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Abstract

In this paper we will study the new type of triangular representations of the symmetric groups which is called the first
triangular representations of the symmetric groups over a field K of characteristic pdivides(n-2).
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1. INTRODUCTION

When Prof. W. Specht was a student under the supervision of Prof. I. Schur, he began investigating
representation theory of the symmetric group .During that time it was well known that standard Young
tableaux of a given partition A of a positive integer n form a basis of an ordinary irreducible representation
space of S,. The problem that W.Specht was facing in his investigating in that time is that the symmetric
group acts in a natural way on tableaux, but the result of the application of a permutation to a standard
tableau can be a nonstandard tableau, and it is by no means clear how a nonstandard tableau can be written
as a linear combination of standard ones. For this reason W. Specht introduced in 1935 polynomials
corresponding to the tableaux ( known nowadays as Specht polynomials ), and it is obvious how a given
polynomial can be written as a linear combination of other polynomials (see [1] ).

In 1971 Peel introduced the ™ Hook representations which deals with the partitions A = (n —r, 17); r=> 1.[4]

In 2016 we introduce in our paper[5] new representations of the symmetric groups we call them the triangular
representations of the symmetric groups and we study the first of them which we call it the first triangular
representation of the symmetric groups when p divides (n-1).and follow it by the paper[6] which it is study the
first triangular representation of the symmetric groups over a field K of characteristic p=0.

Throughout this paper let K be a field of characteristic p which is divide (n-2), and x4, x5, ..., x, be linearly
independent commuting variables over K.

2. PRIEMINERIES
Definition 2.1:

Let S, be the set of all permutations t on the set {xq,x,,...,x,} and K[xq,%;,...,x,] be the ring of polynomials in
X1,Xg, -, X, With coefficients in K. Then each permutation t€ S, can be regarded as a bijective function from
K[xq,X5, ..., %,] onto K[xq,X%,,...,x,] defined by(f(xl,xz, ...,xn)) = f(‘r(xl),‘r(xz), ...,r(xn))v f(x1,X2, ..., Xy) € K[Xq, Xy, ..., X, ].
Then KS, forms a group algebra with respect to addition of functions, product of functions by scalars and composition of
functions which is called the group algebra of the symmetric group S,[3].

Definition 2.2:

Let n be a positive integer then the sequence A = (A,2,, ..., A)is called a partition of n if A; =2, ==X >0 andA; +
A + -4+ XN =n. Then the set D, = {(i,j)li=1,2,..,; 1 <j <A} is called A— diagram .And any bijective function t: D, —
{x1,%3,...,X, } is called a A-tableau. A A-tableau may be thought as an array consisting of 1 rows and A; columns of distinct
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variables t((j, L)) where the variables occur in the first A; positions of the i™ row and each variable t((i,j)) occurs in the it
row and the | column ((i, j)-position)of the array.t((i,j))will be denoted by t(i, j)for each (i,j) € D,.

The set of all A-tableaux will be denoted by T,. i.e T, = {t|tis a A — tableau}.

Then the function g: Ty = K[xq,Xy, ..., X,] which is defined by g(t) = [T_, H?;l(t(i,j))i‘l ,Vt€ Ty .is called the row position

monomial function of Ty,and for eachA-tableau t, g(t) is called the row position monomial of t.So M(}) is the cyclic
KS, —module generated by g(t) over KS,.[2]

3. THE FIRST TRIANGULAR REPRESENTATIOM OF S,
In the beginning we define some denotations which we need them in this paper.

n

1) Leto; ()=, x;.

i=1

2) Let o,(n)= Z XiX;.

I<i(j<n
3) LetCi(n) =xf (o,(n) — D xx);1=12,..,n
i
We denote N to be the KS,module generated by Ci(n)over KS,. The set B= {C;(n)|i=12,..,n} is a K-basis for
N = KS,C;(n)and dimgN = n.
4) Lety;(n) = G(n) — Gm); i,j=1.2,..,n.
we denote N the KS,submodule of N generated by uy, (n).

5) Let 03(n)= z Zn: xixjxﬁ.

1<ij<n k=1
ki, j

Then z C;(n) = o3(n)and dimK(Kcl (n)) = dimK(KGZ (n)) = dimg (Ko3(n)) =1.
I=1
Koy (n), Ko, (n)andKo3(n) are all KS,-modules, since to,(n) = o, (n) vk =1,2,3.

Definition 3.1:

The KS,-module M (n - (HZ)Z& r+1,r, ...,1)defined by

M(ﬂ_(r+2)2(r+1)

- 2 2 .3 +1
,r+1,r1, ...,1) = KS XX e Xp 41X y2 oo X5p 4 1X50 42 - Xy

is called the 1" triangular representation module of S, over K ,where n > m?’)zﬂ

Remark 3.1.1:

The first triangular representation module of S, over K is theKS, —module M(n —3,2,1), the second triangular
representation module of S, over K is theKS, —moduleM(n — 6,3,2,1) ,the third triangular representation module of S, over
K is theKS, —moduleM(n — 10,4,3,2,1) ,and so on.

Lemma 3.2:

The setB(n-3,2,1) = {xixjxlzl 1<i<j<nl1<I<nl=#ij} is a K-basis of M(n-3,2,1),anddimgM(n — 3,2,1) =
(3)@—-2);n>6.

Theorem 3.3:

The set By(n —3,2,1) = {x;xjx{ —x;%,x5| 1 <i<j<n1<1<nl#ij(jD #(1,23)}is a K-basis of My(n — 3,2,1), and
dimgM,(n —3,2,1) = (5)(n —2) — 1;n > 6.(see [5])

Theorem 3.4.: The set B= {C;(n)|i=1,2,..,n}is a K- basis for N(n) = KS,C;(n) .
Proof:Let T, = (x1x;) € S, ;i=23,..,n. Thenwe get 7;(C;(n)) = C;(n) ;i=2,3,..,n
which implies that C;(n) € N(n) = KS,C;(n) forall i=1,2,3,...,n. Thus
B={C(n)i=1.2,..,n} € N(n). Nowif w € N(n) > w € KS,C;(n).
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(n-1)! n

Sw= Z Z kj; g;; Cy(m)whereg;; € S, and g; (x1) = x; (i.e. o (i) = ccMVi=12,..,n).
[N
n (n-1)! n (n-1)! n (n-1)!

sw=) Y kigCm=Y ( Zl ki) C;(n) =Y. d;C; (n)whered; = z ki Hence B generates N(n) over K .If
=

= = =) i-1 =
Z kiCi(n) =0.i.e.

i=1

kiCi(n) + k,Cy(n) + -+ + k, C,,(n) = 0 .which implies that

ki = ky, == k, = 0sinceC;(n) = Z xl-xjxlz .Thus B is linearly independent .Therefore B is a basis of N(n) and

1<i(j<n
1]

dimgkN(n) =n.
Theorem 3.5.:N = KS,¢,(n) and M(n — 1,1) are isomorphic over KS, (see[5])
Theorem 3.6.:N, = KS,u;,(n) and My(n — 1,1) are isomorphic over KS, .(see[5])
Corollary 3.6.1: The KS,-module Ny = KS,u;,(n) is irreducible over KS, .(see [5])
Proposition 3.6.2:N = N,@Kd;(n).(see[5])
Proposition 3.6.3:N has the following two composition series
0 € Ny € Nand0 c Ka;(n) c N. (see [5])
Definitions 3.7.;
1. the KS,—homomorphismd : M (n—3,2,1) - M (n—2,2) is defined in terms of the partial operators by

n 2
d(xxxf) =Y ;{—z(xi%xlz) ,
k=1

2. the KS,—homomorphism dwhich is the restriction of d toMy(n —3,2,1).i.e.
d: Mg(n—3,2,1).» My(n—3,2).
3. the KS,—homomorphism f : M (n—3,2,1) — K which is defined by

FCY D kjuxgxt)=D, > ki

1<i(j<n i1 1<i(j<n 11
1#i,] 14,

Theorem 3.8.; The following sequence ofK S, — modules is exact

i d
0->Kerd - M(n—321)->Mn—-22)->0 ...... (1)(see [5])
Corollary 3.8.1: The dimension of kerd over K of the KS,, — homomorphism
d:M(n —3.2.1) » M(n — 2,2)isw.(see 5])

Corollary 3.8.2: The following sequence ofKS, — modules is exact

i d
0 - Kerd — My(n —3,2,1) 5 My(n—2,2) > 0 oo r . (2)(see [5])

Lemma 3.9.:dimy S(n—3,2,1) = w .
Proposition 3.10.: S(n — 3,2,1) is a proper submodule of kerd .(see [5])

Theorem 3.11.:The following sequence over the field K is exact.

0 - My(n—321) > Mmn—321) 5K -0 .. (3)(see [5])

Corollary 3.11.1: the exact sequence (3) is split iff p does not divide 2e-D@-2)

nn—-1)(n-2)

Proof: Assume that p does not divide . Define g: K » M(n — 3,2,1) by
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_ 203(n) _ N e a2
g(1) = pYwS Y where g3(n) = 1(%:@ I; X, X|

14, ]

Then g is a KS, -homomorphism since 7 g5(n) = a3(n) forany 7 € S,, and t(1) = 1, thus we get

_ _ 203(n) _ 203(n) _
g =g = nn-1)n-2) T (n(n—l)(n—Z)) = 1g(D).

203(n) 2
Moreover we have fg(1) = f(g(1)) = f(n(njf)&—z)) = n(n—l)(n—Z)f(og (n)
_ 2 . n(n-1)(n-2) _ _ . .
= oDeD . = 1 .Hencefg = I .Therefore the sequence (3) is split.

Now assume the sequence (3) is split .Hence there is a KS,, -homomorphism
g: K-> Mmn—-321)s.t. fg=1.Then g has the form
g = Y > kyxixgxl.

Wi(jn 1=1
14, ]

Thenforanyt = (x,x,) €S,;1 <r <s <nwehave g(1) = g(z1).

Thusweget 0= g(1) —g(tli.e.

n n n
0= Z z kijlxixjxlz_ Z z kilexixjxlz_ z Z kijl(xixjxlz_‘[(xixjxlz))

Li(jsn 1=1 Li(j<n I—1 I<i(j<n 1=l
I#i, j I#i,j 1=, ]
n n 2 n n 2 r-1 n
= > 2 (kg —kg)xxa+ 3 >0 (kgy — ke Jxsxxf + Y (ki — kig)xix,
j=r+l 1=l j=s+1 1=l i=1 1=1
j#s l#r,s,j l#r,s,j l=r,s,i
s-1 n n-1 n n-1 n
+ Z z (kisl Lrl)xlxsxl Z z (kl T kL N )X z (kz s kl T )xz xs
j j ) L j j %
n r-1 s-1
+ Z (kr]s ks;r )xr ]xs + 2 (kS]T krjs )XSX]-XE + z (kirs - kisr)xixrxsz + Z (kisr - kirs)xixsxrz
J:A j=s+1 i=1 :'le
n n 2 2
= z z (krjl - ksjl)(xrxjxl — XX X[')
j=r+1 1=1
j#s l#r,s
r-1 n 2 2 n-1 n
+ Z (kirl - kisl)(xixrxl - XiXsX] ) + Z (kijr kl}S )(xlxj xr XiXj xs)
i=1 1=l i=1 j=i+l
I=r,s i=r,s JE

+ Z (krjs - ksjr)(xrxjxs XsXj xr) + Z (kirs - kisr)(xixrxsz - X xsxr)

r(jsn 1<i(r(n
JtS

Which implies by equating the coefficient of the above equation that

ki = kg Vr<j<n3j#sandvl<l<n>3l#rs,j.

rjl
ki =kiqg V1<i<randv1l<l<n3l#r,s,j.
kij, = kijs V1<i<j <n 3 ij#r,s.
kirg = kisy V1<i<r.

ks = kg V7r<j <n,j #s.
Henceforeach r,s s.t1<r<s<n wegetk;; =k ;1<i<j<n
and 1<1<n 31+#1i,j. Thus

g = Y > kpxxgxi= Y, > kxxxi=k ), z x;x;xf = k oz (n).

Wi(j<n 1=1 Li(j<n 1=1 1(i( j<n
I, j =i, j |tI.J
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wfg=I1Hence 1=fg()=f (k 0'3(71)) = kf (0'3(71)) = Sn(n —1(n-2)

Thus p does not divide “2=20=2

Corollary 3.11.2:M,(n — 3,2,1) is not a direct summand ofM(n — 3,2,1)when p divides

n(n—-1)(n-2)
2

Proof: Assume that My(n — 3,2,1) is a direct summand ofM (n — 3,2,1) whenp divides

nn—-1)(n-2)

. .Hence thereisa KS, submodule of M(n — 3,2,1),sayH ,s.t. M(n — 3,2,1) =

M,(n-3,2,1) @ H .Thus the exact sequence (3) is split and this is a contradicts corollary(3.11.1).
Therefore My(n-3,2,1) is not a direct summand of M(n — 3,2,1).

Proposition 3.12: If p divides 2(n — 2), then Ko3(n) C kerd .

Proof : By the definition of g3(n) we have that

o3(n) = Y zn: x;xxf Thus d(o3(n)) =2(n—2) Y. x% =2(n—2)0,(n) .Whichimplies that Ka3(n) c

1<i(jsn i1 1<i(j<n
141,

ker dwhen pdivides 2(n — 2).

Theorem3.13: If p = 2 and p divides (n — 2) then we have the following series :

1)0 c Koy c kerd c Ny@ kerd ¢ My(n —3,2,1) € M(n —3,2,1)
2)0cNycNcNy®kerd c My(n—3,2,1) c M(n—3,2,1).

3)0c Koy c N c Ny@kerd c My(n—3,2,1) € M(n — 3,2,1).

Proof :

Since p # 2 andpdivides (n — 2) ,then by proposition (3.12) we get that Ka;(n) c kerd .
Moreover when p divides (n — 2) implies p does not divides n.Thus we get thatN,, is irreducible
submodule overKS, by corollary (3.6.1).HenceN @ kerd < My(n — 3,2,1).

Therefore we get the following series

1)0 € Koz € kerd € Ny@kerd € My(n — 3,2,1) € M(n — 3,2,1)

2)0 c Ny c Nc Ny kerd € My(n —3,2,1) € M(n — 3,2,1).

3)0 c Koz € N € Ny@® kerd € My(n — 3,2,1) € M(n — 3,2,1).

Theorem 3.14: The following sequence of a KS,, -submodule is exact.

0 >kerd; > T 3 S(n—2,2) -0 (4)

whereT = KS,, (x1X3X2 — X;X4X2 + XpX,XE — XpX3x2).

Proof: The same proof of theorem(3.13) in [6].

Corollary 3.14.1: The exact sequence (4) over the field K is split.

Proof : As the proof of corollary(3.13.1) in[6].

Proposition 3.15: S (n — 3,2,1) is a properKS, —submodule of T.
Proof: As the proof of proposition(3.13.2)in[6].
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