

(U,R) – STRONGLY DERIVATION PAIRS ON LIE IDEALS IN RINGS

Ikram A. Saed
Applied Mathematics, Department of Applied Science
University of Technology, Baghdad, Iraq.
akraam 1962@yahoo.com

ABSTRACT

Let R be an associative ring , U be a nonzero Lie ideal of R. In this paper , we will present the definition of (U,R) – strongly derivation pair (d,g) , then we will get d=0 (resp. g=0) under certain conditions on d and g for (U,R) – strongly derivation pair (d,g) on semiprime ring . After that we will study prime rings , semiprime rings ,and rings that have a commutator left nonzero divisor with (U,R) – strongly derivation pair (d,g) , to obtain the notation of (U,R) – derivation .

Indexing terms/Keywords

prime ring; semiprime ring; derivation; strongly derivation pair.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .10, No.8

www.cirjam.com, editorjam@gmail.com

3711 | Page June 10, 2015

INTRODUCTION

Let R be an associative ring , U be a nonzero Lie ideal . This paper consists of two section . In section one , we recall some basic definitions and other concepts ,which will be used in our paper , then we explain these concepts by examples ,remarks .In section two , we will present the definition of (U,R) –strongly derivation pair (d,g) and it will be denoted by (U,R) – S- derivation pair (d,g) and we put certain conditions on d and g for (U,R) – strongly derivation pair (d,g) on semiprime ring to obtain d=0 or g=0 . Then we will prove that (1) If R is a 2- torsion free semiprime ring, and (d,g) be a (U,R) – strongly derivation pair , then d and g are (U,R) – derivations , (2) If R is a prime ring , and (d,g) be a (U,R) – strongly derivation pair , then d and g are (U,R) – derivations, (3) If R is a ring which has a commutator left nonzero divisor and (d,g) be a (U,R) – strongly derivation pair , then d and g are (U,R) – derivations.

1.BASIC CONCEPTS

Definition 1.1:[1] A ring R is called a prime ring if for any a,b∈R, aRb = {0},implies that either a=0 or b=0.

Examples 1.2:[1]

1. Any integral domain is a prime ring .

2. Any matrix ring over an integral domain is a prime ring .

Definition 1.3:[1] A ring R is called a semiprime ring if for any a∈R,aRa={0},implies that a=0.

Remark 1.4 [1] Every prime ring is a semiprime ring ,but the converse in general is not true.

Definition 1.5:[2] A ring R is said to be n-torsion free, where n≠0 is an integer if whenever na=0, with a∈R, then a=0.

Definition 1.6:[2] A ring R is said to be a commutator right (resp. left) nonzero divisor ,if there exists elements a and b of R such that c[a,b]=0 (resp. [a,b]=0) implies c=0, for every $a \in \mathbb{R}$.

Definition 1.7:[3] Let R be a ring . Define a lie product [.,.] on R as follows [x,y] = xy - yx, for all $x,y \in \mathbb{R}$.

Definition 1.8:[3] An additive subgroup U of a ring R is said to be a Lie ideal of R if the commutator $[u,r] = ur - ru \in U$, for all $u \in U$, $r \in R$.

Definition 1.9:[3] A Lie ideal verifies that u²∈U, for all u∈U is called square closed Lie ideal.

Definition 1.10:[4] Let R be a ring . An additive mapping d:R \rightarrow R is called a derivation if : d(xy) =d(x)y + xd(y) , for all x,y \in R .

Example 1.11:[4] Let $R = \{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, a,b \in N, where N is the ring of integers \}$ be a ring of 2x2 matrices with respect to usual addition and multiplication.

Let d: R
$$\rightarrow$$
 R, defined by d $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$, for all $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \in R$. Then d is a derivation of R.

Definition 1.12:[4] Let U be a Lie ideal of a ring R. An additive mapping d: $R \rightarrow R$ is

called a (U,R) – derivation ,if d(xy) = d(x)y + xd(y) ,for all $x \in U$, $y \in R$.

Example 1.13:[3] Let $R = \{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} : x,y,z,w \in N \text{ where N is the ring of integers } \}$ be a ring of 2x2 matrices with respect to the usual addition and multiplication .

Let d: R
$$\rightarrow$$
 R, defined by d $\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & 0 \\ z & 0 \end{pmatrix}$, for all $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \mathbb{R}$ and

Let
$$U = \{ \begin{pmatrix} x & y \\ z & 0 \end{pmatrix}, x,y,z \in \mathbb{N} \}$$

It is clear that U is a Lie ideal of R.

Then d is a (U,R) - derivation.

Definition 1.14 :[1] Let R be a ring , additive mappings d,g : R → R is called strongly derivation pair

(d,g) if satisfy the following equations:

$$d(xy) = d(x)y + xg(y)$$
, for all $x,y \in R$.

$$g(xy) = g(x)y + xd(y)$$
, for all $x,y \in R$.

2. (U, R) - STRONGLY DERIVATION PAIRS

We first introduce the basic definition in this section

Definition 2.1: Let R be a ring, U a nonzero Lie ideal of R, additive mappings d,g:U → R is called

(U,R) - S – derivation pair (d,g) if satisfy the following equations:

$$d(xy) = d(x)y + xg(y)$$
, for all $x \in U$, $y \in R$.

$$g(xy) = g(x)y + xd(y)$$
, for all $x \in U$, $y \in R$.

Example 2.2: Let R be a non commutative ring , U a nonzero Lie ideal of R and let a,b∈R , such that

xa = xb = 0, for all $x \in U$. Define $d,g : U \rightarrow R$, as follows:

$$d(x) = ax$$
, $g(x) = bx$. Then (d,g) is a $(U,R) - S$ - derivation pair.

Let x∈U, y∈R, so:

$$d(xy) = d(x)y + xg(y) = axy + xby = axy$$

On the other hand : d(xy) = axy

$$g(xy) = g(x)y + xd(y) = bxy + xay = bxy$$

On the other hand : g(xy) = bxy

Hence (d,g) is a (U,R) - S- derivation pair.

Theorem 2.3: Let R be a semiprime ring, U a nonzero Lie ideal of R with $u^2 \in U$, for all $u \in U$. If R admits a (U,R) - S-derivation pair (d,g), such that d(x)g(y)=0 (resp. g(x)d(y)=0), for all $x,y \in U$, then d=0 (resp. g=0).

Proof: we have

$$d(x)g(y) = 0$$
, for all $x,y \in U$

Replacing yx for y in (1) and using (1), we have:

$$d(x)yd(x)=0$$
, for all $x,y \in U$ (2)

By semiprimeness of R, (2) gives:

$$d(x)=0$$
, for all $x \in U$ (3)

Similarly, if g(x)d(y)=0, for all $x,y \in U$, then g=0.

Theorem 2.4: Let R be a semiprime ring, U a nonzero Lie ideal of R with $u^2 \in U$, for all $u \in U$. If R admits a (U,R)-S-derivation pair (d,g), such that $d(x) = \pm x$ (resp. $g(x) = \pm x$), for all $x \in U$, then g=0 (resp. d=0).

Proof: we have

$$d(x) = x$$
, for all $x \in U$ (1)

Replacing x by xy in (1) and using (1), we get:

$$xg(y) = 0$$
, for all $x,y \in U$ (2)

Left multiplication of (2) by g(y) ,leads to :

$$g(y)xg(y) = 0$$
, for all $x,y \in U$ (3)

By semiprimeness of R, we get:

$$g(y) = 0$$
, for all $y \in U$ (4)

Similarly, we can show if d(x) = -x, for all $x \in U$, then g = 0

In the same way, if $g(x) = \pm$, for all $x \in U$, then d = 0.

Theorem 2.5: Let R be a 2- torsion free semiprime ring, U a nonzero Lie ideal of R with $u^2 \in U$, for all $u \in U$, and (d,g) be a (U,R)-S-derivation pair, then d and g are (U,R)-derivations.

Proof: Suppose that (d,g) is (U,R)-S-derivation pair . Then:

$$d(xyx) = d(x(yx)) = d(x)yx + xg(yx), \text{ for all } x \in U, y \in R$$
 (1)

That is:

$$d(xyx) = d(x)yx + xg(y)x + xyd(x), \text{ for all } x \in U, y \in R$$
 (2)

Also:

$$d(xyx) = d((xy)x) = d(xy)x + xyg(x), \text{ for all } x \in U, y \in R$$
(3)

That is:

$$d(xyx) = d(x)yx + xg(y)x + xyg(y), \text{ for all } x \in U, y \in R$$
(4)

From (2) and (4), we get:

$$xy(d(x) - g(x)) = 0$$
, for all $x \in U$, $y \in R$ (5)

Replace y by (d(x) - g(x))yx in (5), we get:

$$x(d(x) - g(x)) yx (d(x) - g(x)) = 0, \text{ for all } x \in U, y \in R$$
 (6)

Since R is semiprime, we get:

$$xd(x) = xg(x)$$
, for all $x \in U$ (7)

It follows that:

$$d(x^2) = d(x)x + xd(x) , \text{ for all } x \in U$$
 (8)

And
$$g(x^2) = g(x)x + xg(x)$$
, for all $x \in U$ (9)

Thus , by using [1,Theorem 1.1.14] , we obtain that d and g are (U,R)-derivations .

Theorem 2.6 : Let R be a prime ring , U a nonzero Lie ideal of R with $u^2 \in U$, for all $u \in U$, and (d,g) be a (U,R)-S-derivation pair , then d and g are (U,R)-derivations .

Proof:

Since (d,g) is (U,R)-S-derivation pair, we have (see how relation (5) was obtained from relation (1) in the proof of Theorem 2.5)

$$xy (d(x) - g(x)) = 0, \text{ for all } x \in U, y \in R$$
 (1)

And, by primeness of R, we get:

$$d(x) = g(x)$$
, for all $x \in U$ (2)

And hence d and g are (U,R)-derivations .

Theorem 2.7: Let R be a ring which has a commutator left nonzero divisor, U a nonzero Lie ideal of R with $u^2 \in U$, for all $u \in U$, and (d,g) be a (U,R)-S-derivation pair, then d and g are (U,R)-derivations.

Proof: we have:

$$d(yx^2) = d(y)x^2 + yg(x^2), \text{ for all } x \in U, y \in R$$
 (1)

That is:

$$d(yx^2) = d(y)x^2 + yg(x)x + yxd(x), \text{ for all } x \in U, y \in R$$
 (2)

On the other hand:

$$d(yx^2) = d(yx)x + yxg(x), \text{ for all } x \in U, y \in R$$
(3)

That is:

$$d(yx^{2}) = d(y)x^{2} + yg(x)x + yxg(x), \text{ for all } x \in U, y \in R$$
(4)

From (2) and (4), we obtain:

$$y(xd(x) - xg(x)) = 0 \text{ , for all } x \in U, y \in R$$
 (5)

Replacing y by yr in (5), to get:

$$yr(xd(x) - xg(x)) = 0$$
, for all $x \in U$, $y, r \in R$ (6)

Again, left multiplying of (5) by r, to get:

$$ry(xd(x) - xg(x)) = 0 , \text{ for all } x \in U , y , r \in R$$
 (7)

Subtracting (7) from (6), we get:

$$[y,r] (xd(x) - xg(x)) = 0 , \text{for all } x \in U , y,r \in \mathbb{R}$$
 (8)

Since R has a commutator left nonzero divisor, we get:

$$xd(x) = xg(x)$$
, for all $x \in U$ (9)

Linearizing (9), we get:

$$xd(y) + yd(x) = xg(y) + yg(x)$$
, for all $x \in U$, $y \in R$ (10)

That is:
$$x(d-g)(y) + y(d-g)(x) = 0$$
, for all $x \in U$, $y \in R$ (11)

Replacing y by ry in (11), to get:

$$x(d-g)(ry) + ry(d-g)(x) = 0 , \text{ for all } x \in U , y,r \in R$$
 (12)

Again, left multiplying of (11) by r, to get:

$$rx(d - g)(y) + ry(d - g)(x) = 0, \text{ for all } x \in U, y, r \in R$$
(13)

Subtracting (12) from (13), we get:

$$rx(d-g)(y) - x(d-g)(ry) = 0 , \text{ for all } x \in U, y, r \in R$$
 (14)

Replacing x by sx in (14), to get:

$$rsx(d-g)(y) - sx(d-g)(ry) = 0, \text{ for all } x \in U, y, r, s \in R$$
(15)

Also, left multiplying of (14) by s, to get:

$$srx(d-g)(y) - sx(d-g)(ry) = 0$$
, for all $x \in U$, $y,r,s \in R$ (16)

Subtracting (16) from (15) ,we get :

$$[r,s] \times (d-g)(y) = 0 \text{ , for all } x \in U \text{ ,y,r,s } \in \mathbb{R}$$

$$(17)$$

Since R has a commutator left nonzero divisor, we get:

$$x(d-g)(y) = 0$$
, for all $x \in U$, $y \in R$. (18)

That is:

$$xd(y) = xg(y)$$
, for all $x \in U$, $y \in R$ (19)

And hence d and g are (U,R)-derivations.

REFERENCES

- [1] Yass,S., Strongly Derivation Pairs on Prime and Semiprime Rings, MSC. Thesis, Baghdad University, (2010).
- [2] Herstein, I. N., Topics in ring theory, University of Chicago Press, Chicago, 1969.
- [3] Ashraf, M., Rehman, N. and Quadri, M. A. , On Lie ideals and (σ,τ) Jordan derivations on prime ring , Tamkang J. Math. 32(2001), 247 252 .
- [4] Dalgin, H., Lie ideals and generalized derivations of prime rings, Internat. J. of Algebra 4(10) (2010), 461-467.

3716 | Page June 10, 2015