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ABSTRACT 

The concept of edge jump between graphs and distance between graphs was introduced by Gary Chartrand et al. in [5]. A 
graph H is obtained from a graph G by an edge jump if G contains four distinct vertices u, v, w, and x such that uv   

E(G), wx   E(G) and H   G – uv + wx. The concept of edge rotations and distance between graphs was first introduced 

by Chartrand et.al [4]. A graph H is said to be obtained from a graph G by a single edge rotation if G contains three distinct 

vertices u, v, and w such that uv   E(G) and uw   E(G). If a graph H is obtained from a graph G by a sequence of edge 

jumps, then G is said to be j-transformed into H. 

 In this paper we consider edge jumps on generalized Petersen graphs Gp(n,1) and cycles. We have also developed an 
algorithm that gives self-centered graphs and almost self-centered graphs through edge jumps followed by some general 
results on edge jumps. 
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INTRODUCTION 

Unless mentioned otherwise, for terminology and notation the reader may refer Buckley and Harary [1] and Chartrand and 
Ping Zhang [2], new ones will be introduced as and when found necessary. 

In this paper, by a graph G we mean a simple, undirected, connected graph without self loops. The order and size are 
respectively the number of vertices denoted by n and edges denoted by m. 

The distance d(u, v) between any two vertices u and v of G is the length of a shortest path between u and v. The 
eccentricity e(u) of a vertex u is the distance to a farthest vertex from u. If d(u,v) = e(v), (v   u) then we say that v is an 
eccentric vertex of u. The maximum and the minimum eccentricity amongst the vertices of G are respectively called the 
diameter  diam(G) and the radius rad(G). If diam(G) = rad(G), then the graph G is said to be a self-centered graph.A graph 
G is almost self-centered graph if thecenter of G consists of |V (G)| − 2 vertices, i.e., the graph with almost 2 non-central 
vertices. In the below quoted example of a almost self-centered graph, the vertices 'a' and 'b' are the central vertices with 
eccentricity 'one' and the rest of the vertices having eccentricity two. 

Example of an almost self-centered graph : 

 

 

 

 

In [1] the eccentric mean or average eccentricity is defined as 
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 taken over all vertices in the graph 

where mi‟s are the multiplicities of the eccentricities ei.  

In [3], the prism of the graph G is defined as the cartesian product G   K2 ; that is take two disjoint copies of G and add a 
matching joining the corresponding vertices in the two copies.  

Many distances between graphs work on idea of transformations. In this paper we consider transformations like edge jump 
and edge rotations which were introduced by Gary Chartrand et al. [4] [5] . Many results on rotations were developed  after 
Zelinka introduced the concept of distance between the isomorphism class of graphs and trees in [6] [7]. This was further 
extended to various other classes of graphs in [8], [9], [10], [11]. The concept of edge rotations was introduced first and 
then followed by edge jump. 

Let G and H be two graphs having the same order and the same size. In [12] a graph G is said to have move transformed 

into H, if G contains four vertices(not necessarily distinct) u, v, w and x, such that uv   E(G) and wx  E (G) and H   G 

– uv + wx. A graph G is m-transformed into a graph H if H is obtained (isomorphic to the graph) from G by a sequence of 

edge moves, i.e., if there is a sequence G = G0, G1, . . . , Gn = H (n   0) of graphs such that Gi+1 is obtained from Gi by an 
edge move for i = 0, 1, 2, ….. n-1.  

Similarly, in [4] a graph H is said to be obtained from G by an edge rotation if G contains three distinct vertices u, v and w 

such that uv   E(G) and uw   E(G) and H   G – uv + uw. Generally, G is r-transformed into H if H is obtained from G 

by a sequence of edge rotations. 

Now we define the concept of edge jump. In [5], Chartrand et al., defined that a graph H is obtained from a graph G by an 

edge jump if G contains four distinct vertices u, v, w and x such that uv   E(G) and wx   E(G) and H   G – uv + wx. If 

H is (isomorphic to the graph)obtained from G by an edge jump we say that G is j-transformed into H. 

In edge move, it is unrestricited transfer of an edge uv of a graph G to an edge wx, where wx   G,  whereas in edge 

rotation and edge jump it is an n restricted edge transfer. In edge move, the vertices u, v, w and x may or may not be 
distinct. In an edge rotation, the vertices u, v, w and x are not distinct, while in an edge jump the vertices must be distinct. 

Example for edge move, rotation and edge jump are as follows: 
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In the above graphs, in H, we denote edge move without restrictions using only 3 vertices. In the graph I, the edge rotation 
is shownbetween the edges „de‟ and „be‟. In the graph J, we have shown edge jump. In H‟ we have shown edge move with 
restriction resulting in a disconnected graph.  

The rotation distance between graphs G and H is denoted by dr(G, H), if there exists a sequence ofgraphs G1, G2, …,Gk-1 
such that G1 is obtained by an edge rotation on G, and for each 1 ≤ i ≤ k-1, Gi+1 isobtained by an edge rotation on Gi, with 
H obtained from Gk-1by one edge rotation. In this case we denote therotation distance from G to H as dr(G, H) and it is 
equal to k. 

The jump distance between graphs G and H is denoted by d j(G, H), if there exists a sequence of graphs G1, G2, …Gk-1 

such that G1 is obtained by an edge jump on G, and for each 1 i k-1, Gi+1 is obtained by an edge jump on Gi, with H 
obtained from Gk-1 by one edge jump. Thus for every two graphsG and H of the same order and the same size, the jump 
distance graph denoted by dj(G, H) is defined as the minimum number of edge jumps required to j-transform G into H.  

The edge rotation between the graphs G and I can be represented as dr(G,I),  I  G - de + be. 

The edge jump between the graphs G and J can be represented as d j (G,J), J  G - ef + ad.  

The edge move between the graphs G and H without any restriction can be represented as dm(G, H), H  G – ab + ac. 

Similarly, the edge move with restriction can be represented as dm(G, H
‟
), H

‟ G – cb + ae. 

Definition [5]: Let S = {G1, G2, . . . , Gk} be a set of graphs all of the same order and the same size (atleast 5). Then the 

jump distance graph Dj(S) of S has S as its vertex set and G1 and G2 in S are adjacent if and only if dj(G1 , G2) = 1. 

A graph G is a edge jump distance graph (EJDG) if there exists a set S of graphs of the same order and the same size 
with Dj(S) = G (Dj(S)  G) . 

Chartrand et al.[5] showed that complete graphs, trees, cycles and the complement of the line graph are edge jump 
distance graphs (EJDG). They also showed the Cartesian product of two jump distance graphs is a jump distance graph. 
Under the concept of graph operations like join, for 2 graphs G and H of the same order and the same size, such that dj(G, 
H) = 1, they showed that dj(G +K1 , H+K1) = 1.  

In this paper we consider the edge jumps for generalized Petersen graphs (Gp(n,k)) for k = 1 and show that it is a edge 

jump distance graph for n   5, n   N, k = 1, where N is the set of natural numbers. We have also considered the edge 
jump operations on the generalized Petersen graphs which results in a almost self-centered graph. Similarly the edge 
jump on a prism (Cn  K2) also results in a self-centered /almost self-centered graph depending on value of „n‟ being odd 
or even.  

Next, we have considered edge jumps on various classes of graphs like trees and paths. Some results on average 
eccentricity with respect to edge jumps are also proved. Finally we have developed algorithm to generate almost self-
centered graphs from even cycles. 

2. EDGE JUMPS FOR GENERALIZED PETERSEN GRAPHS 

The generalized Petersen graphs were introduced by Coxeter in [13] and later named by Watkins[14]. 

Definition: For integers n and k with 2  2k < n, the generalized Petersen graph Gp(n,k) has the vertx set V(G(n,k)) = u0, 
u1, … un-1, v0, v1, vn-1 and the edge set E(G(n,k)) = [ui , ui+j], [ui, vi], [vi vi+k], where i is an integer and all subscripts are read 
modulo n. 

As the name suggests Gp(n, k) is the generalized Petersen graph. In particular for n = 5 and k = 2, we get the Petersen 
graph. Note that a generalized Petersen graph is a cubic graph.  

In this section, we consider edge jumps on the generalized Petersen graph where n   5, n   N and k = 1. 

The new graph obtained after a single edge jump will bedenotedby G
j
 i.e., G

j
 = G – e(G) + e ( )G . 

It was shown that complete graphs, cycles, trees and complement of line graphs are edge jump distance graphs. Now by 
slight modification of the graphs used in proofs of the theorems proved by Chartrand et al.[5] we show that Gp(n,k), where 
k = 1 results in a edge jump distance graph(EJDG). We first generate two cycles as shown in [5] and then show that the 
generalized Petersen graph is a jump distance graph. 

Theorem 2.1:The generalized Petersen graph Gp(n,1) is a edge jump distance graph(EJDG) for n   4. 
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Proof:Let n   4, be a positive integer and let C : v1, v2, v3, . . ., v2n+5 be a 2n+5 cycle. For i = 1, 2, 3, . . . ,n. Let  

Fi = C=viv2i+1. Since Fi (1 i n) contains a cycle of length i+ 2, it follows that the graphs G1, G2, . . . , Gn are pairwise non-
isomorphic. For n = 4, the graphs G1, G2, G3, G4 are shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a similar way we generate one more cycle and then show that the edge jump betweeneach of these Fi and Gi is equal 
to one. The construction for Fi is as follows. 

The edges highlighted in red show the formation of a cycle in both of Gi and Hi, where as the edges highlighted in green 
show the jump distance between each of Giand Hi is one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For i = 1, 2, 3, . . . , n, add an edge to the cycle starting from v2 that is in the backward direction. 
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F1 = C + v2v2n+5, F2 = C +v1v2n+4, F3 = C+v2n+3v2n+1, F4=C+v2n+2V2n.  

Add an edge from v2 and make a cycle of length 3 such that the end vertex of cycle of F1 is not equal to the starting vertex 
of cycle of F2. 

Similarly in Gi add a cycle of length 5 starting from v1 in the backward manner. Now it follows that each Fi and Gi contains 
a cycle of length 3 and 5 such that they are pair wise non isomorphic. 

Next, for i = 1, 2, n-1, . . . , let Gi = Fi UFi+1 and Gn =FnUF1. Clearly the graphs Gi and Gk (1 i k n) differ by exactly one 
edge when k = i+1 or when k = n and i = 1 and differ by two edges otherwise.  

Thus, since dj(Gi, Gi+1) = 1 (i i n-1) dj(Gn,G1) = 1, it follows that dj{(G1, G2, G3,… Gn)} =Cn. 

Also, for i = 1, 2,…. n-1, let Hi = FiUGi and Hn = Fn U Gn.  Clearly the graphs Fi and Gi differ by exactly two edges. Thus,dj 

(FI, Gi) = 1 (1 i n) and dj(Fn, Gn) = 1, it follows that dj{(G1, …. Gn, F1,….Fn)} = 1   Gp(n,1). 

 

Example 1: For n = 4, we show that Gp(4,1) is a edge jump distance graph.  

Step 1: For the graphs G1 to G4 and H1 to H4 obtained after adding the edges (highlighted in red) which are used in the 
generation of the cycle, we add one more new edge to each of Gi and Hi in the manner below prescribed to show the edge 
jump distance between each of these Gi and Hi forms a generalized Petersen graph.  

Edge jumps on graph G1 to G4and H1 to H4.  

In G1, add the edge from v1 to v13, in H1 join v1 to v10.  

In G2 join v12 to v10 and in H2 join v13 to v9.  

In G3 join v11 to v9 and in H3 join v12 to v8.  

In G4 join v10 to v8 and in H4 join v11 to v7.  

Step 2: Apply edge jump to the newly added vertices. 

Step 3: We now perform the edge jump operation between each of Gi and Hi. That is the edge v1v13 is jumped to the edge 
v1v10 and thus the dj(G1, H1) = 1.  

In a similar way the jump operation is carried in the rest of the graphs to establish the j-distance relation.  

Step 4: Thus, a relation is brought between the vertices of G and H in showing that the generalized Petersen graph is a 
edge jump distance graph.  

 

 

 

 

 

 

 

 

 

                                                                    Edge jump on Gp(4,1)  

 

Lemma 2.2 :The star K1,n is a edge jump distance graph for n  2, where n N. 

Proof: Consider a path P of order 3n, where 1+n is the order of the star considered. Here we give a step by step 

procedure as proof to show that the star is a EJDG.  

Step 1: Let P = v1, v2,…..v3n be a labeled path and Gi be the graph formed by the following edge addition. 

Step 2: For i = 1, 2, the graph Gi is formed as follows. Gi= P + vi v2i+1 and for the remaining i, that is, i = 3, 4, . . . ,n+1, Gi is 
formed as follows.  

Gi = P + v2i -1v2i. Since Gi(i i n+1) contains a cycle of length 3, it follows that the graphs G1, G2, ….Gn+1 are pairwise 
isomorphic. Also , edge jump distance graph is obtained only between each of G1 and Gi+1 , for i = 1, 2,. . . , n+1. We can 
also note that the edge jump cannot be performed between G2 and G3, G3  and G4, …. Gn and Gn+1. Next for i = 1, 2, . . . ,  

G1 G2 

G3 G4 

H3 

H2 H1 

H4 
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n, let Hi = G1 UG i+1 and let Hn = G1 U Gn+1. Thus, dj (H1, Hn+1) = 1 and dj(H1, Hn) = 1, it follows that Dj {(H1, H2, . . . , Hn+1)} = 
K1,n.. 

 

Example 1 : For n = 3, we show that the star K1,3 is a edge jump distance graph. 

Proof:  To show this, one must note that the consecutive graphs must be non-isomorphic. That is, the edge jump distance 

between each of G1 and Gi+1 must be one. Hence the edges are added in this manner.  

In G1, join the edge between the vertices v1 to v3, which is shown in the below figure. 

In G2, join the edge between the vertices v2 and v4. In G3 join v4 to v6 and in G4 join v6 to v8.  

Applying edge jump between the graphs, we find that G1 is non-isomorphic to G2, G3 and G4. This implies that we can use 
the edge jump definition on these graphs to show that they form a star.  

Thus, dj(G1, G2) = dj(G1, G3) = dj(G1, G4) = 1 and dj(G2, G3) = dj(G2, G4) = dj(G3, G4) = 2. 

Thus, the star K1,3 forms a star. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The star K1,3 is a EJDG 

The next result in on almost self-centered graphs.  

Lemma 2.3: An edge jump in Gp(n, 1)  for n > 5,  results in an almost self-centered graph. 

Proof:By the definition of edge jump, G
j
 = G – e(G) + e ( )G  such that e(G) = uv and e ( )G  = wx, where G

j
 is the new 

graph obtained after a single edge jump. As Gp(n, 1) is a cubic graph any edge jump changes the degree of atmost 4 
vertices. The end vertices of the edge selected for removal, lose one degree each and the edge replaced elsewhere gain 
one degree each thus resulting in a non-regular graph. The generalized Petersen graph Gp(n,1) is a self-centered graph, 
that is radius being equal to diameter and rad = diam = n-2. If n is odd in Gp(n,1), then each vertex consists of two 
eccentric vertices and if n is even, every vertex consists of a single eccentric vertex. When an edge jump is performed, the 
end vertices of the edge removed become eccentric vertices to each other retaining their earlier eccentricity. As the end 
vertices of the edge removed  have neighbours which are at distance one from each other and that doesnot change after 
the removal of the edge. 

Hence an edge jump results in the reduction of eccentricity of the newly replaced edgeby one. Also, for some of the edge 
jumps the vertex adjacent  to this newly added edge loses its eccentricity by one. Thus, in the graph we have atmost 3 
vertices whose eccentricity is one less than its earlier eccentricity. This operation results in an induced cycle along the 
newly added edge from the complement. Thus,in the process of edge jump either  twovertices or three vertices (the three 
vertices whose eccentricity reduces, will have the same eccentricity, that is one less than the earlier eccentricity) lose their 
eccentricity, while the rest of the vertices retain the values thus resulting in a almost self-centered graph.  

G1: 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 

G2: 

 v1 v2 v3 v4 v5

= 

v6 v7 v8 v9 

G3: 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 

G4: 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
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Lemma 2.4: An edge jump  on Gp(5, 1) results in a almost self-centered graph if the jump doesnot induce a cycle of 

length 5. 

Proof: The definition of edge jump leads to change in degree of atmost four vertices which results in a non regular 

graph where as the generalized Petersen graph is a cubic graph. The girth of Gp(n,k) graph is four. Thus we notice that 
the length of the induced cycle ranges from a minimum length 3 to a maximum of n-1. Among these, if the edge jump 
results in a induced cycle of length five, where one of the edges of the cycle includes this newly added edge from the 
complement,then it results in a almost self-centered graph, otherwise for rest of the jumps, it always results in a self-
centered graph. Also we can notice that the new edge replaced forms a C4 and this edge being common to both the 
cycles.When an edge jump is performed, the end vertices of the edge removed become eccentric vertices to each other 
retaining their original eccentricities. As the end vertices of the edge removed  have neighbours which are at distance one 
from each other and that doesnot change after the removal of the edge. 

 The following edge jumps shown below result in an almost self-centered graph. The edge jumps and the induced cycle is 
shown in colored lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Recall the generalized Petersen graph and note that the average eccentricity depends on the value of n. Hence, for any n 

and for k = 1, the average eccentricity of generalized Petersen graph is given by 1  or 1
2 2

n n   
    

   
 for n being even 

or odd. 

Theorem 2.5: The average eccentricity of the generalized Petersen graph Gp(n,1) for any edge jump performed is less 

than n - 2, for n ≥ 6.  
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Proof:We shall be using the above Lemma (2.3) and Lemma (2.4) to prove this.We know that Gp(n,1) is self-centered 

with radius = diameter  = 1  or 1
2 2

n n   
    

   
(for n >5)(for n being even or odd). The average eccentricity of the 

generalized Petersen graph is 1  or 1
2 2

n n   
    

   
, since it is a self-centered graph with radius equal to diameter and 

thus the average eccentricity would remain the same as radius (diameter). According to the above Lemma  2.3 and 
Lemma 2.4, an edge jump changes the degree of atmost 4 vertices resulting in a non - regular graph. Thereis a change in 
eccentricity of two or more vertices depending on the edge jump which induces a cycle of minimum length 3 to a maximum 
length of n-1.As the end vertices of the edge removed  have neighbours which are at distance one from each other and 
that doesnot change after the removal of the edge.One can also note that depending on the edge jump, the eccentricity of 
one of the neighbours of newly replaced edge may or may not change. Thus we have atmost 2 to 3 vertices whose 
eccentricity is reduced by a maximum of one. Thus summing up the eccentricities of the vertices leads the sum to be 
always less than n - 2.  

3: EDGE JUMPS ON PATHS, STARS, TREES AND CYCLES 

As mentioned earlier edge jumps on graphs were  introduced by Chartrand et al. in [5]. In this section we consider edge 
jumps on star, path and trees to transform them into respective class of graphs with the order of the graphs being retained.  

LEMMA 3.1: Let S be a star with n vertices and let T be a arbitrary tree with n vertices and maximum degree ∆, then 

dj(t,S) = n – 1 - ∆.  

Proof: Let u be the vertex of T with maximum degree ∆. Evidently, the subtree S0 of T whose edge set is the set of all 

edges incident with u is a star with ∆+1 vertices and this S0 is isomorphic to a subtree of S. We know that any subtree of S 
with atleast three vertices is a star, and the tree T cannot contain a subtree with more than ∆+1 vertices isomorphic to a  

subtree of S0. As the maximum degree of S is n-1 and that of tree is ∆, it is necessary to perform atleast n-1-∆ edge jumps 
to obtain a graph isomorphic to S from T. Thus dj(T,S)  = n – 1 - ∆.  

LEMMA 3.2: Let P be a path with n vertices and T be an arbitrary tree with n vertices. Let „d‟ be the diameter of the 

tree. Then dj(T, P) = n – 1- d. 

Proof: Let P0 be the diametrical path in T. This is a subtree of T which is isomorphic to a subtree of P and has d+1 

vertices. As any subtree of P is a path, the tree cannot contain a subtree with more than d+1 vertices isomorphic to a 
subtree of P. As the diameter of P is n-1 and that of T is d, it is necessary to perform atleast n – 1-d edge jumps to obtain 
a P from T.   

Corollary 3.3:  Let S be a star with n vertices and let P be a path with n vertices. Then dj(P, S) = n – 3. 

Proof: Let P be a path with n vertices and S be a star with n vertices, the maximum degree of S is n-1 and that of P is 2. 

Hence leaving the last 2 edges, it is necessary to perform n – 1- 2 edge jumps to obtain a star S0, isomorphic to S from P. 
Thus n – 3 edge jumps are required.   

Remark 3.4 : An edge jump performed on any pendant edge of a complete binary tree of n levels results in a 

disconnected unicyclic graph i.e.,G ∪ K1. 

Remark 3.5: An edge jump on level one binary tree (a path P3) is not possible since there is no edge present in the 

complement that satisfies the definition of edge jump.  

Remark 3.6: An edge jump on a path is possible if and only if the length of the path is greater than or equal to 3. 

Theorem 3.7: The average eccentricity of Cn, after a single edge jump, lies between 
2 2 2

n n n
     or

2 2 2

n n n
 

     
        

     
 . 

Proof:  We know that the average eccentricity of the even cycle is given by 
2

n 
 
 

 and that of an odd cycle is given by 

2

n 
 
 

. Since the cycle is a minimum sized self-centered graph, we can consider any edge for the jump operation. 

Consider any edge of G for the edge jump operation. This leads to the change in eccentricity of the vertices which ranges 
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from 
2

n 
 
 

to
2

n


 
 

 
 or 

2

n 
 
 

to 
2

n


 
 

 
such that n  . Clearly, the resulting graph is not a self-centered graph. 

Summing up the eccentricities we find that the minimum average eccentricity is not greater than
2

n
 or 

2

n


 
 

 
and 

the maximum average eccentricity is 
2

n


 
 

 
or 

2

n


 
 

 
. Hence the proof. 

4: ALGORITHM 

In this section we develop algorithms to generate self centered graphs from cycles using the concept of edge jump 
operation. In literature construction of self-centered and almost self-centered graphs using the concept of edge operations 
was done by Huilgol et al. in [15]. Here we use edge jump operation in generating almost self-centered graph from cycles. 

In the following algorithm we generate almost self-centered graphs from cycles using edge jump operation. 

Algorithm 4.1 

Step 1: Consider a cycle of length n.  

Step 2: Find the eccentricity of the cycle as e = 
2

n
  for even n and e = 

2

n 
 
 

 for odd n.  

Step 3: Consider any edge from the complement for the edge jump operation. Using the definition of edge jump replace 

e(G) with e ( )G . 

Step 4: If the newly added edge forms an induced cycle of length (n-2) along with two pendant edges then the newly 
formed graph is an almost self – centered graph.  Then goto Step – 7. 

Else goto Step 5. 

Step 5: If the newly added edge forms an induced cycle of length greater than n-2 or lesser than n-2 then perform Step – 4 
until length = n-2.  

Step 6: Repeat Steps 4 and 5 until we obtain an almost self- centered graph.  

Step 7: Stop.  

5. Edge jumps on Prisms 

Recalling the definition of prisms, the following results are for edge jumps on prisms. 

Theorem 5.1: An edge jump on a prism Cn  K2 , when n is even is an almost self-centered graph. 

Proof:Consider a cycle Cn of even length, i.e., n being even and consider the prism of this cycle ,Cn x K2. By the definition 

of edge jump, consider any edgeof the cycle for the operation. The average eccentricity of the even cycle is 
2

n 
 
 

. By 

taking the prism of the cycle the eccentricity of the vertices of the graph will be 1
2

n 
 

 
. Since the prism is self-centered, 

the average eccentricity of the graph will be 1
2

n 
 

 
.  Depending on the edge operation,if the edge jump induces a cycle 

of length three we find that eccentricity of the new edge decreases by at least one, where as the eccentricities of the 
remaining vertices remains the same. Also, for few of the edge jumps, i.e., if the edge jump induces a cycle of different 
length then the eccentricities of the neighbouring vertices reduce by one, thus forming an almost self-centered graph. 
Also, there might be a reduction of the eccentricity of at most one more vertex depending on the edge jump. Thus the 
remaining vertices retain their eccenticities resulting in a almost self-centered graph. 

Remark 5.2: An edge jump on C5  K2 always results in a self-centered graph if the newly added edge doesnot induce 

a cycle of length four.  

Remark 5.3:An edge jump on a C3  K2 (for any edge of the cycle) results in a self-centered graph.  

We know that the eccentricity of C3 is one. After taking the prism of C3,  the eccentricity of the prism becomes two. The  
prismof C3  K2is a cubic graph, where each vertex has atmost three neighbours at distance one, and the remaining two 
vertices at distance two.The vertices of the edge, used for edge jump operation loses one degree each and thus results in 
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just two vertices at distance one and the rest of the vertices at distance two.This applies to all the edges of the cycle used 
for edge jump operation.Thus, for any edge jump considered results in a self-centered graph. 

Theorem 5.4: If k < n is the average eccentricity of the prism of the path, Pn  K2, then the average eccentricity of the 

prism after a single edge jump lies between 2 2n k n    . 

Proof:Let n be the length of the path, Pn. Let "d" and "r" denote the diameter and  radius of the path. The eccentricity of 

the vertices of the path when n is odd ranges from (n-1) to 
2

n 
 
 

and when n is even it ranges from (n-1) to 
2

n 
 
 

. Let "k" 

denote the average eccentricity of the path.  We find that avearge eccentricity of the path is always greater than the radius 

of the path for n being either odd or even. Taking the prism of the path, let d  and r  denote the diameter and the radius of 

the prism. When the edge jump is performed on any one of the edges of the prism, we find that the diameter and the 

radius of the prism increase by one. The eccentricities of the prism, when n is odd ranges from n to 
2

n 
 
 

 and when n is 

even it ranges from n to 1
2

n
 . On performing the edge jump operation on any edge of the prism we find that the 

eccentricities of the new graph G
j
 ranges from n to 

2

n 
 
 

 for n being odd and for n being even it ranges from n to 
2

n 
 
 

 

for different edge jumps performed on the prism. Thus the eccentricities of the vertices of the prism vary depending on the 
length of the cycle induced in the graph due to edge jump. The length of the cycle induced along with the newly added 
edge varies from C3 to a maximum of Cn +1 .  Thus summimg up the eccentricities of the newly obtained graph, we find that  

 

the minimum average eccentricity is less than or equal to n - 2 and the maximum average eccentricity is greater than or 
equal to n + 2.   
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