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ABSTRACT

We derive some sum formulas for the squares of Pell and Pell-Lucas numbers. We construct Hankel-Hessenberg and

Toeplitz-Hessenberg matrices whose entries in the first column are HH = (aij ) q; = PH : HHQ :(aij ) q; = QH

and THP:(aij), & =P ;. THQ:(aij), a; = Q,_j,,, respectively where B, and Q, denote the usual Pell and

j n
Pell-Lucas numbers. Then, we found upper and lower bounds for spectral norm of these matrices.
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1. Introduction

Special matrices is a widely studied subject in matrix analysis. Especially special matrices whose entries are well known
number sequences have become a very interesting research subject in recent years and many authors have obtained
some good results in this area. For example, the norms of Toeplitz, Hankel and Circulant matrices involving Fibonacci,
Lucas, Pell and Pell-Lucas numbers were investigated in [1, 2, 5, 6, 7]. In this study, We derive some sum formulas for the
squares of Pell and Pell-Lucas numbers. We construct Hankel-Hessenberg and Toeplitz-Hessenberg matrices involving
Pell and Pell-Lucas numbers.

The Pell and Pell-Lucas sequences Pn and Qn are defined by the recurrence relations

P,=0,R=1,P,=2P ,+P,, for nx>2
and
Q=20Q=20Q,=2Q,,+Q,, for nx>2

If start from N =0, then the Pell and Pell-Lucas sequence are given by

n 0 1 2 3 4 5 6

P 0 1 2 5 12 29 70
n

Q 2 2 6 14 34 11 82
n

The following sum formulas the Pell and Pell-Lucas numbers are well known [8, 9]:

Epkz - F)n Pn—l

S| 1 2(-1)" -4
ZQkZ = Q2n—l ( )
o= 2
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S P n+ _2Pn+ Pn -1
Zpk Py = 2% 4 -
k=1

n-1

Qz —6
Q . = _xzn 7
kZ:l)z“ >

Q? -8P7 = 4(-1)

A matrix HH is a Hankel-Hessenberg matrix if it is of the form

8 @& v 8y,

a

HH=| & "
an—l an

where &, #0 and a, # 0 for atleastone k > 0.

A matrix TH is a Toeplitz-Hessenberg matrix if it is of the form

a
a
TH=| ?
a0
a, a &

where @, # 0 and &, # 0 for at least one K >0 [3].

The Euclidean norm of the matrix A is defined as

AL =| Daf

The spectral norm of the matrix A is

1A, =

where the numbers A, are the eigenvalues of matrix A A. The matrix A" is the conjugate transpose of the matrix A .

The following inequality holds,

1
1A <IA, < (Al

For the matrices A= (aij) and B = (bij )mxn the Hadamard Product of these matrices is defined as

mxn

BoC= (a..b. )mxn.

i)
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Define the maximum column lenght norm C, ,and the maximum row lenght norm I} of any matrix A by

r(A) :miax /Z‘aij‘z
c.(A) :m?1/2‘3i1‘2

respectively. Let A, B and C be Mx N matrices. If A=BoC then

|Al, <n(B)e,(C)4l.

and

2. Main Result

Lemma 11f P, and Q, are nth Pell and Pell-Lucas numbers, we have

n 4n+2)P. P, —P,. +1
kPZ - ( n+l' n 2n+1
Z ‘ 8

and

ZnQ2n+l _QZn —4n-2

, if nis odd
n 2 4
SkQ ={
k=1 2I’](32n+l — QZ” +4n+2 otherwise
4 1

Proof. Let A =) P?= % then

k=1

D kR? = P? +2P; +3P/ +...+nP;
k=1

:iPk2+
=A+(A-A)HA-A)+. (A -AL)

IS Pn+ n < Pi+ P|
VR LR v
i=1 i

=n I:)rH-ll:)n _1 I:)2n+1_2|:)n+1l:)n -1
2 2 4

— (4n + 2)F)n+1F)n — I:)2n+l +1
8
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So, the proof is completed. Similarly,

2n(?2n+1 — Q2n —4n-2 if nis odd

D kQe={
k=1 2nQ,,., —Q,, +4n+2

4

otherwise

Corollary 2 P, and Q, are nth Pell and Pell-Lucas numbers, we have formulas for Zksz and Zka
k=1 k=1

We can derive a formula for Z(n +1—Kk)P? and Z (n+1-k)Q7.

k=1

zn:(n +1-k)P? =nP2+(n-1P2 +(n—2)P? +...+1P?

k=1

=(n+ 1)Zn:Pk2 - zn:k R?
k=1 k=1

= (n +1{ Pn;P j (4n + Z)Pmlg P 2n+1 +1

— P2n+1 +2Pn+1P 1
8

Using the same technique, we can be show that

Q2n+2 —3n-10 n odd

n 4
Z(n +1-k)Q?Z =
~ Qon-p =160 =14 e
4 1
= P-_J- , then

Theorem 3 Let A be a Hankel-Hessenberg matrix satisfying a;

\/8nPn2+(4n—2)PnPnl—8Pn Pustd 1 < n(P,HlP)
8n - 2

where ||||2 is the spectral norm and Pn denotes the N th Pell number.

Proof. The matrix A is of the form
A=[ccccP_ 0 P_1 P_n1

P 1 P_n

P_n1 P_n ]

Then we have,
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n-1
|4z = > (k+1)R +(n-1)P;
k=0
_8nR’+(4n—2)RP,, -8R/ —P,, , +1

8

hence,

1A > \/8nPn2+(4n—2)PnPn_1—8Pn2—PZn_l+1
2 8n

On the other hand, let the matrices B and C as
B=[ccccl 1 1
1 1
11 ] and C=s[ccccP O P 1 P_n-1
P 1 P n
Pnl Pn ]
such that A=BoC. Then
r_1(B)=max
i_jlb_ij|*2=_j=1"n|b_nj|*2=n and
c_1(C)=max

j_ilc_ij|"2=_i=1"n|c_in|*"2=_i=1"nP_i"2=P_n+1P_n2

Pn+ Pn
I, = o Bt

We have

Thus, the proof is completed.

Theorem 4 Let A be a Hankel-Hessenberg matrix satisfying a; = Q._. . then

i-j
{ where ||||2 is the spectral norm and Q,, denotes the N th Pell-Lucas number.

Proof. The matrix A is of the form
A=[ccccQ 0 Q.1 Q_n-1

Q1 Q_n
Q1 Qn ]
Then we have,
n-1
Al = > (k+1)Q¢ +(n-2)Q;
k=0

={

hence,

1A, >

On the other hand, let the matrices B and C as
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11 Jand Cs[ccccQ 0 Q1 Q.n-1

Q1 Qn
Qnl Qn |

suchthat A=BoC. Then

r_1(B)=max

i_jlb_ij|*2=_j=1~n|b_nj|*2=n and

c_1(C)=max

j_ilc_ij|*2=_i=1"n|c_in|*"2=_i=1"nQ_i"2={lcrQ_2n+1-62, if N is odd

Q_2n+1-22, otherwise

We have

Thus, the proof is completed.

n(%j if nis odd

A, <1

n(%) otherwise

Theorem 5 Let A be a Toeplitz-Hessenberg matrix satisfying a; = P_;,, , then

2

\/PZM—2(2n+3)Pn+2Pn+1+8n2+24n—1<” AL < \/n(PMPM—Zj
<|A], < [n| m2Tn TS

8n

where ””2 is the spectral norm and P, denotes the N th Pell number.

Proof. The matrix A is of the form

A=[ccccP_2 P_1
P_3

P 1

P n+tl P_3 P_2]

Then we have,

hence,

n+l
JAlZ = > (n+2-K)R +(n-1)R?
k=2
_ P —2(2n+3)P,,P, +8n*+24n—-1

8

1 P TP T
. 8n

On the other hand, let the matrices B and C as
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B=[ccccl 1
11

1
11..1]and C=[ccccP 2 P 1
P_3 P_2

P_1
Pn+tl Pn .. P2]
suchthat A=BoC. Then
r_1(B)=max
i_jlb_ij|"2=_j=1~n|b_nj|"2=n and
c_1(C)=max
j_ilc_ij|*2=_i=1"n|c_in|"2=_i=2"n+1P_i"2=P_n+2P_n+1-22

I:)n+ Pn+ -2
A < o B2

We have

Thus, the proof is completed.

Theorem 6 Let A be a Toeplitz-Hessenberg matrix satisfying a; =Q,_j,,. then
\/M <[l <.|n Rna=01 i s odd
4n 2 2
{
Q2n+2_30 S”A” < In M , otherwise
4n ? 2

where ||||2 is the spectral norm and Qn denotes the N th Pell-Lucas number.

Proof. The matrix A is of the form
A=[ccccQ_1 QO
Q2
Q0
Qn Q2 Q1]
Then we have,

AL = 3 (n+1-K)Q2 +(n-1)Q2

k=1
M, if nis odd
4
={
M, otherwise
4
hence,
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Q,,., +8n—26

, if nisodd
4n
|Al, =€
-30 .
QZL, otherwise
4n
On the other hand, let the matrices B and C as
B=[ccccl 1
11
1

1 1..1]and C=[ccccQ 1 Q0
Q2 Q1
Qo0
Qn Qnl.. Q1]
such that A=BoC. Then
r_1(B)=max
i_jlb_ij|*2=_j=1"n|b_nj|*2=n and
c_1(C)=max
j_ilc_ij|"2=_i=1"n|c_in|*"2=_i=1"nQ_i"2={lcrQ_2n+1-62, if N is odd
Q_2n+1-22, otherwise

We have

n(%j if nis odd
|Al, <4

n(%j otherwise

Thus, the proof is completed.
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