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ABSTRACT 

In this paper, we give some contributions for special distributions having unbounded support 𝑆 =  −∞, ∞  for which we 

derive upper and lower bounds on the expected nearest neighbor distance of the extreme value (Gumbel) distribution as 

typical. Then we found the risk of nearest neighbor classifier of this distribution. 
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1 INTRODUCTION 
One of the oldest and simplest methods for pattern classification is the nearest neighbors rule; it was first studied by Fix 
and Hodges [6], [7]. Cover and Hart [1] proved that 𝑅∗ ≤ 𝑅∞ ≤ 2𝑅∗ 1 − 𝑅∗  under certain conditions, where 𝑅∗ denotes the 

Bayes error, and 𝑅∞  is the nearest neighbor risk in the infinite-sample limit. Cover [2] has shown that 𝑅𝑚 = 𝑅∞ + 𝑂 𝑚−2  
for the nearest neighbor classifier in the case one-dimensional bounded support, mixture density 𝑓 ≥ 𝑐 > 0, and under 
some additional conditions, where 𝑅𝑚  denotes the finite sample risk, and 𝑚 is the sample size. Kulkarni and Posner [10] 

studied the rate of convergence for nearest neighbor estimation in terms of the covering numbers of totally bounded sets. 
Evans et al. [5] derived an asymptotic moments of near neighbor distance distributions. Irle and Rizk [9] found an 
asymptotic evaluation of the conditional risk 𝑅𝑚 (𝑥) (the probability of error conditioned on the event that 𝑋 = 𝑥) by using 

partial integration and Laplace’s method. Liitiäinen et al. [11] studied a boundary corrected expansion of the moments of 
nearest neighbor distributions. Rizk and Ateya [12] found lower and upper bounds for the risk of nearest neighbor of 
generalized exponential distribution.Rizk  [13] found lower and upper bounds on the expected nearest neighbor 
distancefor exponential distribution. Rizk  [14] found lower and upper bounds on the expected nearest neighbor 
distancefor logistic and Laplace distributions. 
In this paper, we find upper and lower bounds on the expected nearest neighbor distance for distributions having 
unbounded support 𝑆 =  −∞, ∞  for which we derive upper and lower bounds on the expected nearest neighbor distance 

of extreme value distribution as typical. Then we found the risk of nearest neighbor classifier of this distribution. 

In pattern recognition if we have a random variable  𝑋, 𝜃 , such that 𝑋 ∈ 𝑅𝑑  is an observed pattern from which we wish to 

predict the unobservable class 𝜃. This class takes values in a finite set 𝑀 =  1,2, . . . , 𝐶 . If the joint distribution of (𝑋, 𝜃) is 

known, then the best classifier is the Bayes classifier, see [4], [8]. In general the joint distribution of (𝑋, 𝜃) will be unknown, 

and we have a training sequence 𝐷𝑚 =   𝑋(1), 𝜃(1) ,  𝑋(2), 𝜃(2) , … ,  𝑋(𝑚), 𝜃(𝑚)   at our disposal, where patterns and 

corresponding classes are observed and we assume that   𝑋(1), 𝜃(1) ,  𝑋(2), 𝜃(2) , … ,  𝑋(𝑚), 𝜃(𝑚)  , the data, stem from a 

sequence of independent identically distributed random pairs with the same distribution as (𝑋, 𝜃). The nearest neighbor 

rule is an easy classification technique, classifies new observations into their appropriate categories by simply searching 
for similar or closest instances in the well known classified observations (training sequence). Closeness is defined in terms 
of a distance metric, such as Euclidean distance. 
The nearest neighbor rule assigns any input feature vector to the class given by the label 𝜃′ of the nearest reference 
vector. The problem to be considered is the classification of a random variable 𝜃 taking values in 𝑀 =  1,2  given a 

sample 𝑋 in 𝜒, with the goal of minimizing the finite-sample risk 𝑅𝑚 = 𝑃 𝜃 ≠ 𝜃′ , where 𝜒 is a separable metric space 

equipped with metric 𝜌 which we denote as the pair  𝜒, 𝜌 . Define the nearest distance at time 𝑚 as 𝑑𝑚 = 𝜌 𝑋, 𝑋′ . 

2 BOUNDS ON THE EXPECTED NEAREST NEIGHBOR DISTANCE FOR THE 
EXTREME VALUE DISTRIBUTION 

Let 𝑋 have a probability density function 
1

𝛽
𝑒

− 
 𝑥−𝛼

𝛽 𝑒−𝑒
− 

 𝑥−𝛼
𝛽

, −∞ < 𝑥 < ∞,where 𝛼 the location parameter and 𝑏 > 0 the scale 

parameter. Now, without loss of the generality, we assume that 𝑋 have a probability density function𝑓 𝑥 = 𝑒−𝑥𝑒−𝑒−𝑥
,

−∞ < 𝑥 < ∞.  

2.1 An upper bound on the expected nearest neighbor distance for the extreme value 
distribution 
We use constants, −∞ < 𝐾1(𝑚) ≤ 0 ≤ 𝐾2(𝑚) < ∞ depending on 𝑚, to write  

𝐸𝑑𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚
∞

0

∞

−∞

𝑑𝜀 𝑓(𝑥)𝑑𝑥 

         =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀𝑓(𝑥)𝑑𝑥
∞

0

𝐾1 𝑚 

−∞

 

                 +   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀𝑓(𝑥)𝑑𝑥
∞

0

∞

𝐾2(𝑚)

 

                 +   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀𝑓(𝑥)𝑑𝑥.
∞

0

𝐾2(𝑚)

𝐾1(𝑚)

 

           = 𝐿1 𝑚 +  𝐿2 𝑚 + 𝐿3 𝑚 .                                                     (2.1) 

where, 

𝐿1 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀𝑓(𝑥)
∞

0

𝑑𝑥,
𝐾1 𝑚 

−∞

(2.2) 

𝐿2 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀𝑓(𝑥)𝑑𝑥,
∞

0

∞

𝐾2(𝑚)

(2.3) 
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𝐿3 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀𝑓(𝑥)𝑑𝑥.
∞

0

𝐾2(𝑚)

𝐾1(𝑚)

(2.4) 

Firstly, we evaluate 𝐿1 𝑚 and 𝐿2 𝑚 , and assume that– 𝐾1 𝑚 = 𝐾2(𝑚) > 0, for 𝑥 ∈ 𝑅, 𝑡 > 0. 

By Markov's inequality for any 0 < 𝑡 < 1 

 𝑃  𝑋 − 𝑥 > 𝜀 𝑚
∞

0

 𝑑𝜀 =  𝑃  𝑒𝑡 𝑋−𝑥 > 𝑒𝑡𝜀  
𝑚

∞

0

 𝑑𝜀 

≤  
∞

0

𝜑(𝑡, 𝑥)𝑚𝑒−𝑚𝑡𝜀  𝑑𝜀 =  
1

𝑚𝑡
𝜑(𝑡, 𝑥)𝑚 , 

where,𝜑 𝑡, 𝑥 = 𝐸 𝑒𝑡 𝑋−𝑥  .Hence for 𝑡 =
1

𝜏𝑚
, 𝜏 ≥ 1, we have 

 𝑃(|𝑋 − 𝑥| > 𝜀)𝑚𝑑𝜀 ≤ 𝜏𝜑  
1

𝜏𝑚
, 𝑥 

𝑚
.

∞

0
It follows 

𝐿1 𝑚 ≤ 𝜏  𝜑  
1

𝜏𝑚
, 𝑥 

𝑚𝐾1 𝑚 

−∞

𝑓 𝑥 𝑑𝑥. (2.5) 

𝐿2 𝑚 ≤ 𝜏  𝜑  
1

𝜏𝑚
, 𝑥 

𝑚∞

𝐾2 𝑚 

𝑓 𝑥 𝑑𝑥. (2.6) 

Now, we evaluate 𝜑 𝑡, 𝑥 , that is we find the moment generating function of |𝑋 − 𝑥|. For 𝑥 ∈ 𝑅, 0 < 𝑡 < 1, we have 

𝜑 𝑥, 𝑡 = 𝐸 𝑒𝑡 𝑋−𝑥  ≤ 𝐸 𝑒𝑡𝑥+𝑡𝑋 = 𝑒𝑡𝑥 𝐸 𝑒𝑡𝑋 = 𝑒𝑡𝑥  𝑒𝑡𝑦  𝑒−𝑦𝑒−𝑒−𝑦
 𝑑𝑦 

∞

−∞

 

≤ 𝑒𝑡𝑥  𝑢−𝑡𝑒−𝑢  𝑑𝑢 = 𝑒𝑡𝑥  Γ 1 − 𝑡 ,       𝑡 < 1.
∞

0

 

Hence, for 𝑡 =
1

2𝑚
, we obtain 𝜑  

1

τ𝑚
, 𝑥 ≤ 𝑒

𝑥

2𝑚  Γ  1 −
1

2𝑚
 . Therefore 

𝜑  
1

τ𝑚
, 𝑥 

𝑚

 ≤ 𝑒
𝑥

2  Γ  1 −
1

2𝑚
  

𝑚

. 

Now, we evaluate 𝐿1 𝑚 , from (2.2)and (2.5)we have  

𝐿1 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀
∞

0

𝐾1 𝑚 

−∞

𝑓(𝑥)𝑑𝑥  

≤ 2  𝜑  
1

τ𝑚
, 𝑥 

𝑚

𝑓(𝑥)𝑑𝑥
𝐾1 𝑚 

−∞

 

≤ 2  Γ  1 −
1

2𝑚
  

𝑚

 𝑒
𝑥

2

𝐾1 𝑚 

−∞

 𝑒−𝑥𝑒−𝑒−𝑥
𝑑𝑥 

≤
2

𝑒
 Γ  1 −

1

2𝑚
  

𝑚

 𝑒
𝑥

2

𝐾1 𝑚 

−∞

𝑑𝑥, 

By using the inequality  max𝑎 𝑎 𝑒−𝑚𝑎 <
1

𝑚𝑒
, 𝑎 > 0, we have  𝑒−𝑥𝑒−𝑒−𝑥

<
1

𝑒
  , since  𝑒−𝑥 > 0, for all 𝑥, then 

𝐿1 𝑚 ≤
4

𝑒
 Γ  1 −

1

2𝑚
  

𝑚

𝑒
𝐾1 𝑚  

2  

For  𝐾1 𝑚 = −2 log 𝑚, it follows 
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𝐿1 𝑚 ≤
4

𝑒
 Γ  1 −

1

2𝑚
  

𝑚 1

𝑚
= 𝑂  

1

𝑚
 (2.7) 

Since  Γ  1 −
1

2𝑚
  

𝑚
< 2   𝑎𝑠 𝑚 → ∞. 

Similarly,  from(2.3)and  2.6 ,we can evaluate 𝐿2 𝑚  

𝐿2 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚
∞

0

∞

𝐾2 𝑚 

𝑓(𝑥)𝑑𝜀𝑑𝑥  

≤ 2  𝜑  
1

τ𝑚
, 𝑥 

𝑚∞

𝐾2 𝑚 

𝑓 𝑥 𝑑𝑥 

≤ 2  Γ  1 −
1

2𝑚
  

𝑚

 𝑒
𝑥

2

∞

𝐾2 𝑚 

 𝑒−𝑥𝑒−𝑒−𝑥
𝑑𝑥  

= 2  Γ  1 −
1

2𝑚
  

𝑚

 𝑒− 
𝑥

2

∞

𝐾2 𝑚 

𝑒−𝑒−𝑥
𝑑𝑥.  

Then, by partial integration 

 𝑒− 
𝑥

2
∞

𝐾2 𝑚 
𝑒−𝑒−𝑥

𝑑𝑥 =  −2𝑒−𝑒−𝑥
𝑒− 

𝑥

2 
𝐾2 𝑚 

∞

+ 2  𝑒−
𝑥

2
∞

𝐾2 𝑚 
𝑒−𝑥𝑒−𝑒−𝑥

𝑑𝑥. 

Then 

𝐿2 𝑚 ≤ 2  Γ  1 −
1

2𝑚
  

𝑚

  −2𝑒−𝑒−𝑥
𝑒− 

𝑥

2 
𝐾2 𝑚 

∞

+ 2  𝑒−
𝑥

2

∞

𝐾2 𝑚 

𝑒−𝑥𝑒−𝑒−𝑥
𝑑𝑥  

≤ 2  Γ  1 −
1

2𝑚
  

𝑚

 2𝑒−𝑒−𝐾2 𝑚  
𝑒− 

𝐾2 𝑚  

2 +
2

𝑒
 𝑒−

𝑥

2

∞

𝐾2 𝑚 

 𝑑𝑥  

               = 2  Γ  1 −
1

2𝑚
  

𝑚

 2𝑒−𝑒−𝐾2 𝑚  
𝑒− 

𝐾2 𝑚  

2 +
4

𝑒
𝑒− 

𝐾2 𝑚  

2  . 

For 𝐾2 𝑚 = 2 log 𝑚 

𝐿2 𝑚 ≤ 4  Γ  1 −
1

2𝑚
  

𝑚

 
𝑒− 

1

𝑚 2

𝑚
+

2

𝑒𝑚
  

=
4

𝑚
 Γ  1 −

1

2𝑚
  

𝑚
 𝑒− 

1

𝑚 2 + 2𝑒− 1 .        (2.8) 

Now, we evaluate 𝐿3 𝑚 .From (2.4), we have 

𝐿3 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀 𝑓 𝑥 𝑑𝑥
∞

0

𝐾2(𝑚)

𝐾1(𝑚)

 

             =   𝑒−𝑚𝐺 𝑥,𝜀  𝑓 𝑥  𝑑𝜀 𝑑𝑥,
∞  

0

𝐾2(𝑚)

𝐾1(𝑚)

(2.9) 

where 𝐺 𝑥, 𝜀 = − log 𝑃  𝑋 − 𝑥 > 𝜀 . 

Since, − log  (1 − 𝑦) ≥ 𝑦for all 0 ≤ 𝑦 ≤ 1,then 

− log 𝑃  𝑋 − 𝑥 > 𝜀 = − log 1 − 𝑃  𝑋 − 𝑥 ≤ 𝜀  ≥ 𝑃(|𝑋 − 𝑥| ≤ 𝜀) 
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= 𝑃 𝑥 − 𝜀 ≤ 𝑋 ≤ 𝑥 + 𝜀 = 𝐹 𝑥 + 𝜀 − 𝐹 𝑥 − 𝜀 (2.10) 

Then we need good asymptotic estimates for 𝐹 𝑥 + 𝜀 −  𝐹 𝑥 − 𝜀 , as (𝜀 → 0), By using the Taylor expansion for the 

functions 𝐹 𝑥 + 𝜀  and 𝐹 𝑥 − 𝜀  we obtain  

𝐹 𝑥 + 𝜀 = 𝐹 𝑥 +
𝑓 𝑥 𝜀

1!
+

𝑓′ 𝑥 𝜀2

2!
+

𝑓′′  𝑥 𝜀3

3!
+

𝑓′′′  𝑥 𝜀4

4!
+

𝑓(4) 𝑥 𝜀5

5!
+ ⋯ , (2.11) 

𝐹 𝑥 − 𝜀 = 𝐹 𝑥 −
𝑓 𝑥 𝜀

1!
+

𝑓′  𝑥 𝜀2

2!
−

𝑓′′  𝑥 𝜀3

3!
+

𝑓′′′  𝑥 𝜀4

4!
−

𝑓(4) 𝑥 𝜀5

5!
+ ⋯.  (2.12) 

Substituting (2.11) and (2.12) in (2.10) yields 

𝐹 𝑥 + 𝜀 − 𝐹 𝑥 − 𝜀 =
2𝑓 𝑥 𝜀

1!
+

2𝑓′′  𝑥 𝜀3

3!
+

2𝑓(4) 𝑥 𝜀5

5!
+ ⋯ ≥ 2𝜀 𝑓 𝑥 , 

since𝑓(𝑛) 𝑥 ≥ 0 for 𝑛 = 0, 2, 4, …, then we obtain 𝐺 𝑥, 𝜀 ≥ 2𝜀 𝑓 𝑥 . Hence 

𝐿3 𝑚 ≤   𝑒−2𝑚𝜀𝑓  𝑥 𝑓 𝑥 𝑑𝜀𝑑𝑥
∞

0

𝐾2(𝑚)

𝐾1(𝑚)

 

             =  
1

2𝑚
𝑑𝑥 =

1

2𝑚
 𝐾2 𝑚 − 𝐾1 𝑚  .

𝐾2(𝑚)

𝐾1(𝑚)

 

=
1

2𝑚
 log 𝑚2 + log 𝑚2 ≤

2 log 𝑚

𝑚 
. (2.13) 

Substituting (2.8), (2.9) and (2.13) in (2.1), we obtain the upper bound of 𝐸𝑑𝑚  for the extreme value distribution  

𝐸𝑑𝑚 ≤
4

𝑒
 Γ  1 −

1

2𝑚
  

𝑚 1

𝑚
+  Γ  1 −

1

2𝑚
  

𝑚 4

𝑚
 𝑒− 

1

𝑚 2 + 2𝑒− 1 +
2 log 𝑚

𝑚 
 

≤
4

𝑚
 Γ  1 −

1

2𝑚
  

𝑚
 𝑒− 

1

𝑚 2 + 3𝑒− 1 +
2 log 𝑚

𝑚 
.(2.14) 

2.2 A lower bound on the expected nearest neighbor distance for the extreme value 
distribution 

In this section we derive the lower bounds for expected nearest neighbor distance 𝐸𝑑𝑚  for the extreme value distribution 

with the density 𝑓 𝑥 = 𝑒−𝑥𝑒−𝑒−𝑥
, −∞ < 𝑥 < ∞.Then 

𝐸𝑑𝑚 =  𝑃 𝑑𝑚 > 𝜀  𝑑𝜀
∞

0

=   𝑃 𝑑𝑚 > 𝜀 𝑋 = 𝑥  
∞

0

∞

−∞

𝑑𝜀 𝑓 𝑥 𝑑𝑥 

           =   𝑃  𝑋 − 𝑥 > 𝜀  𝑚
∞

0

∞

−∞

 𝑑𝜀 𝑓 𝑥 𝑑𝑥 

           =   𝑃  𝑋 − 𝑥 > 𝜀  𝑚
∞

0

∞

−∞

𝑑𝜀 𝑒−𝑥𝑒−𝑒−𝑥
𝑑𝑥 

           ≥   𝑃 𝑋 < 𝑥 − 𝜀 𝑚
∞

0

∞

−∞

𝑑𝜀  𝑒−𝑥𝑒−𝑒−𝑥
𝑑𝑥 

           =   𝑃 𝑋 < 𝑧 𝑚
𝑥

−∞

∞

−∞

𝑑𝑧  𝑒−𝑥𝑒−𝑒−𝑥
𝑑𝑥 

           =   𝑒−𝑥𝑒−𝑒−𝑥
∞

𝑧

∞

−∞

𝑑𝑥 𝑃 𝑋 < 𝑧 𝑚𝑑𝑧 

=   1 − 𝑒−𝑒−𝑧
  𝑒−𝑚𝑒 −𝑧

 

∞

−∞

𝑑𝑧 

=   𝑒−𝑚𝑡 − 𝑒− 𝑚+1 𝑡 𝑡−1

∞

0

𝑑𝑡 

≥   𝑒−𝑚𝑡 − 𝑒− 𝑚 +1 𝑡 𝑒−𝑡

∞

0

𝑑𝑡 

=
1

 𝑚 + 1  𝑚 + 2 
. (2.15) 
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Note that, from  the distribution has exponentially decaying tails there is an additional logarithmic term over the rates 

for compact support. This example illustrates that the expected nearest neighbor distance depends on the tails of the  

distribution. 

Now, we can find an upper bound on the finite sample risk 𝑅𝑚 in terms of the expected nearest neighbor distance for 

extreme value distribution by using the following result: 

If, for some 𝜔1 > 0 and0 < 𝛾 ≤ 1 we have |𝑚 𝑥 − 𝑚 𝑥′ | ≤ 𝜔1𝜌 𝑥, 𝑥′ 𝛾 , for all  𝑥, 𝑥′ ∈ 𝜒, then for some suitable 𝜔 >
0independent of 𝑚,  

𝑅𝑚 ≤ 𝑅∞ + 𝜔   𝐸𝑑𝑚  𝛾  +  𝐸𝑑𝑚
2𝛾

  , (2.16) 

where 𝜔 = 𝑚𝑎𝑥 𝜔1 , 𝜔1
2 . 

This result is due to Irle and Rizk [9], for which they found an upper bound on the finite sample risk 𝑅𝑚 in terms of the 

expected nearest neighbor distance. 

Putting 𝛾 =
1

2
in (2.16), we obtain 𝑅𝑚 ≤ 𝑅∞ + 𝜔  𝐸𝑑𝑚 + 𝐸𝑑𝑚  . 

Hence, from (2.13) we have  

𝑅𝑚 ≤ 𝑅∞ +  𝜆 
4

𝑚
 Γ  1 −

1

2𝑚
  

𝑚

 𝑒− 
1

𝑚 2 + 2𝑒− 1 +
2 log 𝑚

𝑚 
+ 𝜆  

4

𝑚
 Γ  1 −

1

2𝑚
  

𝑚

 𝑒− 
1

𝑚 2 + 3𝑒− 1 +
2 log 𝑚

𝑚 
  

≤ 𝑅∞ +  𝜆   
𝐶2

𝑚
+

4 log 𝑚

2𝑚 
+

𝐶2

𝑚
+

2 log 𝑚

𝑚 
 , (2.17) 

where𝐶2 = 4  Γ  1 −
1

2𝑚
  

𝑚
 𝑒− 

1

𝑚 2 + 2𝑒− 1 .Note that 𝐶2 dependent on 𝑚. 
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