Then (X, M _1,*) is a standard fuzzy quasi-metric space.
Proof: (1) M_l(x,y) == 0 since M(y,x) = 0 for all x, yeX
(2)M " Y(xy) = 1if and only if M(y,x) =1 = M(xy) <y = X
3) M xy) * M~ Y(y,2) = M(y.x) * M(zy)

=M(z)y) * M(y,x)

< M@zx) = M 1x2)
@) M™% is continuous since M is continuous.

Therefore (X, M _1,*) is a standard fuzzy quasi-metric space B
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Proposition 2.3: Let (X,M,*) be a standard fuzzy quasi-metric space. Define G:X¥X—[0,1] by: G(x,y) = min{M(x,y),
M _1(x,y)}. Then

(X,G,*®) is a standard fuzzy space. We shall refer to (X,G,*) as the standard fuzzy metric induced by (X,M, *).

Proof: Itis sufficient to show that G(x,y) = G(y,x) for each x, yeX.If G(x,y) = M(x,y) then G(y,x) must equal to M_l(y,x)
butM_l(y,x) = M(x,y) that is G(x,y) = M(x,y).Hence G(x,y) = G(y,x). Similarly if G(x,y) = M _1(x,y) then G(x,y) =

G(y,X). Therefore (X,G,¥) is a standard fuzzy metric space B

Proposition 2.4: Let (X,M,* ) be a standard fuzzy quasi-metric space. Then Ty ={Ac X:acA < 31,0 < r < 1, such
that

B(a,r) c A} is a topology on X.

Proof: The proof is similar to the proof of Theorem 1.13, hence is omitted.

Example 2.5: Let (X,d) be an ordinary quasi-metric space and let M 3 be the function defined on XX to [0,1] by: M 3(x,y)

1

T’) . Then for each continuous t-norm *, (X,M 3,*) is a standard fuzzy quasi-metric space,which is called
(x5

the standard fuzzy induced by the quasi-metric d. Furthermore, it is easy to check that (Md] 1is M -2 and

Gg = Mgs where d ™ (xy) = d(y.x), d®(xy) = max {d(xy), d " (xy)} ,Ga(xy) = min{ Ma(xy), M3 (xy)} ®

Definition 2.6: A standard fuzzy quasi-metric space (X,M,*) is called bicomplete if (X,G,*) is a complete standard fuzzy

metric space.

Definition 2.7: Let (X,M,*) be a standard fuzzy quasi-metric space. A bicompletion of (X,M,*) is a bicomplete standard
fuzzy quasi-

metric space (Y,N,*) such that (X,M, *) is F-isometric to a dense subset of Y.
Lemma 2.8: Let (X,M,*) be a standard fuzzy quasi-metric space. Denote by S the collection of all Cauchy sequence in
(X,G,*®).
Define a relation ~ on S by (X,,) ™ () if and only if lim G(x,,%,) = 1, where by lim G(x,, %,,) we denote the lower
limit of the sequence (G(¥,,%,)) i.e im G(x,, %) = supyinf_ . G(x, %,). Then ~ is an equivalence relation on S.
Proof: 1- ~ is reflexive because G(X,,, X,,) = 1 for all neN so (¥,) ™~ (X,)
2-1f (*y,) ™ (Fg), itimmediately follows that (¥,) ™ (¥,) because

G(¥y,, ¥n) = G(¥y, Xy) forallneN, So that

lim Gy, %,)=lim G(x,, ¥,)=1
3- ~~ is transitive, suppose that (X,,) ~ (¥,) and (¥) ™~ (Z,). We shall

prove lim G(x,,2,,) = 1. Since (¥,) ~ (¥,) then lim G, ¥,) = 1.

Also (V) ™~ (Z,) so lim G(v,,,z,) = 1 for all neN.

Now G(¥y,Z,) = G(¥p,¥n) * G(Vn,Zy)
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h_m G(¥y,2q) = 11_1]’1 G(Xp.¥n) * 11_1]’1 GC(¥n:Zn)

Hence lim G(x,,z,)=1m

Lemma 2.9; Define M_((%,).(V,,)) = lim M(x,,.¥,,) for all (X,), (¥V;,)eS where M_: SXS—[0,1]. Then M_ satisfies 1, 3
and
4 of Definition 2.1.

Proof: 1- M_((%,,), (V) = 0 because M(X,,.¥,) = 0 so, lim m(x,¥,) = 0.

3- Let (%), (¥n) [zn)es and put ¢t = Ms((xn)v(}?n))v B = Ms((}?n)v(zn))

and Y = M_((X,),(Z,)). We shall show that ct * E ZVy.fa=0or B = 0 the conclusion is obvious. So we

assume that @ = 0 and 3 = 0. Choose an arbitrary £ (0, min tc:f}). Then (at—£) < M_((£,),(¥a))

and (B - £) << M_((¥,).(Z,)). Furthermore, there exists N such that for all k > N
M ((%5),(Yn)) — € < M(F, ¥1) - And M ((¥),(Z0)) - € < M (Vie, Z)
Then (& - 2€) * (B - 28) = [M((%,),.(Va)) - €] * Mo((V4),(Z5)) - €]
= M(Xy, Vi) * M(Vy, )
= M(Xy,Z) forall k = N,
Therefore (&t — 2£) * (B - 2g) < infy . N, M(Ey, Z)
= lim Mex, 2,) = ¥
By continuity of #, it follows that ¢ * B =< y
4- M, is continuous because M is continuous W
Notation 2.10: We denote the quotient >/~ by X and [(,)] the class of the element () of S.
Lemma 2.11: 1f (x,) ~ (@) and (V) ™~ (b,) Then M, ((x,),(vy)) = M ((2,),(b,)).
Proof: M ((%,),(Vn)) = M ((%0).(25)) * M((2,).(by)) * M, ((by),(v,))
=M. ((a,).(bp))
Thus M, ((%,).(va)) = Mo ((2,).(by)) . Now
M. ((35).(bn)) = Mo((2,),(x5)) * Mo((%,),n) * Mo ((¥0).(by))
= M (%))
So, Mc((a,)(bn)) = M((%,),(¥n))- Therefore M ((%,),Vq)) = Mo((2,),(by)) ®

Definition 2.12: For each [(%y,)], [(V5)]X define M([(,)1IV,)]) = Mo ((%,).(¥,)). Then M is a function from X % X to
[0,1] and it is

well defined by Lemma 2.11. Also we define T:X—X such that for each xeX, T(x) is the class of constant sequence

Now, from the above construction we obtain the main result in this section.
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Theorem 2.13: Let (X,M,*) be a standard fuzzy quasi-metric space.
@) (E,IT*I,*) is a standard fuzzy quasi-metric space

(b) T(X) is dense in (X, M, *)

(c) (X,M,*) is F-isometry to (T(X),Iﬁ,*)

(d) (E,IT*I,*) is bicomplete

Proof (a): M satisfies conditions 1, 3 and 4 of Definition 2.1 as an immediate consequence of Lemma 2.9. Now, let (¥,),

¥n)

€S such that ﬁ([(xn)],[(yn)]) =1.If (zn)e[(yn)] it follows that from Lemma 2.11 that MS([ZH),(}FH)) = 1. The same
argument shows that (zn)e[[xn)] implies that I\"IS([ZH),(K”)) = 1. We conclude that Iﬁ([(xn)],[(yn )]) = 1 if and only if
[(®)] = [(F)] Hence (E,IF':'I,*) is a standard fuzzy quasi-metric space B

Proof (b): Let (%,)eS and 0 <= £ < 1. Since (¥,) is Cauchy sequence in (X,M,*) then there is N such that M(xk,xysj
=

(1-=) forallk>N,

&

Thus M) T () = Ma((£), TC,)

= sup,infi . , My _)

We have shown that T(X) is dense in (E,IT'I,*) |
Proof (¢): This is almost obvious because for each x, yeX, we have M(Tx, Ty) = M(x, y) B
Proof (d): Let G([En) 1)) = min { M) 1D, M (%) [0 }
Let (in] be a Cauchy sequence in (ﬁ,a,*), then there is an increasing sequence (I1y) in N such that ﬁ(f:n ,im) =(1-
275 forall n, m = 0y . Since T(X) is dense in (X, G,*) then for each keN there is ¥, eX such that ﬁ(ﬁnk,T () =
(1- Z_R) for all keN. We show that (¥}) is a Cauchy sequence in (X,G,#*). To this end, choose 0 =< £ <I 1. Take jeN
such that (1- Z_j) *(1- Z_j) #(1- 2_1) > (1- £). Then for each k, m = j, we have
MW, ¥en) = M(T (1), T(Fien))
= M(T (i) &n,) * M(Z, Za ) * ME T0m))
= 1275 = (- 27y xg 27W)
=@1-27) =@ 270 #(1-27) = (1- 9)
And consequently (¥.) is a Cauchy sequence in (X,G,*). Therefore fﬁei where fff = [(¥)]. Finally, we prove that

(X,) converges to ¥ in (ﬁ,ﬁ,*).
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Indeed, as in part (c) choose 0 == £ <2 1. Take jeN such that
(1-27H=@1- 27 *1- 27 = 1-g5)
Since (¥y,) is a Cauchy sequence in (Eﬁ”) the proof of part (b) shows
that there is k = j such that G(7, T (yy) =@- 27
Then for n = 11y, we obtain
G %n) = GET(v) * GT (vi) £ * G(F, K
=@-27h) =278 - 278
Z@-2h=@-2) -2 =19
We conclude that (E,IT*I,*) is bicomplete ®
Definition 2.14:
A standard fuzzy quasi-metric space (X,M,*) is called bicompletable if it admits a bicompletion.
Theorem 2.15:
Let (X,M,*) be a standard fuzzy quasi-metric space and let (Y,N,*) be a bicomplete standard fuzzy quasi-metric space.
If there is an F-isometry mapping f from a dense subset A of X to Y then f has a unique extension f*; X—Y.
Proof: We consider any xeX but X = E SO XEE then there is a sequence (¥,) in A such that (¥,) converges to x by
Lemma 1.28.Then (¥,) is Cauchy.Since f is F-isometry (f(¥,,)) is Cauchy in Y but Y is complete hence there is yeY
such that (f(¥,)) converges to y. Now we define f*(x) = y.We now show that this definition is independent of the
particular choice of the sequence in A converging to x .Suppose that (¥,,) in A converges to x and (Z,) in A converges
to x. Then (V) converges to x where (V) = (¥4,Z4,%5,Z3,...). Hence (f(V,)) converges and the two subsequence
(f(*5)) and (f(Z,)) of (f(V,)) must have the same limit. This prove f* is uniquely defined at every xeX. Clearly

f*(x) = f(x) for every xeA so that f* is an extension of f B

Theorem 2.16: Let (X,M,*) be a standard fuzzy quasi-metric space and let (Y,N,*) be a bicomplete standard fuzzy quasi-
metric space.

If f is an F-isometry mapping from a dense subset A of X to Y then the unique extension f*X->Yisan F-isometry.

Proof: Let x, yeX then there exists two sequences (¥,) and (¥) in A such that X, — x and ¥, — y. Choose an arbitrary 0 <
< 1. Now: £+ M(x,y) == M(x,y) . Furthermore, it follows that (3,) and (¥,) are Cauchy sequences in A so

(f*(®,)) and (£*(¥,)) are Cauchy sequences in Y. But Y is complete hence (f*(¥,,)) converges to f*(y) and

(F*(x,)) converges to £*(x). Then there is a positive integer N such that M(x,X,) = (1- £), M(¥,y) = (1- £)

N(E* )£ (0) = (1- 8) and NE*v,).f5(y)) = (1-£) foralln = N
Thus we have

£+ M(Xy) = M(x,y)

EMXX,) * My Vy) * M(V,y)
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= (1-8) * N(E* (). f°(vn) * (1- )
But
N(E™ (). £ (7)) = NE™ (). £7(0) * NET00.E7 () * NE"v7,2). (1)
= (1-8) * NE*0,f5(y)) * (1- € Foralln = N.

Therefore €+ M(xy) = (1- €) *[(1- €) = N(E(x.F7(y)) * (1- ©)] *(1- ©)

By continuity of # and * it follows that M(x,y) = N(f*(x),f*(y))
A similar argument shows that N(f*(x),£*(y)) = M(x,y) For all x, yeX
We conclude that f*is an F-isometry from (X,M,*) to (Y,N,*) &
Theorem 2.17: Every bicompletable standard fuzzy quasi-metric space admits a unique [up to F-isometry] bicompletion.
Proof: Let (Y,M;,*) and (Z,M;,2) be two bicompletions of (X,M,*) then we will prove that (Y,M4,*) and (Z,M5,2) are
F- isometric. Since (Y,M,*) is a bicompletion of (X,M,*) then there is an F-isometry f from (X,M,*) to a dense subset
of (Y,M,*). By Theorem 2.15 and Theorem 2.16 f admits a unique extension f* onto (Y,M;,*) which is also an F-
isometry. Similarly fis an isometry extension (X,M,*) onto (Z,M,,2). To prove that f* and f are F-isometric it remains to
see that f*and f are onto we will show that £ is onto. Indeed given yeY there is a sequence (%) in X such that
f*(,) —y. Since f"is an F-isometry (%,,) is a Cauchy sequence, so it converges to some point xeX. Consequently
f*(x) = y. Similarly we can prove that fis onto. Hence f*and f are F-isometric. Now (Y,M ,*) is F-isometric to (X,M,*)

and (X,M,*) is F-isometric to (Z,ME,D). Hence (Y,Ml,*) is F-isometric to (Z,I\"I:,D) [ |
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