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ABSTRACT 

In this paper we introduce the definition of standard fuzzy quasi-metric space then we discuss several properties after 

 we give an example to illustrate  this notion. Then we showed  the existence of a standard fuzzy quasi-metric space 

 which is not bicompletable. Here we prove that every bicompletable standard qussi-metric spaceadmits a unique [ up 

 to F-isometic ] bicompletion. 
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INTRODUCTION  

In [1] Kider started the study of a notion of standard fuzzy metric space that constitutesan interesting modification of the 

 notion of metric fuzziness due to George and Veeramani [2].   In this paper we extend the notion standard fuzzy metric 

 space to a standard fuzzy quasi-metric space. On the other hand, it was presented in [4] an example of a standard fuzzy 

 metric space that is not completable, also it has been obtained an internal characterization of completable standard fuzzy 

 metric spaces. Taking these results into account and the fact that the concept of bicompletion provides a theory of compl- 

etion to quasi-metric spaces in the classical sense  ( for instance see [5] ).  It seems natural and interesting to discuss the 

 problem of characterizing standard fuzzy quasi-metric spaces that are bicompletable. The main purpose of this paper is to 

 solve this problem. Following the modern terminology ( for instance see Section 11 of [5] ) by a quasi-metric on a set X we 

mean a function d:X× X [0, ) such that for all x, y, z  X : (i)d(x,y)=d(y,x)=0 if and only if x=y (ii) d(x,y)  d(x,z) + d(z,y) 

Each quasi-metric d on X generates a T0-topology  which has a base the family of open balls  { (x) : x  X, 0 } 

 where (x)={ y  X : d(x,y)  }.  

1.STANDARD FUZZY METRIC SPACE 

Definition 1.1:[3] A binary operation : [0,1] × [0,1] → [0,1] is a continuous t-norm if  satisfies the following 

conditions: 

1-  is associative and commutative. 

2-  is continuous. 

3- a 1 = a for all a  [0,1]. 

4- a b ≤ c d whenever a ≤ c and b ≤ d where a,b, c,d [0,1]. 

Remark 1.2:[2] For any  r1 > r2  we can find r3 such that  r1  r3 ≥ r2  and for any r4 we can find an r5 such that  r5 r5 ≥ r4  

where r1,r2,r3,r4,r5 (0,1). 

We introduce the following definition. 

Definition 1.3:[1] A triple (X,M, ) is said to be standard fuzzy metric space if X is an arbitrary set,  is a continuous 

 t- norm and M is a fuzzy set on X
2
 satisfying the following conditions: 

(FM1)  M(x,y) > 0 for all x, y  X 

(FM2)  M(x,y) = 1 if and only if x = y 

(FM3)  M(x,y) = M(y,x) for all x, y  X 

(FM4)  M(x,z) ≥ M(x,y) M(y,z) for all x, y and z  X  

(FM5)  M(x,y)   is a continuous fuzzy set 

Example 1.4:[1] Let X= , and let a b = a.b for all a, b [0,1]. 

 

If  x ≤ y 

  Define        M(x,y) =                                     

                                               If  y ≤ x 

 

for all x, y  . Then  ( ,M,.) is a standard fuzzy metric space. 
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Example 1.5:[1] Let X=  and let a b = a.b for all a, b  [0,1]. 

Define M(x,y) =   for all x, y   .Then  ( ,M,.) is a standard fuzzy metric space. 

Definition 1.6:[1] Let (X,M, ) be a standard fuzzy metric space then M is continuous if whenever xn→x and yn→y 

 in X then M(xn,yn) →M(x,y) that is   M(xn,yn) =M(x,y). 

Definition 1.7:[1] Let (X,M, ) be a standard fuzzy metric space .Then B(x,r) ={yX: M(x,y) > 1-r} is an open ball 

 with center xX and radius r, 0  r  1. 

 

Proposition 1.8:[1] Let B(x,r1) and B(x,r2) be two open balls with same center x in a standard fuzzy metric 

 space (X,M, ).Then either  B(x,r1)  B(x,r2) or B(x,r2) B(x,r1) where r1,r2(0,1). 

Definition 1.9:[1] A subset A of a standard fuzzy metric space (X,M, ) is said to be open if given any point a in A 

 there exists r , 0  r  1 such that B(a,r)  A. A subset B is said to be closed if  is open . 

Definition 1.10:[1]  Let (X,M, ) be a standard fuzzy metric space and let A  X then the closure of A is denoted 

 by  or CL(A) and is defined to be the smallest closed set contains A. 

Definition 1.11:[1]  A subset A of a standard fuzzy metric space (X,M, ) is said to be dense in X if  = X. 

Theorem 1.12:[1] Every open ball in a standard fuzzy metric space (X,M, ) is an open set. 

Theorem 1.13:[1] Let (X,M, ) is a standard fuzzy metric space. Define = {AX: xA if and only if there exists 

 0  r  1 such that B(x,r)  A} Then  is a topology on X. 

Theorem 1.14:[1] Every standard fuzzy metric space is a Hausdorff space. 

Definition 1.15:[1] A sequence (xn) in a standard fuzzy metric space  (X,M, ) is said to be converge to a point x in 

 X if for each r ,0  r  1 there exists a positive number N  such that M(xn,x) > (1-r) , for each n ≥ N . 

Theorem 1.16:[1] Let (X,M, ) be a standard fuzzy metric space then for a sequence (xn) in X converge to x if and 

 only if  M(xn,x) = 1. 

 Definition 1.17:[1 ] A sequence (xn) in a standard fuzzy metric space (X,M, ) is  Cauchy if for each r, 0  r  1, 

 there exists a positive number N such that   M(xn,xm) > (1-r), for each m, n ≥ N. 

 Proposition 1.18:[1]  Let (X,d) be an ordinary metric space and let a b = a.b for all a, b  [0,1]. Define  

(x,y) =   ,  then (X, , ) is a standard fuzzy metric space and it is called the standard fuzzy metric 

 induced by the metric d.  

Proposition 1.19:[1] Let (X,d) be a metric space and let (X, , ) be the standard fuzzy metric space induced by d. 

 Let (  be a sequence in X. Then (  converges to xX in (X,d) if and only if (  converges to x in (X, , ). 

 Proposition 1.20:[1] Let (X,d) be a metric space and let =   . Then ) is a Cauchy sequence in 

 (X,d) if and only if ( ) is a Cauchy sequence in   (X, , ). 

 Definition 1.21:[1] Let (X,M, ) be a standard fuzzy metric space. A subset A of X is said to be F-bounded if there 
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 exists 0  r  1 such that, M(x,y)  1- r, for all x, yA. 

Proposition 1.22:[1] Let (X,d) be a metric space and let =  then a subset A of X is F-bounded 

 if and only if it is bounded . 

Definition1.23:[1] A standard fuzzy metric space (X,M, ) is complete if every Cauchy sequence in X converges to a 

 point in X. 

 Definition 1.24:[1] Let (X, , ) and (Y, , ) be standard fuzzy metric spaces and A  X. A function f:A→Y is said to 

 be continuous at aA, if for every 0    1, there exist some 0    1, such that (f(x),f(a))  (1- ) whenever 

 xA and (x,a)  (1- ). If f is continuous at every point of A, then it is said to be continuous on A. 

Theorem 1.25:[1] Let (X, , ) and (Y, , ) be standard fuzzy metric spaces and AX. A function f:A→Y is continuous 

 at aA if and only if whenever a sequence ( ) in A converge to a, the sequence (f( )) converges to f(a). 

Theorem 1.26:[1] A function f:X→Y is continuous on X if and only if (G) is open in X for all open subset G of Y. 

Theorem 1.27:[1] A mapping f:X→Y is continuous on X  if and only if (F) is closed in X for all closed subset F of Y. 

Lemma 1.28:[1]  Let A be a subset of a standard fuzzy metric space (X,M, ) then a  if and only if there is a sequence 

 ( ) in A such that → a. 

Theorem 1.29:[1]  Let A be a subset of a standard fuzzy metric (X,M, ) then A is dense in X if and  only if for every xX 

 there is aA such that M(x,a)  1-  for some 0   1. 

Definition 1.30:[4]  Let (X, , ) and (Y, , ) be any two standard fuzzy metric spaces. A mapping f:X→Y which 

 is both one-to-one and onto is said to be a homeomorphism if and only if the mapping f and are continuous on 

 X and Y, respectively. Two standard fuzzy metric spaces X and Y are said to be homeomorphic if and only if there 

 exists a homeomorphism of X onto Y, and in this case, Y is called a homeomorphic image of X. 

Remark 1.31:[4] If X and Y are homeomorphic, the homeomorphism puts their points in one-to-one correspondence 

 in such a way that their open sets also correspond to one another. For standard fuzzy metric space X and Y, let  

 means that X and Y are homeomorphic. It is easily verified that the relation is reflexive, symmetric and transitive. 

Definition 1.32:[4] A mapping f from a standard fuzzy metric space (X, , ) into a standard fuzzy metric space 

 (Y, , ) is an F-isometry if   (f(x),f(y)) = (x,y)   for all x, yX. It is obvious that an F-isometry is one-to 

-one and uniformly continuous. X and Y are said to be F-isometric if there exists an F-isometry between them that 

 is onto. An F-isometry is necessarily a homeomorphism but the converse is not true.  

Proposition1.33:[4] Let (X,d) be a metric space and let (X, , ) be the induced standard fuzzy metric space . 

 Let (Y, ) be another metric space and let (Y, , ) be the induced standard fuzzy metric space. Let f:X→Y 

 be a mapping then f is isometry if and only if f is F-isometry. 

Theorem 1.34:[4] Let A be a dense subset of a standard fuzzy metric space (X,M, ). If every Cauchy sequence of 

 point of A converges in X then (X,M, ) is complete. 

Proof: Let ( ) be a Cauchy sequence in X, since A is dense then for every X there is A such that M( , )  
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 (1- s) for some 0  s  1 by  Theorem 1.29 Then by Remark 1.2 there is (1- ) (0,1) such that  

                       (1- s) (1- s)  (1- ). 

Since ( ) is Cauchy so ( ) is Cauchy so →x by assumption. Now M( ,x)  M( , )  M( ,x)  

 (1- s)  (1- s)  (1- ). Hence →x  

Definition 1.35:[4] Let (X,M, ) be a standard fuzzy metric space. A completion of (X,M, ) is a complete standard 

 fuzzy metric space (Y,N, ) such that (X,M, ) is F-isometric to a dense subset of Y.   

In [4] it was presented the following example of a standard fuzzy metric space that is not completable. 

Example 1.36: Let a b = max{0, a + b -1} for all a, b[0,1] . Now let { : n =  3, 4, 5,… , } and { : n = 3,4,…, } 

 be two sequences of distinct points such that A B =  where A= { : n  3} and B = { : n  3}. Put X = A B, 

 define M : X×X→ [0,1] as follows : M( , ) = M( , ) = 1- [   -  ]Where  = min{n,m} and  = 

max{n,m}.  M( , ) = M( , ) =    +   

It was shown that (X,M, ) is a standard fuzzy metric space and (X,M, ) is not completable. 

Definition 1.37:[4]  A standard fuzzy metric space (X,M, ) is called completable if it admits a completion. 

Theorem 1.38:[4]   Every completable standard fuzzy metric space admits a completion. 

2.STANDARD FUZZY QUAS-METRIC SPACE 

Definition 2.1: The triple (X,M, ) is called a standard fuzzy quasi-metric space where X is a nonempty set,  is a 

continuous t-norm 

 and M is a fuzzy set on X×X satisfying the following conditions: 

(1) For all x, yX, M(x,y)  0 

(2) M(x,y) = M(y,x) = 1 if and only if x = y  

(3) M(x,y)  M(y,z)  M(x,z) for all x, y, zX 

(4) M is a continuous fuzzy set 

Propostion 2.2: If (X,M, ) is a standard fuzzy quasi-metric space then define : X X→[0,1] by : (x,y) = M(y,x) 

for all x, yX. 

 Then (X, , ) is a standard fuzzy quasi-metric space. 

Proof: (1) (x,y)  0 since M(y,x)  0 for all x, yX 

(x,y) = 1 if and only if  M(y,x) = 1 = M(x,y)  y = x 

(3) (x,y) (y,z) = M(y,x)  M(z,y)  

                                          = M(z,y)  M(y,x)  

                                           M(z,x) = (x,z) 

(4)  is continuous since M is continuous. 

Therefore (X, , ) is a standard fuzzy quasi-metric space  
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Proposition 2.3: Let (X,M, ) be a standard fuzzy quasi-metric space. Define G:X X→[0,1] by: G(x,y) = min{M(x,y), 

(x,y)}. Then 

 (X,G, ) is a standard fuzzy space. We shall refer to (X,G, ) as the standard fuzzy metric induced by (X,M, ). 

Proof: It is sufficient to show that G(x,y) = G(y,x) for each x, yX.If G(x,y) = M(x,y) then G(y,x) must equal to (y,x) 

 but (y,x) = M(x,y) that is G(x,y) = M(x,y).Hence G(x,y) = G(y,x). Similarly if G(x,y) = (x,y) then G(x,y) = 

 G(y,x). Therefore (X,G, ) is a standard fuzzy metric space  

Proposition 2.4: Let (X,M,  ) be a standard fuzzy quasi-metric space. Then   = {A  X : aA   r, 0  r  1, such 

that 

 B(a,r)  A} is a topology on X. 

Proof: The proof is similar to the proof of Theorem 1.13, hence is omitted. 

Example 2.5: Let (X,d) be an ordinary quasi-metric space and let  be the function defined on X X to [0,1] by:  (x,y) 

= 

  . Then for each continuous t-norm , (X, , ) is a standard fuzzy quasi-metric space,which is called 

 the standard fuzzy induced by the quasi-metric d. Furthermore, it is easy to check that ( =  and 

  =   where (x,y) = d(y,x), (x,y) = max {d(x,y), (x,y)}  , (x,y) = min{ (x,y), (x,y)}  

 

Definition 2.6: A standard fuzzy quasi-metric space (X,M, ) is called bicomplete if (X,G, ) is a complete standard fuzzy 

metric space. 

 

Definition 2.7: Let (X,M, ) be a standard fuzzy quasi-metric space. A bicompletion of (X,M, ) is a bicomplete standard 

fuzzy quasi- 

metric space (Y,N, ) such that (X,M, ) is F-isometric to a dense subset of Y. 

Lemma 2.8: Let (X,M, ) be a standard fuzzy quasi-metric space. Denote by S the collection of all Cauchy sequence in 

(X,G, ). 

 Define a relation  on S by ( )  ( ) if and only if  G( , ) = 1, where by  G( , ) we denote the lower 

 limit of the sequence (G( , )) i.e  G( , ) =  G( , ). Then  is an equivalence relation on S. 

Proof: 1-  is reflexive because G( , ) = 1 for all nN so ( )  ( ) 

- If ( )  ( ), it immediately follows that ( )  ( ) because  

     G( , ) = G( , ) for all nN , So that  

      G( , ) = G( , ) = 1  

3-  is transitive, suppose that ( )  ) and ( )  ). We shall 

      prove G( , ) = 1. Since ( )  ) then   G( , ) = 1. 

      Also ( )  ) so  G( , ) = 1 for all nN. 

      Now G( , )  G( , )  G( , ) 
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         G( , )  G( , )   G( , ) 

     Hence  G( , ) = 1  

 

Lemma 2.9;  Define (( ),( )) =  M( , ) for all ( ), ( )S where   : S S→[0,1]. Then  satisfies 1, 3 

and 

 4 of Definition 2.1. 

Proof: 1- (( ), ( ))  0 because M( , )  0 so, M( , )  0. 

3- Let ( ), ( ), )S and put  = (( ),( )),  = (( ),( ))  

    and  = (( ),( )). We shall show that   . If  = 0 or  = 0 the conclusion is obvious. So we 

 assume that   0  and   0. Choose an arbitrary  (0, min ). Then  (  – )  (( ),( ))  

and (  – )  (( ),( )).  Furthermore, there exists  such that for all k   

      (( ),( )) –   M( , ) . And  (( ),( )) –   M ( , ) 

     Then (  – )  (  – )  [ (( ),( )) – ]  [ (( ),( )) – ]  

                                              M( , )  M( , )  

                                              M( , ) for all k    

     Therefore (  – )  (  – )   M( , )  

                                                       M( , ) =  

      By continuity of , it follows that      

 4-   is continuous because M is continuous  

Notation 2.10: We denote the quotient  by and [( )] the class of the element ( ) of S. 

Lemma 2.11: If )  ( ) and )  ( ) Then  ( ),( )) = ( ),( )). 

Proof: ( ),( ))  ( ),( ))  ( ),( )) ( ),( )) 

                         = ( ,( ))  

Thus  ( ),( ))  ( ),( )) . Now  

( ),( ))  ( ),( ))  ( ),( )) ( ),( )) 

                                  = ( ),( ))  

So,     ( ),( ))  ( ),( )). Therefore  ( ),( )) = ( ),( ))  

 

Definition 2.12: For each [( )], [( )]  define ([( )],[( )]) = ( ),( )). Then  is a function from   to 

[0,1] and it is 

 well defined by Lemma  2.11. Also we define T:X→  such that for each xX, T(x) is the class of constant sequence 

 x, x, ……………  . 

Now, from the above construction we obtain the main result in this section. 
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Theorem 2.13: Let (X,M, ) be a standard fuzzy quasi-metric space.  

(a) ( , , ) is a standard fuzzy quasi-metric space 

(b) T(X) is dense in ( , , ) 

(c) (X,M, ) is F-isometry to (T(X), , )  

(d) ( , , ) is bicomplete 

Proof (a):  satisfies conditions 1, 3 and 4 of Definition 2.1 as an immediate consequence of Lemma 2.9. Now, let ( ), 

( ) 

S such that ([( )],[( )]) = 1. If ( )[ )] it follows that from Lemma 2.11 that ( ),( )) = 1. The same 

 argument shows that ( )[ )] implies that ( ),( )) = 1. We conclude that ([( )],[( )]) = 1 if and only if 

 [( )] = [( )]. Hence ( , , ) is a standard fuzzy quasi-metric space  

Proof (b): Let ( )S and 0    1. Since ( ) is Cauchy sequence in (X,M, ) then there is  such that M( ,  

 

 (1-  )     for all k    

Thus   ([( )],T( )) = (( ),T( )) 

                                        =  M( ,  

                                         M( ,  

                                         1-    1-   

We have shown that T(X) is dense in ( , , )  

Proof (c): This is almost obvious because for each x, yX, we have (Tx,Ty) = M(x, y)  

Proof (d): Let ([( )],[ )]) = min {  ([( ),[ )]), ([( ),[ )]) }     

Let (  be a Cauchy sequence in ( , , ), then there is an increasing sequence ( ) in N such that ( , ) (1- 

 ) for all n, m   . Since T(X) is dense in ( , , ) then for each kN there is X such that ( , ))   

(1- ) for all kN. We show that ( ) is a Cauchy sequence in (X,G, ). To this end, choose 0    1. Take jN 

 such that (1- )  (1- ) (1- )  (1- ). Then for each k, m  j, we have  

       M( , ) = ( ,T( ) 

                           ( , )  ( , )  ( ,T( ) 

                           (1- )  (1- ) (1- )  

                           (1- )  (1- ) (1- )  (1- )  

And consequently ( ) is a Cauchy sequence in (X,G, ). Therefore  , where  = [( )]. Finally, we prove that 

 ( ) converges to  in ( , , ). 
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Indeed, as in part (c) choose 0    1. Take jN such that  

                           (1- )  (1- ) (1- )  (1- )  

Since ( ) is a Cauchy sequence in ( , , ), the proof of part (b) shows  

that there is k  j such that  ( , )) (1- ) 

Then for n  , we obtain  

                       ( , )  ( , ))  ( , )  ( , ) 

                                       (1- )  (1- ) (1- )  

                                       (1- )  (1- ) (1- ) (1- ) 

We conclude that ( , , ) is bicomplete  

Definition 2.14: 

 A standard fuzzy quasi-metric space (X,M, ) is called bicompletable if it admits a bicompletion. 

Theorem 2.15:  

 Let (X,M, ) be a standard fuzzy quasi-metric space and let (Y,N, ) be a bicomplete standard fuzzy quasi-metric space. 

 If there is an F-isometry mapping f from a dense subset A of X to Y then f has a unique extension : X→Y. 

Proof: We consider any xX but X =   so x  then there is a sequence ( ) in A such that ( ) converges to x by 

 Lemma 1.28.Then ( ) is Cauchy.Since f is F-isometry (f( )) is Cauchy in Y but Y is complete hence there is yY 

 such that (f( )) converges to y. Now we define (x) = y.We now show that this definition is independent of the 

 particular choice of the sequence in A converging to x .Suppose that ( ) in A converges to x and ( ) in A converges 

 to x. Then ( ) converges to x where ( ) = ( , , , ,…). Hence (f( )) converges and the two subsequence 

 (f( )) and (f( )) of (f( )) must have the same limit. This prove  is uniquely defined at every xX. Clearly  

(x) = f(x) for every xA so that  is an extension of f  

Theorem 2.16: Let (X,M, ) be a standard fuzzy quasi-metric space and let (Y,N, ) be a bicomplete standard fuzzy quasi-

metric space. 

If f is an F-isometry mapping from a dense subset A of X to Y then the unique extension  :X→Y is an F-isometry. 

Proof: Let x, yX then there exists two sequences ( ) and ( ) in A such that → x and → y. Choose an arbitrary 0  

 1. Now:   + M(x,y)  M(x,y) . Furthermore, it follows that ( ) and ( ) are Cauchy sequences in A so 

 ( ( )) and ( ( )) are Cauchy sequences in Y. But Y is complete hence ( ( )) converges to (y) and 

 ( ( )) converges to (x). Then there is a positive integer N such that   M(x, )  (1- ),   M ,y)  (1- )   

 N( ( ), (x))  (1- ) and N( ( ), (y))  (1- ) for all n  N 

Thus we have   

                   + M(x,y)  M(x,y)  

                                    M(x, )  M( , )  M ,y) 
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                                     (1- )  N( ( ), ( )) (1- )   

But  

N( ( ), ( ))  N( ( ), (x))  N( (x), (y))  N( ( ), (y)) 

                             (1- )  N( (x), (y)) (1- ) For all n  N. 

Therefore   + M(x,y)  (1- ) [(1- )  N( (x), (y)) (1- )] (1- ) 

By continuity of  and  it follows that M(x,y)  N( (x), (y))  

A similar argument shows that N( (x), (y))  M(x,y) For all x, yX  

We conclude that  is an F-isometry from (X,M, ) to (Y,N, )  

Theorem 2.17: Every bicompletable standard fuzzy quasi-metric space admits a unique [up to F-isometry] bicompletion. 

Proof: Let (Y, , ) and (Z, , ) be two bicompletions of (X,M, ) then we will prove that (Y, , ) and (Z, , ) are 

 F- isometric. Since (Y, , ) is a bicompletion of (X,M, ) then there is an F-isometry f from (X,M, ) to a dense subset 

 of (Y, , ). By Theorem 2.15 and Theorem 2.16 f admits a unique extension  onto (Y, , ) which is also an F- 

isometry. Similarly  is an isometry extension (X,M, ) onto (Z, , ). To prove that  and  are F-isometric it remains to 

 see that and  are onto we will show that  is onto. Indeed given yY there is a sequence ( ) in X such that  

( ) →y. Since  is an F-isometry ( ) is a Cauchy sequence, so it converges to some point xX. Consequently  

(x) = y. Similarly we can prove that  is onto. Hence  and   are F-isometric. Now (Y, , ) is F-isometric to (X,M, ) 

 and (X,M, ) is F-isometric to (Z, , ). Hence (Y, , ) is F-isometric to (Z, , )  
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