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ABSTRACT 

In this paper, we interpret a fuzzy delay differential equations using the concept of generalized differentiability. Using the 
Generalized Characterization Theorem, we investigate the problem of finding a numerical approximation of solutions. The 
Euler approximation method is implemented and its error analysis is discussed. The applicability of the theoretical results 
is illustrated with some examples. 
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INTRODUCTION 

The concept of fuzzy set was first introduced by Zadeh [41]. Since then, the theory has been developed and it is now 
emerged as an independent branch of Applied Mathematics. The elementary fuzzy calculus based on the extension 
principle was studied by Dubois and Prade [14]. When a dynamical system is modeled by deterministic Ordinary 
Differential Equations(ODE) we cannot usually be sure that the model is perfect because, in general knowledge of 
dynamical system is often incomplete or vague. If the underlying structure of the model depends upon subjective choices, 
one way to incorporate these into the model is to utilize the aspect of fuzziness, which leads to the consideration of Fuzzy 
Differential Equations(FDE) and were regularly treated by Seikkala [39] and Kaleva [21].  

A more realistic model must include some of the past history of the system. Models incorporating past history generally 

include Delay Differential Equations (DDE) or functional differential equations. Combining fuzzy mathematics and 

functional differential equations we get fuzzy functional differential equations.  

The numerical solution of FDE was studied by many researchers [1, 2, 3, 16, 26, 34].  Generalized differentiability concept 

was first introduced by Bede [5] and was used to solve FDE [6, 7, 11, 25, 36]. Khastan et.al. [29]  proved the existence 

and uniqueness of solution for Fuzzy Delay Differential Equations (FDDE) by using the concept of generalized 

differentiability. In this paper, we find the numerical solution of FDDE by using Euler's method under generalized 

differentiability concept. 

The structure of this paper is organized as follows. In section 2, we collect some basic concepts and preliminary results. In 

section 3, we give the Generalized Characterization Theorem for FDDE under generalized differentiability which have 

been discussed by Bede [4]. In section 4, we present Euler's method for finding the numerical solution of FDDE by giving 

the convergence results. In section 5, the proposed algorithm is illustrated by solving some examples of  Malthusian model 

with delay and an Ehrlich ascites tumor model and finally the conclusion is given in section 6. 

1. PRELIMINARIES 

In this section, we give some basic definitions and introduce the necessary notation which will  

be used in this paper. 

Definition 2.1.  Let X  be a nonempty set. A fuzzy set u  in X  is characterized by its membership function 

]1,0[: →Xu . For each ,x X∈  )(xu  is interpreted as the degree of membership of an element x  in the fuzzy set 

u , for each .x X∈  

 We denote by Fℝ  
the class of fuzzy subsets of the real axis, : [0,1]u →ℝ , satisfying the following 

properties: 

i. u  is normal, i.e,  there exist  an 0s ∈ℝ  such that ,1)( 0 =su  

ii. u  is fuzzy convex, i.e., { }( (1 ) ) min ( ), ( ) , [0,1], , ,u ts t r u s u r t s r+ − ≥ ∀ ∈ ∈ℝ  

iii. u  is upper semicontinuous on ,ℝ  

iv. { }| ( ) 0cl s u s∈ >ℝ  is a compact set, where cl  denotes the closure of a subset.  

      Then Fℝ  is called the space of fuzzy numbers. Obviously, .F⊂ℝ ℝ  For ,10 ≤< α we denote  

[ ] { }| ( )u s u s
α

α= ∈ ≥ℝ
 
and [ ] { }

0
| ( ) 0 .u cl s u s= ∈ >ℝ  From the conditions (i)-(iv), it follows that the α -level 

set [ ]u
α

 
is a nonempty compact interval, for all 0 1α≤ ≤  and any .Fu ∈ℝ  The notation 

[ ] ],,[
ααα

uuu =  

denotes explicitly the α -level set of ,u  for ].1,0[∈α  We refer to u  and u  as the lower and upper branches of u
 

respectively. For , Fu v ∈ℝ  and ,λ ∈ℝ  the sum ,vu +  the scalar product uλ  and multiplication uv  are defined as 

follows: 

            
{ } { }

[ ] [ ] [ ] , [ ] [ ] , [0,1],

[ ] min , , , ,max , , , .

u v u v u u

uv u v u v u v u v u v u v u v u v

α α α α α

α α α α α α α αα α α α α α α α α

λ λ α+ = + = ∀ ∈

 =
                  

→ (1)  

The metric structure : {0}F FD +× → ∪ℝ ℝ ℝ
 
is based on the Hausdorff distance and is given by 
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[0,1]

( , ) sup max{| |,| |}.D u v u v u v
α α α α

α∈

= − −  

For the metric D  defined on ,Fℝ  
we know that 

 

( , ) ( , ), , , ,

( , ) | | ( , ), , , ,

( , ) ( , ) ( , ), , , ,

F

F

F

D u w v w D u v u v w

D ku kv k D u v k u v

D u v w e D u w D v e u v w e

+ + = ∀ ∈

= ∀ ∈ ∀ ∈

+ + ≤ + ∀ ∈

ℝ

ℝ ℝ

ℝ

 

and ( , )F Dℝ  is a complete metric space. 

 

Definition 2.2.[6] Let , .Fx y ∈ℝ  If there exist Fz ∈ℝ
 
such that ,zyx +=  then z  is called the  

H-difference of yx,  and it is denoted .x y⊖  

The notation of the H-difference of x  and y  (in case it exist) contrasts with the representation of the standard 

subtraction yxyx )1(−+=−  since, in general, ( 1) .x y x y≠ + −⊖  

The concept of generalized differentiability is given below.  We fix ),( baI =  for , .a b∈ℝ  

 

Definition 2.3.[6] Let : FF I →ℝ  and fix .0 It ∈  We say that F is differentiable at 0t  if there exist an element 

0( )
F

F t′ ∈ℝ  such that either   

(1) for all 0>h sufficiently close to 0, 0 0 0 0( ) ( ), ( ) ( )F t h F t F t F t h+ −⊖ ⊖ and the limits 

0 0 0 0
0

0 0

( ) ( ) ( ) ( )
lim lim '( )
h h

F t h F t F t F t h
F t

h h+ +→ →

+ −
= =

⊖ ⊖
 

exist; or 

(2) for all 0>h sufficiently close to 0, 0 0 0 0( ) ( ), ( ) ( )F t F t h F t h F t+ −⊖ ⊖ and the limits 

0 0 0 0
0

0 0

( ) ( ) ( ) ( )
lim lim '( )
h h

F t F t h F t h F t
F t

h h+ +→ →

+ −
= =

− −

⊖ ⊖
 

exist.  

In Definition 2.3, the existence of the limits is considered in the metric .D  
 

 Bade and Gal in [6] indicated that a fuzzy function which satisfies at It ∈0  both properties (1) and (2) in 

Definition 2.3 at the same time has a real derivative at ,0t  i.e., for F and It ∈0 , if F is differentiable in the sense (1) 

and (2) simultaneously, then, for 0>h sufficiently small, it follows that 

100200100 )()(,)()(,)()( vtFhtFuhtFtFutFhtF +=−+−=+=+
 

and ,)()( 200 vhtFtF ++=   with 

1 2 1 2, , , .Fu u v v ∈ℝ  In consequence, ),()()( 2200 vutFtF ++=  i.e.,  { }2 1 0
,u v χ+ =  leading to two possibilities: 

{ }2 1 0
,u v χ= =  if { }0 0

( ) ;F t χ′ =  or { }2 1,a
u vχ= = −  with  ,a ∈ℝ

 
if 0( ) .F t′ ∈ℝ   This justifies that, if there exists 

)(' 0tF  in the first form (second form, respectively) with 0( ) ,F t′ ∉ℝ
 
then )(' 0tF does not exist in the second form 

(first form respectively).  

 

Remark 2.4. In the previous definition, case (1) corresponds to the H-derivative introduced in [33], so this concept of 

differentiability is a generalization of the H-derivative. 

 

Remark 2.5. In [6],  the authors consider four cases in the definition of derivative. Here, we consider only the two first 

cases of Definition 5 in [6]. In the other cases, the derivative reduces  to a crisp element(more precisely, 0( )F t′ ∈ℝ ); for 

details, see Theorem 7 in [6]. 
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Definition 2.6. Let : .FF I →ℝ  We say that F  is (1)-differentiable on I   if F  is differentiable in the sense (1) of 

Definition 2.3 on ,I  in this case its derivative is denoted by 1( ).D F  Similarly, for (2)-differentiability, we write the 

derivative as ).(2 FD  

    The principal properties of derivatives in the sense of Definition 2.3 are well-known and can be found in [6, 7, 11]. 

Next, we select some properties from [11] in relation with the concept of (2)-differentiability. 

 

Theorem 2.7.[11]  Let : FF I →ℝ  and write )](),([)]([ tgtftF αα
α =  for each .],1,0[ It ∈∈α  

(i) If F  is (1)-differentiable, then αf  and αg  are differentiable functions and we have  

1[ ( )] [ ( ), ( )].D F t f t g t
α

α α
′ ′=  

(ii)  If F  is (2)-differentiable, then αf  and αg  are differentiable functions and we have  

2[ ( )] [ ( ), ( )].D F t g t f t
α

α α
′ ′=  

Proof : See [11]. 

Definition 2.8.[13] Let I  be a real interval and : .FF I →ℝ  If, for arbitrary fixed It ∈0 and  ,0∈>  there exist 

,0>δ  (depending on 0t  and ∈ ) such that 

,))(),((||, 00 <∈⇒<−∈ tFtFDttIt δ  

then F  is said to be continuous on .I  

    If ],[ baJ =  is a compact interval in ,ℝ  then ( , )FC J ℝ represents the set of all continuous fuzzy functions from 

J into .Fℝ    In the space  ( , ),FC J ℝ  we consider the following metric: 

( , ) sup [ ( ), ( )].
t J

D u v D u t v t
∈

=  

Following the notation in [32], for a positive number ,σ
 we denote by ,σC the space ([ ,0], ),FC σ− ℝ   equipped with 

the metric defined by 

[ ,0]

( , ) sup [ ( ), ( )].
t

D u v D u t v tσ
σ∈ −

=
 

Remaining faithful to the classical notation used in the field of functional differential equations [18], for a given 

([ , ], ),
F t

u C uσ∈ − ∞ ℝ  denotes, for each ),,0[ ∞∈t  the element in ,σC  defined by  

].0,[),()( σ−∈+= sstusut  

Lemme 2.9. If :[0, )
F

F Cσ∞ × → ℝ  is a jointly continuous function and   :[ , ) Fu σ− ∞ → ℝ     is a continuous 

function, then the function  

[0, ) ( , )
t F

t F t u∈ ∞ → ∈ℝ  

is also continuous. 

 

Remark 2.10. Similarly to Remark 2.1 in [32], if :[0, )
F

F Cσ∞ × → ℝ  is jointly continuous and  

:[ , ) Fu σ− ∞ → ℝ  is continuous, then the function [0, ) ( , )
t F

t F t u∈ ∞ → ∈ℝ  is integrable on each compact 

interval ].,0[ T  

 

Theorem 2.11. Let F  be a fuzzy function continuous on I and define 

( ) ( ) , .
t

a
u t F d t Iγ τ τ= − ∈∫⊖  
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where 
FR∈γ   is such that the previous H-difference exists, for .It ∈

 
Then u  is (2)-differentiable and     

.),()(' IttFtu ∈=  

Proof: See [27]. 

2. Generalized characterization theorem for FDDE under generalized differentiability 

Let us consider the FDDE 

                                      

( ) ( , ), 0

( ) ( ), 0.

t
u t f t u t

u t t tϕ σ

′ = ≥


= − ≤ ≤                                         
→ (2)  

where :[0, ) Ff Cσ∞ × →ℝ  and  Cσϕ ∈  is a continuous fuzzy mapping and the initial condition  0u ϕ∈    then  

0 ( ) ( ) ( ), 0.u s u s s sϕ σ= = − ≤ ≤  

 Theorem 3.1. Let :[0, ) Ff Cσ∞ × →ℝ
 
be a continuous fuzzy function such that there exists 0k > such that  

( ( , ), ( , )) ( , ), , , .FD f t u f t v k D u v t I u vσ≤ ∀ ∈ ∈ℝ  Then Eqn (2) has two solutions  (one (1)-differentiable and the 

other one (2)-differentiable) on .I  

Proof. See [11]. 

Theorem 3.2.  Let :[0, ) Fv Cσ∞ × →ℝ  be a fuzzy function such that 1D v  or 2D v  exists. If v  and 1D v  satisfy 

Eqn (2), we say v  is a (1)-solution of Eqn (2). Similarly, if v  and 2D v  satisfy Eqn (2), we say  v  is a (2)-solution of Eqn 

(2). 

 Then Theorem 2.8 shows us a way to translate the FDDE (2) into a system of ODE. Let 

[ ( )] [ ( , ), ( , )].u t u t u t
α α α=  If ( )u t  is (1)-differentiable then 1[ ( )] [ ( , ), ( , )]D u t u t u t

α α α′ ′=
 
and Eqn (2) translates 

into the following system of ODE:  

                                      

( ) ( , , ) ( , , ),

( ) ( , , ) ( , , ), 0,

( ; ) ( : ); ( ; ) ( : ); 0.

tt t t

tt t t

u t f t u u F t u u

u t f t u u G t u u t

u t t u t t t

α α
α

α α
α

α ϕ α α ϕ α σ

′ = =

′ = = ≥

= = − ≤ ≤
                              

→ (3)  

 

Also, if  ( )u t   is (2)-differentiable then 2[ ( )] [ '( , ), '( , )]D u t u t u t
α α α=   and Eqn (2)  translates into the following 

system of ODE: 

                                     

( ) ( , , ) ( , , ),

( ) ( , , ) ( , , ), 0,

( ; ) ( : ); ( ; ) ( : ); 0.

tt t t

tt t t

u t f t u u G t u u

u t f t u u F t u u t

u t t u t t t

α α
α

α α
α

α ϕ α α ϕ α σ

′ = =

′ = = ≥

= = − ≤ ≤
                             

→ (4)  

 

where   [ ( , )] ( , , ), ( , , ) .t t t tf t u f t u u f t u u
α α α α α

α α
 =    Then, the authors of [11] state that if we ensure that the solution   

[ ( , ), ( , )]u t u tα α  of the system (2)  are valid level sets of a fuzzy number valued function and if [ '( , ), '( , )]u t u tα α
 

are valid level sets of a fuzzy valued function, then by the Stacking Theorem [21], it is possible to construct the (1)-solution 

of FDDE Eqn (2). Also, for the (2)-solution, we can proceed in a similar way. 

3. Numerical solution of FDDE by Generalized characterization theorem 

In this section we present numerical methods for solving Eqn (2) by the Generalized Characterization Theorem. Here we 

consider the FDDE Eqn (2) under the following assumptions 
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(i) Thereexist 0L >  such that [ ( , ), ( , )] ( , )D f t u f t v LD u vα≤  for all ,u v Cσ∈  and 0.t ≥
  

 

(ii)  :[0, ) Ff Cσ∞ × →ℝ
 
is jointly continuous. 

(iii)  There exist 0M >
 
and 0b >  such that ˆ[ ( ,0),0] bt

D F t Me≤
 
for all 0,t ≥

 { }0
0̂ .χ=                       

Lemma  4.1.[6]  The FDDE Eqn (2) is equivalent to one of the following integral equations:  

0

( ), 0,
( ) :

(0) ( , ) , 0 .
t

s

t for t
u t

f s u ds for t

ϕ σ

ϕ

− ≤ ≤
= 

+ ≤ ∫
 

or  

0

( ), 0,
( ) :

(0) ( 1) ( , ) , 0 ,
t

s

t for t

u t
f s u ds for t

ϕ σ

ϕ

− ≤ ≤
= 

− − ≤ ∫⊙
 

depending on the strongly differentiability considered, (1)-differentiability or (2)-differentiability, respectively.  

Based on Generalized Characterization Theorem, we replace the FDDE by two ODE systems. Eqns (3) and (4) 

represent two ordinary Cauchy problems for which any converging classical numerical procedure can be applied. In the 

following, we generalize the Euler method and give its error analysis.  

Consider the FDDE 

                                        

( ) ( , ; ), 0

( ) ( ), 0.

t
u t f t u t

u t t t

α

ϕ σ

′ = ≥


= − ≤ ≤                              
→ (5)  

Let 0 1 20 t t t= < < …   be given grid points and let  1( 1, 2, )n n nh t t n−= − = …  denote the corresponding 

stepsizes, at which the exact solution 1 1 1[ ] [ ( ; ), ( ; )]U U t U t
α α α=   and 2 2 2[ ] [ ( ; ), ( ; )]U U t U t

α α α=  are 

approximated by some    1 1 1[ ] [ ( ; ), ( ; )]u u t u t
α α α=   and 2 2 2[ ] [ ( ; ), ( ; )]u u t u t

α α α=  respectively.   The exact and 

approximate solutions at , 0nt n N≤ ≤   are denoted by 1 2 1 2( ), ( ), ( ), ( )
n n n n

U U u uα α α α respectively.  The 

generalized Euler method based on the first-order approximations of  
' '' '
1 21 2( ; ), ( ; ), ( ; ), ( ; ),U t U t U t U tα α α α and 

Eqns (3) and Eqns (4) is obtained as follows:  

                         

1 1 1 11

1 1 1 1 1

1

1

( ) ( ) [ , ( ) ( ), ( ) ( )],

( ) ( ) [ , ( ) ( ), ( ) ( )], 0,

( , ) ( , ),

( , ) ( , ), 0.

n n

n n

n n t tn n

n n n n t t

u u h F t u u

u u h G t u u t

u t t

u t t t

α α α α

α α α α

α ϕ α

α ϕ α σ

+

+

= +


= + ≥


=


= − ≤ ≤
             

→ (6)  

                        

2 2 2 21

2 2 2 21

2

2

( ) ( ) [ , ( ) ( ), ( ) ( )],

( ) ( ) [ , ( ) ( ), ( ) ( )], 0,

( , ) ( , ),

( , ) ( , ), 0.

n n

n n

n n t tn n

n n t tn n

u u h G t u u

u u h F t u u t

u t t

u t t t

α α α α

α α α α

α ϕ α

α ϕ α σ

+

+

= +


= + ≥


=


= − ≤ ≤
         

→ (7)  
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Our next result determines the pointwise convergence of the generalized Euler's approximates to the exact 

solutions. Let ( , , )F t x y    and  ( , , )G t x y    be the functions  F   and  G   of Eqns (3) and (4), where x  and y  are 

constants and .x y≤   The domain where F and G
 
are defined is therefore 

{( , , ) | 0 , , }.K t x y t T y x y= ≤ ≤ − ∞ ≤ ≤ ∞ − ∞ < <  

 Theorem  4.3. Let ( , , )F t x y and ( , , )G t x y  belong to 
1( )C K and let the partial derivatives of ,F G  be bounded 

over K . Then, for arbitrary fixed :α 0 1α≤ ≤ , the generalized Euler approximates of Eqns (6) and (7) converge to the 

exact solutions 1 2( , ), ( , )U t U tα α
 
uniformly in .t      

Proof.  If we consider (1)-differentiability, then convergence of Eqn (6) is obtained from Theorem 1 in [2]. In the same 

way, if we consider (2)-differentiability then analogously to the demonstration of Theorem 1 in [2], we can prove the 

convergence of Eqn (7). 

4. Numerical examples 

We consider the FDDE 

                                     

( ) ( , ( )); 0,

( ) ( ), 0,

u t f t u t t

u t t t

σ

ϕ σ

′ = − ≥


= − ≤ ≤                                 

→ (8)  

Using Theorem 2.7, we get    

[ ( )] [ ( ; ), ( ; )], , [ ( )] [ ( ; ), ( ; )], [ ,0]u t u t u t t t t t t
α αα α σ ϕ ϕ α ϕ α σ= ≥ − = ∈ −

  

and     

[ ( , ( ))] [ ( , ( ; ), ( ; ); ), ( , ( ; ), ( ; ); )], 0.f t u t f t u t u t f t u t u t tασ σ α σ α α σ α σ α α− = − − − − ≥  

By applying the generalized differentiability concept and Zadeh's extension principle, we have the following 

alternatives for solving problem (8) 

Case (i) : If we consider the derivative )(tu by using (1)-differentiability, then from Theorem 2.7, we have  

[ '( )] [ '( ; ), '( ; )],u t u t u t
α α α=  for 0≥t  and [0,1].α ∈

 
Now, we proceed as follows:  

(i)  Solve the parameterized delay differential system 

                      

'( ; ) ( , ( ; ), ( ; ); ),

'( ; ) ( , ( ; ), ( ; ); ), 0,

( ; ) ( ; ), ( ; ) ( ; ), 0, 0 1,

u t f t u t u t

u t f t u t u t t

u t t u t t t

α σ α σ α α

α σ α σ α α

α ϕ α α ϕ α σ α

= − −


= − − ≥
 = = − ≤ ≤ ≤ ≤
                      

→ (9)  

                     for  [0,1]α ∈  to find u  and u . 

(ii)    Ensure that  [ ( ; ), ( ; )], [ '( ; ), '( ; )]u t u t u t u tα α α α
 
are valid level sets. 

(iii)    Using the Stacking Theorem [21], construct a fuzzy solution )(tu  such that 

[ ( )] [ ( ; ), ( ; )],u t u t u tα α α=
 

    for   [0,1]α ∈  and  0.t ≥  

Case (ii) : Similarly to [11], if we consider the derivative of )(tu   by using (2)-differentiability,  then from Theorem 2.7, 

we have  [ ( )] [ '( ; ), '( ; )]u t u t u t
α α α′ =  for 0≥t and  [0,1].α ∈  These consideratons allow to proceed as follows:  

(i) Solve the parameterized delay differential system 
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'( ; ) ( , ( ; ), ( ; ); ),

'( ; ) ( , ( ; ), ( ; ); ), 0,

( ; ) ( ; ), ( ; ) ( ; ), 0, 0 1,

u t f t u t u t

u t f t u t u t t

u t t u t t t

α σ α σ α α

α σ α σ α α

α ϕ α α ϕ α σ α

 = − −


= − − ≥


= = − ≤ ≤ ≤ ≤               

→ (10)  

                  for  [0,1]α ∈  to find u  and u . 

(ii) Ensure that [ ( ; ), ( ; )], [ ( ; ), ( ; )]u t u t u t u tα α α α′ ′
 
are valid level sets.   

(iii) Using the Stacking Theorem [21], construct a fuzzy solution )(tu  such that 

[ ( )] [ ( ; ), ( ; )],u t u t u t
α α α=

 

 for [0,1]α ∈  and 0.t ≥  

Example 5.1.  
We consider a fuzzy time-delay Malthusian model, see [30] 

0

( ) ( 1); 0, 0,

( ) , 1 0,

N t rN t t r

N t N t

′ = − ≥ >


= − ≤ ≤
                              

→ (11) 

where, )(tN  refers the population at time .t  Suppose the initial value is 0[ ] [ 1,1 ] (1 )[ 1,1],N α α α α= − − = − −  

]1,0[∈α   and 0.r >  In this example, we set .
2

1
=r   Here, ( , ) ( 1)f t rφ φ= −  and 

0[ ( )] [ ] [ 1,1 ].t N
α αϕ α α= = − −  

 If we consider 111[ ( )] [ ( ; ), ( ; )]N t N t N t
α α α′′′ =  in the notion of (1)-differentiability 

1 1 11

1 1 11

1 1 00

( 1; ),

( 1; ), 0,

( ; ) 1, ( ; ) 1 , 1 0.

n nn n

n nn n

N N h rN t

N N h rN t t

N t N N t N t

α α

α α

αα

α

α

α α α α

+

+

 = + −



= + − ≥

 = = − = = − − ≤ ≤
  

 

By using Eqn (9) we get the exact solution  

]1,0[],1,0[)],1)(1(),1)(1[()]([ ∈∈+−+−= αααα
trtrttN  

and  

2 2 2 21 1
[ ( )] ( 1)(1 ( 1) ), (1 )(1 ( 1) ) , (1, 2], [0,1].

2 2
N t rt r t rt r t for t

α α α α
 

= − + + − − + + − ∈ ∈  
 

  On the other hand, if  [ ( )] [ ( ; ), ( ; )]N t N t N t
α α α′ ′′ =  is the (2)-differentiability 

2 2 21

2 2 21

2 2 00

( 1; ),

( 1; ), 0,

( ; ) 1, ( ; ) 1 , 1 0.

n nn n

n nn n

N N h r N t

N N h r N t t

N t N N t N t

α α

α α

αα

α

α

α α α α

+

+

 = + −



= + − ≥

 = = − = = − − ≤ ≤
  

By using Eqn (10) we get the exact solution  

[ ( )] [(1 )( 1), (1 )(1 )], [0,1], [0,1].N t rt rt for t
α α α α= − − − − ∈ ∈  

and 
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2 2 2 21 1
[ ( )] ( 1)(1 ( 1) ), (1 )(1 ( 1) ) (1, 2], [0,1].

2 2
N t rt r t rt r t for tα α α α

 
= − − + − − − + − ∈ ∈  

 

The comparison of exact and the approximate solutions of (1)-differentiability of the problem Eqn (11) at t=0.1 is shown in 

the following Table 1, Figure 1 and 2.  

 

TABLE 1. 

The error of the obtained results with the exact solution at t=2. 

α 
Euler Appr. Exact Error Euler 

);(1 αtN  );(2 αtN  );(1 αtN  );(2 αtN  );(1 αtN  );(2 αtN  

0.0 -2.1125 2.1125 -2.1250 2.1250 -0.0125 0.0125 

0.1 -1.9012 1.9012 -1.9125 1.9125 -0.0113 0.0113 

0.2 -1.600 1.6900 -1.7000 1.7000 -0.0100 0.0100 

0.3 -1.4788 1.4788 -1.4875 1.4875 -0.0087 0.0087 

0.4 -1.2675 1.2675 -1.2750 1.2750 -0.0075 0.0075 

0.5 -1.0563 1.0563 -1.0625 1.0625 -0.0062 0.0062 

0.6 -0.8450 0.8450 -0.8500 0.8500 -0.0050 0.0050 

0.7 -0.6338 0.6338 -0.6375 0.6375 -0.0037 0.0037 

0.8 -0.4225 0.4225 -0.4250 0.4250 -0.0025 0.0025 

0.9 -0.2113 0.2113 -0.2125 0.2125 -0.0012 0.0012 

1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
Fig 1:The approximation of fuzzy solution by Euler method(h=0.1) 

 

Fig 2 : Comparison between the exact and the Euler approximate solutions 
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The comparison of exact and the approximate solutions of (2)-differentiability of the problem Eqn (11) at t=0.1 is shown in 

the following Table 2, Figure 3 and 4. 

 

TABLE 2. 

The error of the obtained results with the exact solution at t=2. 

α 
Euler Appr. Exact Error Euler 

);(1 αtN  );(2 αtN  );(1 αtN  );(2 αtN  );(1 αtN  );(2 αtN  

0.0 
-

0.1125 
0.1125 

-

0.1250 
0.1250 

-

0.0125 
0.0125 

0.1 
-

0.1012 
0.1012 

-

0.1125 
0.1125 

-

0.0113 
0.0113 

0.2 
-

0.0900 
0.0900 

-

0.1000 
0.1000 

-

0.0100 
0.0100 

0.3 
-

0.0788 
0.0788 

-

0.0875 
0.0875 

-

0.0087 
0.0087 

0.4 
-

0.0675 
0.0675 

-

0.0750 
0.0750 

-

0.0075 
0.0075 

0.5 
-

0.0562 
0.0562 

-

0.0625 
0.0625 

-

0.0063 
0.0063 

0.6 
-

0.0450 
0.0450 

-

0.0500 
0.0500 

-

0.0050 
0.0050 

0.7 
-

0.0337 
0.0337 

-

0.0375 
0.0375 

-

0.0038 
0.0038 

0.8 
-

0.0225 
0.0225 

-

0.0250 
0.0250 

-

0.0025 
0.0025 

0.9 
-

0.0112 
0.0112 

-

0.0125 
0.0125 

-

0.0013 
0.0013 

1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

 

 

 

 

Fig 3 : The approximation of fuzzy solution by Euler method(h=0.1) 



ISSN 2347-1921            

3684 | P a g e                                                         J u n e  2 0 ,  2 0 1 5  

 

 

Fig 4 : Comparison between the exact and the Euler approximate solutions 

Example: 5.2 
         We consider the fuzzy version of logistic equation for the Ehrlich ascites tumor model [38] 

0

( ) ( 1)(1 ( 1)); 0,

( ) , 1 0,

N t rN t N t t

N t N t

′ = − − − ≥


= − ≤ ≤                           

→ (12)  

where 
0

1 1
[ ] [ , 2 ], [0,1], .

4 4
N r

α α α α= − ∈ =   

If we consider ( )N t′  in the sense of (1)-differentiability, we get 

1 1 1 11

1 1 1 11

1 1 00

( 1; )(1 ( 1; )),

( 1; )(1 ( 1; )), 0,

1 1
( ; ) , ( ; ) (2 ), 1 0.

4 4

n n nn n

n n nn n

N N rh N t N t

N N rh N t N t t

N t N N t N t

α α

α α

αα

α α

α α

α α α α

+

+


= + − − −


= + − − − ≥


 = = = = − − ≤ ≤


 

   On the other hand, if ( )N t′  is (2)-differentiable, then we get      

2 2 2 21

2 2 2 21

2 2 00

( 1; )(1 ( 1; )),

( 1; )(1 ( 1; )), 0,

1 1
( ; ) , ( ; ) (2 ), 1 0.

4 4

n n nn n

n n nn n

N N rh N t N t

N N rh N t N t t

N t N N t N t

α α

α α

αα

α α

α α

α α α α

+

+


= + − − −


= + − − − ≥


 = = = = − − ≤ ≤


 

The approximate solution of both cases are shown in Table 3, Figure 5 and 6. 
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TABLE 3. 

α 

Euler Appr. 

1-solution 2-solution 

);(1 αtN  );(2 αtN  );(1 αtN  );(2 αtN  

0.0 0.0000 0.7641 0.2430 0.5070 

0.1 0.0314 0.7191 0.2507 0.4884 

0.2 0.0635 0.6748 0.2590 0.4703 

0.3 0.0964 0.6312 0.2679 0.4528 

0.4 0.1299 0.5882 0.2774 0.4358 

0.5 0.1642 0.5462 0.2874 0.4194 

0.6 0.1991 0.5048 0.2980 0.4063 

0.7 0.2348 0.4641 0.3092 0.3884 

0.8 0.2713 0.4241 0.3210 0.3738 

0.9 0.3084 0.3848 0.3333 0.3597 

1.0 0.3462 0.3462 0.3462 0.3462 

 

Fig 5 : The approximation of fuzzy solution by Euler method(h=0.1) 

 

Fig 6 : The approximation of fuzzy solution by Euler method(h=0.1) 

 

5. Conclusion 
In this work, we have applied the  Euler's method for finding the approximate solution of FDDE under generalized 

differentiability concept. From the obtained results we see that the proposed method fits well for finding the solution of 

FDDE. Other numerical methods can also be used for further study. 
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