

ON ANTI-FUZZY IDEALS OF MΓ-GROUPS

Nagaraju Dasari

Manipal University Jaipur, Jaipur-Ajmer Expressway, Jaipur-, INDIA. dasari.nagaraju@gmail.com

ABSTRACT

We derive results related to level sets, cosets with respect to anti-fuzzy ideals in $M\Gamma$ -groups

Keywords

MΓ-Group, Anti-fuzzy Ideal, Anti-fuzzy coset.

SUBJECT CLASSIFICATION

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .10, No.9

www.cirjam.com, editorjam@gmail.com

1. INTRODUCTION

 Γ -near-ring, introduced by Satyanarayana [8] generalizes both near-ring and Γ -ring. Booth and Grenewald [2], Satyanarayana [9] were studied and developed the concept of M Γ -groups. Given a Γ -near-ring M, an additive group G is said to be a Γ -near-ring-module over M (or $M\Gamma$ -group or $M\Gamma$ -module) if the following two conditions hold:

(i)
$$(m_1 + m_2)\gamma_1 g = m_1\gamma_1 g + m_2\gamma_1 g$$
; and

(ii)
$$(m_1\gamma_1m_2)\gamma_2g = m_1\gamma_1(m_2\gamma_2g)$$
 for $m_1, m_2 \in M, \gamma_1, \gamma_2 \in \Gamma$ and $g \in G$.

Fuzzy sets introduced by Zadeh [15], has created interest among the researchers and motivated them to introduce and develop the concept of fuzziness in several mathematical systems. Studies on anti-fuzzy sets in algebraic systems were started in the 1990's with Biswas [1]. Fuzzy M Γ -subgroups were studied by Jun, Kwon and Park [3], later on Kim, Jun and Yon [4] were studied Anti-fuzzy ideals in near-rings. Srinivas, Nagaiah and Narasimha Swamy [13] were studied Anti-fuzzy ideals in Γ -near-rings. Fuzzy ideals of M Γ -groups were studied by Nagaraju, Satyanarayana, Babu Prasad and Venkatachalam [6], Satyanarayana, Vijaya Kumari, Godloza & Nagaraju [12].

2. Anti-fuzzy Ideals

- **2.1 Definition**: A mapping v: $G \rightarrow [0, 1]$ is said to be an *anti-fuzzy ideal* of G if it satisfy the following axioms:
 - (i) $v(x y) \leq \max\{v(x), v(y)\};$
 - (ii) $v(x + y x) \le v(y)$;
 - (iii) $v(m\gamma(a + x) m\gamma a) \le v(x)$ for all $m \in M$, $\gamma \in \Gamma$ and $a, x, y \in G$.
- **2.2 Example**: If $v: \mathbb{Z} \to [0, 1]$ defined by

$$v(x) = \begin{cases} 0.2, & \text{if } x = 4n, n \in \mathbb{Z} \text{ or } x = 0 \\ 0.6, & \text{if } x = 2m, \text{ where } m \in \mathbb{Z} \text{ but not of the form } x = 4k, \text{ for some } k \in \mathbb{Z}, \\ 1, & \text{otherwise} \end{cases}$$

then v is an anti-fuzzy ideal of \mathbb{Z} .

- **2.3 Note**: If v is an anti-fuzzy ideal of G, then (i) $v(0) \le v(g)$; (ii) $v(0) = \inf_{g \in G} V(g)$; (iii) v(-g) = v(g); (iv) $v(g_1 + g_2) = v(g_2 + g_1)$ for all $g, g_1, g_2 \in G$.
- **2.4 Thorem**: Let G be an M Γ -group. Then a fuzzy set ν is an anti-fuzzy ideal of G if and only if ν^c is a fuzzy ideal of G.
- **2.5 Theorem**: Let v be an anti-fuzzy ideal of the M Γ -group G. If v(x y) = v(0), then v(x) = v(y).
- **2.6 Note**: The converse of the above theorem is not true. If we consider two odd integers for x and y in example 2.2, then v(x) = 1 = v(y), which means v(x) = v(y) whereas v(x y) may not be equal to v(0).
- **2.7 Result**: If v is an anti-fuzzy ideal of M Γ -group G, and x, y \in G with $v(x) \neq v(y)$, then $v(x y) = \max\{v(x), v(y)\}$.

Proof. Without loss of generality suppose that v(x) < v(y). By the definition $v(x - y) \le \max\{v(x), v(y)\} = v(y) \dots$ (i)

Now $v(y) = v(y + x - x) \le \max\{v(y + x), v(x)\} = \max\{v(x + y), v(x)\}$. Suppose if $v(x - y) \le v(x)$, then $v(y) \le v(x)$, a contradiction

If $v(x - y) \ge v(x)$, then $v(y) \le v(x - y)$...(ii) From (i) and (ii), we have $v(x - y) = v(y) = \max\{v(x), v(y)\}$.

- **2.8 Result**: If $\{v_i / i \in I\}$ is a family of anti-fuzzy ideals of M Γ -group G, then $\bigvee_{i \in I} V_i$ is also an anti-fuzzy ideal of G.
- **2.9 Definition**: Let G be a M Γ -group and ν be any anti-fuzzy ideal of G. For any $t \in [\nu(0), 1]$, the set $\nu_t = \{x \in G \mid \nu(x) \le t\}$ is called *anti level subset* of ν .
- **2.10 Theorem**: A fuzzy mapping defined on M Γ -group is an anti-fuzzy ideal of G if and only if v_t is an ideal of G.

Proof: Suppose v: G → [0, 1] is an anti-fuzzy ideal of G. Let t be such that $v(0) \le t \le 1$. Since $v(0) \le t$, we have that $0 \in v_t = \{x \mid v(x) \le t\}$. So v_t is a non-empty subset of G. Let x, $y \in v_t$. Then $v(x) \le t$ and $v(y) \le t$ and so $v(x - y) \le \max\{v(x), v(y)\} \le \min\{t, t\} = t$ which implies $x - y \in v_t$. So $(v_t, +)$ is a subgroup of (G, +). Let $g \in G$. Now $v(g + x - g) \le v(x) \le t$ which implies $g + x - g \in v_t$. So $(v_t, +)$ is a normal subgroup of (G, +). Let $m \in M$, $\gamma \in \Gamma$. Now $v[m\gamma(g + x) - m\gamma g] \le v(x) \le t$ and so $m\gamma(g + x) - m\gamma g \in v_t$. Hence v_t is an ideal of the MΓ-group G.

ISSN 2347-1921

Now suppose that v_t is an ideal of G. Let $x, y \in G$ and write $t = max\{v(x), v(y)\}$. Now $x, y \in v_t$ which implies $x - y \in v_t$ and so $v(x - y) \le t$. Therefore $v(x - y) \le max\{v(x), v(y)\}$. Write t = v(x) implies that $x \in v_t$ and $g + x - g \in v_t$ for any $g \in G$. Thus $v(g + x - g) \le t = v(x)$ implies that $v(g + x - g) \le v(x)$. Since $x \in v_t$ and v_t is an ideal of G, it follows that $m\gamma(g + x) - m\gamma g \in v_t$ for any $m \in M$, $\gamma \in \Gamma$, $g \in G$. So $v[m\gamma(g + x) - m\gamma g] \le t = v(x)$ for $m \in M$, $\gamma \in \Gamma$, $x \in G$.

2.11 Proposition: Let v be an anti-fuzzy ideal of the M Γ -group G, and v_t , v_s (with s < t) be two anti level ideals of v. Then the following two conditions are equivalent:

(i)
$$v_t = v_s$$
; and

(ii) there is no $x \in G$ such that $s < v(x) \le t$.

Proof: (i) \Rightarrow (ii) In a contrary way, suppose that there exists an element $x \in G$ such that $s < v(x) \le t$. Then $x \in v_t$ and $x \notin v_s$, a contradiction.

(ii)
$$\Rightarrow$$
 (i) Let $x \in v_s \Rightarrow v(x) \le s < t \Rightarrow v(x) < t \Rightarrow x \in v_t$.

Now take $x \in v_t \Rightarrow v$ (x) $\leq t$, by the assumption there is no $y \in G$ such that $s < v(y) \leq t$ and so $v(x) \leq s \Rightarrow x \in v_s$. Hence $v_t = v_s$.

- **2.12 Notation**: FI(x) denote the family of all ideals of the $M\Gamma$ -group G which contain x.
- **2.13 Theorem**: Let v be an anti-fuzzy ideal of the M Γ -group G.
 - (i). If $FI(x) \subset FI(y)$, then $v(y) \le v(x)$
 - (ii). If FI(x) = FI(y), then v(y) = v(x)

Proof: (i) Suppose FI(x) \subset FI(y) also suppose that v(y) > v(x). By letting t = v(x), $x \in v_t$ but $y \notin v_t$ means that $v_t \in FI(x)$ and $v_t \notin FI(y)$, a contradiction. (ii) follows from (i).

2.14 Theorem: If I is an ideal of M Γ -group G, then for each $t \in [\nu(0), 1]$, there exists an anti-fuzzy ideal ν of G such that $\nu_t = I$.

Proof: Let G be a MΓ-group and I an ideal of G. For any $t \in [v(0), 1]$ define $v: G \to [0, 1]$ by $v(x) = \begin{cases} t, & \text{if } x \in I \\ s, & \text{otherwise} \end{cases}$ for

all $x \in G$, where t < s. Clearly $v_t = I$ for all $t \in [v(0), 1)$. For $x, y \in G$, if $x, y \in I$, then $x - y \in I$ and so $v(x - y) = t \le max\{t, t\} = max\{v(x), v(y)\}$. If $x \in I$ and $y \notin I$, then $x - y \notin I$ and so $v(x - y) = s \le max\{t, s\} = max\{v(x), v(y)\}$. Similarly, we can observe that $v(x - y) \le max\{v(x), v(y)\}$ in the case $x \notin I$ and $y \in I$. If $x \notin I$, $y \notin I$, then $v(x - y) \le s = max\{s, s\} = max\{v(x), v(y)\}$. Take $x \in I$. Since I is an ideal of G, we have that $y + x - y \in I$ and so v(y + x - y) = t = v(x). If v(y + x - y) = s, then v(y + x - y) = t = v(x). So v(y + x - y) = v(x) for all $x, y \in G$. Take $x \in I$, $y \in G$, $y \in I$ and $y \in I$. This shows that v(y + x - y) = s = v(x). So v(y + x - y) = v(x) for all $x, y \in G$. Take $x \in I$, $y \in G$, we have that v(y + x - y) = v(x) for all $x, y \in G$. Take $x \in I$, $y \in G$. Take $y \in G$.

Therefore $\nu(m\gamma(g+x)-m\gamma g)=t=\nu(x)$. If $x\not\in I$, then $\nu(m\gamma(g+x)-m\gamma g)\leq s=\nu(x)$. Therefore for all $x\in G$, we have that $\nu[m\gamma(g+x)-m\gamma g]\leq \nu(x)$.

- **2.15 Notation**: For an anti-fuzzy ideal v of G, we write $G_v = \{x \in G \mid v(x) = v(0)\}$. Clearly G_v is an ideal of G.
- **2.16 Definition**: Let G and G^1 be two sets and h a function from G into G^1 . Let v and v^1 be fuzzy sets on G and G^1 respectively. Then

(i). the image of v under h, h(v) is a fuzzy set in G¹ and is defined as
$$h(v)(y^1) = \begin{cases} \inf_{h(x)=y^1} v(x) & \text{if } h^{-1}(y^1) \neq \emptyset \\ 0 & \text{if } h^{-1}(y^1) = \emptyset \end{cases}$$
 for

all
$$y^1 \in G^1$$
; and

- (ii). $h^{-1}(v^1)$ the pre-image of v^1 under h is a fuzzy set in G and it is defined as $h^{-1}(v^1)(x) = v^1(h(x))$ for all $x \in G$.
- **2.17 Definition**: Let G and G^1 be two sets, v is a fuzzy set on G and h: $G \to G^1$ a function. Then v is called *h-invariant* if h(x) = h(y) implies v(x) = v(y) for all $x, y \in G$.
- **2.18 Note**: (i) If v is h-invariant, then $h^{-1}(h(v)) = v$.
- (ii) If h is onto, then $h(h^{-1}(\gamma)) = \gamma$, where γ is anti-fuzzy ideal of G^1 .
- **2.19 Theorem**: If v is anti-fuzzy ideal of the M Γ -group G, then h(v) is anti-fuzzy ideal of the M Γ -group G¹; and if v^1 is anti-fuzzy ideal of the M Γ -group G¹, then $h^{-1}(v^1)$ is anti-fuzzy ideal of the M Γ -group G which is constant on ker h.

ISSN 2347-1921

Proof: Assume that v is an anti-fuzzy ideal of the MΓ-group G. We prove that h(v) is anti-fuzzy ideal of the MΓ-group G¹. It is known that $h(v)(x + y) \le \max\{h(v)(x), h(v)(y)\}$; $h(v)(x + y - x) \le h(v)(y)$. Consider $h(v)(n\gamma(a + x) - n\gamma a) = \inf_{h(z) = n\gamma(a+x) - n\gamma a} \nu(z) \le v(n^1\gamma(a^1 + x^1) - n^1\gamma a^1)$. Since h is onto there exists n^1 , a^1 , x^1 such that $h(n^1) = n$, $h(a^1) = n$, $h(x^1) = n$ and so $h(n^1\gamma(a^1 + x^1) - n^1\gamma a^1) = h(n^1)\gamma(h(a^1) + h(x^1)) - h(n^1)\gamma(h(a^1) = n\gamma(a + x) - n\gamma a) \le v(x^1)$. Therefore $h(v)(n\gamma(a + x) - n\gamma a) \le \inf_{h(x^1) = x} \nu(x^1) = h(v)(x)$. Hence h(v) is anti-fuzzy ideal of the MΓ-group G^1 .

Suppose that v^1 is anti-fuzzy ideal of the M Γ -group G^1 . To show $h^{-1}(v^1)$ is anti-fuzzy ideal of the M Γ -group G. Consider $h^{-1}(v^1)(n\gamma(a+x)-n\gamma a)=v^1(h(n\gamma(a+x)-n\gamma a))=v^1(n\gamma h(a+x)-n\gamma h(a))=v^1(n\gamma(h(a)+h(x))-n\gamma h(a))\leq v^1(h(x))=h^{-1}(v^1)(x)$. One can easily verify the other conditions of fuzzy ideal. Therefore $h^{-1}(v^1)$ is anti-fuzzy ideal of the M Γ -group G. For any $x\in \ker h$, we have that $h^{-1}(v^1)(x)=v^1(h(x))=v^1(0)$. This shows that $h^{-1}(v^1)$ is constant on $\ker h$.

2.20 Lemma: If v is a fuzzy ideal of G; h: $G \to G^1$ an onto homomorphism, such that v is constant on ker h, then v is hinvariant.

Proof: Suppose h(x) = h(y) for some $x, y \in G$. Then h(x - y) = 0 and so $x - y \in \ker h$. Since $0, x - y \in \ker h$, we have that v(0) = v(x - y). It follows that v(x) = v(y).

- **2.21 Theorem**: The mapping $v \to h(v)$ defines a one-to-one correspondence between the set of all h-invarinat antifuzzy ideal of the M Γ -group G and the set of all anti-fuzzy ideals of the M Γ -group G¹, where h: G \to G¹ is an epimorphism.
- **2.22 Theorem**: Let v and v^1 be anti-fuzzy ideals of the MΓ-group G and G^1 respectively such that $Im(\mu) = \{t_0, t_1, ..., t_n\}$ with $t_0 < t_1 < ... < t_n$, and $Im(v) = \{s_0, s_1, ..., s_m\}$ with $s_0 < s_1 < ... < s_m$. Then (i). $Im(h(v)) \subset Im(v)$ and the chain of level ideals of h(v) is $h(v_{t_0}) \subseteq h(v_{t_0}) \subseteq ... \subseteq h(v_{t_n})$; and
- (ii). $\operatorname{Im}(h^{\text{-1}}(v^1)) = \operatorname{Im}(v^1)$ and the chain of level ideals of $h^{\text{-1}}(v^1)$ is $h^{\text{-1}}\left(v^1_{s_0}\right) \subseteq h^{\text{-1}}\left(v^1_{s_1}\right) \subseteq \ldots \subseteq h^{\text{-1}}\left(v^1_{s_m}\right)$.

Proof: (i). $h(v)(y^1) = \inf_{h(x) = y^1} v(x) \in \text{Im } v \Rightarrow \text{Im } h(v) \subseteq \text{Im } v. \ y^1 \in G^1, \ y^1 \in h\left(v_{t_i}\right) \Leftrightarrow \text{there exists } x \in v_{t_i} \text{ such that } h(x) = y^1 \Leftrightarrow v(x) \leq t_i \text{ and } h(x) = y^1 \Leftrightarrow \inf_{h(x) = y^1} v(x) \leq t_i \Leftrightarrow (h(v))(y^1) \leq t_i \Leftrightarrow y^1 \in \left(h(v)\right)_{t_i}. \text{ Therefore } h\left(v_{t_i}\right) = \left(h(v)\right)_{t_i}.$ Since $t_0 < t_1 < ... < t_n$ and $\text{Im } h(v) \subseteq \{t_0, t_1, ..., t_n\}$, it follows that $\left(h(v)\right)_{t_0} \subseteq \left(h(v)\right)_{t_1} \subseteq ... \subseteq \left(h(v)\right)_{t_n}$ is a sequence of the anti-level ideals of h(v). Since $h\left(v_{t_i}\right) = \left(h(v)\right)_{t_i}$, we can conclude that $h\left(v_{t_0}\right) \subseteq h\left(v_{t_1}\right) \subseteq ... \subseteq h\left(v_{t_n}\right)$ is the sequence (of maximum length) of the anti-level ideals of the anti-fuzzy ideal h(v).

(ii) Since $h^{-1}(v^1)(x) = v^1(h(x))$ for all $x \in G$, and since h is onto we have $Im(h^{-1}(v^1)) = Im(v^1)$. $x \in h^{-1}\left(v_{s_i}^1\right) \Leftrightarrow$ there exists $y \in V_{s_i}^1$ such that $h^{-1}(y) = x \Leftrightarrow v^1(y) \leq s_i$ and $y = h(x) \Leftrightarrow v^1(h(x)) \leq s_i \Leftrightarrow h^{-1}(v^1)(x) \leq s_i \Leftrightarrow x \in \left(h^{-1}\left(v^1\right)\right)_{s_i}$. Therefore $h^{-1}\left(V_{s_i}^1\right) = \left(h^{-1}\left(V^1\right)\right)_{s_i}$. Now $s_0 < s_1 < ... < s_m$ and $Im(v^1) = \{s_0, s_1, ..., s_m\}$, implies that $\left(h^{-1}\left(V^1\right)\right)_{s_0} \subseteq \left(h^{-1}\left(V^1\right)\right)_{s_1} \subseteq ... \subseteq \left(h^{-1}\left(V^1\right)\right)_{s_m}$. Since $h^{-1}\left(V_{s_i}^1\right) = \left(h^{-1}\left(V^1\right)\right)_{s_i}$, we conclude that $h^{-1}\left(V_{s_0}^1\right) \subseteq h^{-1}\left(V_{s_1}^1\right) \subseteq ... \subseteq h^{-1}\left(V_{s_m}^1\right) = G$ is a chain of anti-level ideals of $h^{-1}(y)$.

3. Anti-fuzzy Cosets

- **3.1 Definition**: Let v: $G \rightarrow [0, 1]$ be an anti-fuzzy ideal of the M Γ -group G, and $y \in G$. Then the fuzzy subset y + v: $G \rightarrow [0, 1]$ defined by (y + v)(x) = v(x y) is called an *anti-fuzzy coset* of the anti-fuzzy ideal v.
- **3.2 Theorem**: Let v be an anti-fuzzy ideal of G. Then for all $y_1, y_2 \in G$, $y_1 + v \le y_2 + v$ implies $v(y_1) = v(y_2)$.

Proof: Suppose $y_1 + v \le y_2 + v$. That is $(y_1 + v)(x) \le (y_2 + v)(x)$ for all $x \in G$. Now $v(y_2 - y_1) = (y_1 + v)(y_2) \le (y_2 + v)(y_2) = v(y_2 - y_2) = v(0)$. Which implies that $v(y_2 - y_1) \le v(0)$ and hence $v(y_2 - y_1) = v(0)$. Thus $v(y_2) = v(y_1)$.

3.3 Theorem: Let v be an anti-fuzzy ideal of G. Then $v(y_2 - y_1) = v(0)$ implies that $y_1 + v = y_2 + v$ for all $y_1, y_2 \in G$.

Proof: Consider $(y_1 + v)(x) = v(x - y_1) = v[(x - y_2) - (-y_2 + y_1)] \le \max\{v(x - y_2), v(y_2 - y_1)\} = \max\{v(x - y_2), v(0)\} = v(x - y_2) = (y_2 + v)(x)$. Which implies that $y_1 + v \le y_2 + v$. Similarly we can show that $y_2 + v \le y_1 + v$.

3.4 Corollary: Let v be an anti-fuzzy ideal of G. Then $v(y_2 - y_1) = v(0)$ if and only if $y_1 + v = y_2 + v$ for all $y_1, y_2 \in V(0)$

- **3.5 Notation**: We write $G/v = \{x + v \ / \ x \in G\}$, the set of all anti-fuzzy cosets of v. Define (x + v) + (y + v) = (x + y) + v and $m\gamma(x + v) = m\gamma x + v$ for $m \in M$, $\gamma \in \Gamma$ and $x \in G$. Then the set G/v becomes an $M\Gamma$ -group with respect to the operations defined. The $M\Gamma$ -group G/v is called as the quotient group with respect to the anti-fuzzy ideal v.
- **3.6 Definitions**: (i) If v is an anti-fuzzy ideal of a M Γ -group G, then we define a fuzzy set θ_v on G/v corresponding to v by $\theta_v(y + v) = v(y)$ for all $y \in G$.
- (ii) If θ is an anti-fuzzy ideal of the M Γ -group G/ ν , then we define a fuzzy set σ_{θ} on G by $\sigma_{\theta}(v) = \theta(v + v)$ for all $v \in G$.
- **3.7 Theorem**: If v is an anti-fuzzy ideal of the M Γ -group G, then the fuzzy set θ_v is an anti-fuzzy ideal of G/v.

Proof: Let a + v, x + v, $y + v \in G/v$ and $m \in M$. $\theta_v((y + v) - (x + v)) = \theta_v((y - x) + v) = v(y - x) \le \max\{v(y), v(x)\} = \max\{\theta_v(y + v), \theta_v(x + v)\}$. $\theta_v((y + v) + (x + v) - (y + v)) = \theta_v((y + x - y) + v) = v(y + x - y) \le v(x) = \theta_v(x + v) \theta_v(m\gamma((a + v) + v) + v) - (m\gamma(a + v)) = \theta_v(m\gamma(a + v) - m\gamma(a + v)) = \theta_v(m\gamma(a + v) - m\gamma(a + v)) = \theta_v(y + v)$.

3.8 Corollary: If v and σ are two anti-fuzzy ideals of G such that $\sigma \subseteq v$ and $\sigma(0) = v(0)$, then the mapping $h_{\sigma}: G/v \to [0, 1]$ defined by $h_{\sigma}(y + v) = \sigma(y)$ for all $y + v \in G/v$, is an anti-fuzzy ideal. Also $h_{\sigma} \subseteq \theta_v$ on G/v and $\theta_v(0) = h_{\sigma}(0)$.

Proof: Let x + v, $y + v \in G/v$ such that x + v = y + v. This implies $v(0) = v(x - y) \Rightarrow \sigma(0) \leq \sigma(x - y) \leq v(x - y) = v(0) = \sigma(0)$ $\Rightarrow \sigma(0) = \sigma(x - y) \Rightarrow x + \sigma = y + \sigma \Rightarrow (x + \sigma)(0) = (y + \sigma)(0) \Rightarrow \sigma(0 - x) = \sigma(0 - y) \Rightarrow \sigma(-x) = \sigma(-y) \Rightarrow \sigma(x) = \sigma(y) \Rightarrow h_{\sigma}(x + v) = h_{\sigma}(y + v)$. This shows that h_{σ} is well defined.

Take $x+v, y+v, a+v\in G/v$ and $m\in M$. Now $h_{\sigma}((x+v)-(y+v))=h_{\sigma}((x-y)+v)=\sigma(x-y)\leq \max\{\sigma(x),\sigma(y)\}=\max\{h_{\sigma}(x+v),h_{\sigma}(y+v)\}$. Now $h_{\sigma}((x+v)+(y+v)-(x+v))=h_{\sigma}((x+y-x)+v)=\sigma(x+y-x)\leq \sigma(y)=h_{\sigma}(y+v)$. $h_{\sigma}(m\gamma((a+v)+(x+v))-m\gamma(a+v))=h_{\sigma}(m\gamma((a+v)+v)-(m\gamma a+v))=h_{\sigma}([m\gamma(a+x)-m\gamma a]+v)=\sigma(m\gamma(a+x)-m\gamma a)\leq \sigma(x)=h_{\sigma}(x+v)$. It follows that h_{σ} is an anti-fuzzy ideal of G/v. Now $h_{\sigma}(x+v)=\sigma(x)\leq v(x)=\theta_{v}(x+v)$. This shows that $h_{\sigma}\subseteq\theta_{v}$. Also $\theta_{v}(0)=v(0)=\sigma(0)=h_{\sigma}(0)$.

3.9 Theorem: Let v be an anti-fuzzy ideal of G, and θ an anti-fuzzy ideal of G/v such that $\theta \subseteq \theta_v$ and $\theta_v(0) = \theta(0)$. Then σ_θ : $G \to [0, 1]$ defined by $\sigma_\theta(x) = \theta(x + v)$, is an anti-fuzzy ideal of G such that $\sigma_\theta \subset v$ and $\sigma_\theta \subset v$

Proof: First we show that σ_{θ} is an anti-fuzzy ideal of G. For this, take a, x, y \in G and m \in M. $\sigma_{\theta}(x - y) = \theta((x - y) + v) = \theta((x + v) - (y + v)) \le \max\{\theta(x + v), \theta(y + v)\} = \max\{\sigma_{\theta}(x), \sigma_{\theta}(y)\}$

```
\sigma_{\theta}(x + y - x) = \theta((x + y - x) + v) = \theta((x + v) + (y + v) - (x + v)) \le \theta(y + v) = \sigma_{\theta}(y)
```

 $\sigma_{\theta}(m\gamma(a+x)-m\gamma a)=\theta([m\gamma(a+x)-m\gamma a]+\nu)=\theta(m\gamma((a+\nu)+(x+\nu))-m\gamma(a+\nu))\leq\theta(x+\nu)=\sigma_{\theta}(x). \text{ It follows that } \sigma_{\theta}\text{ is an anti-fuzzy ideal of G. For any } x\in G, \text{ we have that } \sigma_{\theta}(x)=\theta(x+\nu)\leq\theta_{\nu}(x+\nu)=\nu(x). \text{ This shows that } \sigma_{\theta}\subseteq\nu. \text{ Also } \sigma_{\theta}(0)=\theta(0+\nu)=\theta(0)=\theta_{\nu}(0)=\theta$

Acknowledgements:

The author is thankful to Prof. Dr Bhavanari Satyanarayana for his valuable comments and suggestions. He is also thankful to the authorities of Manipal University Jaipur for their encouragement.

References

- [1] Biswas R, "Fuzzy subgroups and anti fuzzy subgroups", Fuzzy Sets and Systems 44 (1990) 121-124.
- [2] Booth G. L. and Groenewald N. J, "On radicals of gamma near-rings", Math. Japon 35 (1990), 417-425.
- [3] Jun Y. B., Kwon Y. I. and Park J. W. "Fuzzy MΓ-groups", Kyungpook Math. J. 35 (1995) 259-265.
- [4] Kim K. H., Jun Y. B. and Yon Y. H. "On Anti fuzzy ideals in nar-rings", Iranian Journal of Fuzzy Systms, 2(2005), 71-80.
- [5] Mordeson J. N. and Malik D. S., Fuzzy Commutative Algebra, World Scientific Publishing Co. Pvt. Ltd, 1998.
- [6] Nagaraju D., Satyanarayana Bh., Babu Prasad M. & Venkatachalam A. "Some Results on Fuzzy ideals of MΓ-Modules" Southeast Asian Bulletin of Mathematics 37(2013), 555-564.
- [7] Pilz .G. "Near-rings", North Holland, Amsterdam, 1983.
- [8] Satyanarayana Bh. "Contributions to Near-ring Theory", Doctoral thesis, Acharya Nagarjuna University, 1984.
- [9] Satyanarayana Bh. "Modules over Gamma Near-rings", Acharya Nagarjuna International Journal of Mathematics and Information Technology 01 (2) (2004) 109-120.

- [10] Satyanarayana Bh. and Syam Prasad K. "On Fuzzy Cosets of Γ-near-rings", Turk. J. Math 29 (2005) 11-22.
- [11] Satyanarayana Bh., and Syam Prasad K. "Near rings, Fuzzy Ideals and Graph Theory" CRC Press, Taylor & Francis Group, 1st Edition, 2013.
- [12] Satyanarayana Bh., Vijaya Kumari A. V., Godloza L. & Nagaraju D. "Fuzzy ideals of modules over Gamma-near-rings", Italian J. Pure Appl. Math., (to appear).
- [13] Srinivas T., Nagaiah T. and Narasimha Swamy P., "Anti Fuzzy ideals of Γ-near-rings", Annals of Fuzzy Mathematics and Informatics, 3(2012), 255-266.
- [14] Syam Prasad K. & Satyanarayana Bh. "Fuzzy Prime Ideal of a Gamma Nearring", Soochow J. Mathematics 31 (2005) 121-129.
- [15] Zadeh L.A. "Fuzzy Sets", Information and Control 8 (1965) 338-353.

