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ABSTRACT 

In This paper, we propose a numerical algorithm for solving nonlinear fractional-order Logistic differential equation (FLDE) 

by using Sumudu decomposition method (SDM). This method is a combination of the Sumudu transform method and 

decomposition method. We have apply the concepts of fractional calculus to the well known population growth modle 

inchaotic dynamic. The fractional derivative is described in the Caputo sense. The numerical results shows that the 

approach is easy to implement and accurate when applied to various fractional differentional equations. 

Keywords: Caputo derivative; Adomian polynomials; Logistic equation; Sumudu trans form method; decomposition 

method. 
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1.INTRODUCTION  

Ordinary and partial fractional di¤erential equations have been the focus of many studies due to their frequent appearance 
in various applications in .uid mechanics, viscoelasticity, biology, physics and engineering [3]. Recently, a large amount of 
literatures developed concerning the application of fractional differential equations in non-linear dynamics. Consequently, 
considerable attentions have been given to the solutions of fractional differential equations of physical interest. Most 
fractional differential equations do not have exact solutions, so approximate and numerical techniques (see [9], [10], 
[16,17,19,20] ), must be used. Recently, several numerical and approximate methods to solve the fractional differential 
equations have been given such as variational iteration method [26], homotopy perturbation method [25], Adomian 
decomposition method, homotopy analysis method, homotopy perturbation Sumdu transform method [14,21] and 
collocation method (see [15], [27]). Inspired and motivated by the ongoing research in this area, we introduce a new 
method called sumudu decomposition method (SDM) for solving the nonlinear equations in the present paper. It is worth 
mentioning that the proposed method is an elegant combination of the sumudu transform method and decomposition 
method which was .rst introduced by Adomian  [1, 2]. The proposed scheme provides the solution of the problem in a 
closed form while the mesh point techniques, such as Sumudu decomposition method (see[8], [12], [13]): The proposed 
algorithm provides the solution in a rapid convergent series which may lead to the solution in a closed form. This article 
considers the effectiveness of the sumudu decomposition method (SDM) in solving nonlinear fractional Logsitic differential 
equations. The solution of Logistic equation is explained the constant population growth rate which not includes the 
limitation on food supply or spread of diseases [22]. The solution curve of the model is increase exponentially from the 

multiplication factor up to saturation limit which is maximum carrying capacity [22], 

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the population with respect to time, is the rate of maximum population growth and K  is the carrying capacity. The solution 

of continuous Logistic equation is in the form of constant growth rate as in formula   teNtN 0  where 0N  is the initial 

population [24]. 
The paper is structured in six sections. In section 2, we begin with an introduction to some necessary de.nitions of 
fractional calculus theory. In section 3 we describe the Analysis of the SDM and FLDE. In section 4 we describe the 
Approximate solution of the FLDE. Finally, relevant conclusions are drawn in section 5. 

2. Basic Definitions of Fractional Calculus 

In this section, we present the basic de.nitions and properties of the fractional calculus theory, which are used further in 
this paper. 

Definition 1 The Riemann-Liouville fractional integral operator of order 0 ; for 0t  is 

defined as [23] 
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The Riemann-liouville derivative has certain disadvantage when trying to model real-world phenomena with fractional 

differential equations. Therefore, we shall introduce a modified fractional differential operator 


*D proposed by M . 

Caputo in his work on the theory of viscoelasticity [5] . 

Definition 2 The Caputo fractional derivative of  tf  of order 0  with 0t  is defined as [6] 
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for .0,,1  tmmm    

Definition 3 The Sumudu transform is defined over the set of functions [28] 
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by the following formula: 
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Definition 5 The Sumudu transform of Caputo fractional derivative is defined as follows [7] 
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3 Analysis of the SDM and FLDE 

Consider the following nonlinear-order Logistic equation [4,10,18,26] 

  ,0,0,)(1)()(*   ttxtxtxD                                                                                     (6) 

the parameter with   refers the fractional order of time derivatve with 10   and subject to the initial condition 

.0,)0( 00  xxx                                                                                                                            (7) 

For 1 ; the exact solution is given by 
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where )(* txD
 is the Caputo fractional derivative, )(tx  represents the population size, t  represents the time and the 

constant 0  defines the growth rate. 

Taking the Sumudu transform (denoted throughout this paper by S) on both sides of Eq.(6), we have 
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                                                                                                   (8) 

Using the differentiation property of the Sumudu transform and the initial conditions in Eq.(8), we have 
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                                                                                         (9) 

Operating with the Sumudu inverse on both sides of Eq.(9) we get 
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where )(tF  represent the prescribed initial conditions. 

Now, pplying SDM. And assuming that the solution of Eq.(10) is in the form 
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and the nonlinear term of Eq.(10) can be decomposed as 
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where mA  are He.s polynomials, which can be calculated with the formula [7,11] : 
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The first few components of Adomian polynomials, are given by 
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Substituting Eq.(11) and (12) in Eq.(10), we get 
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On comparing both sides of Eq. (14) ; we get 
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4 Approximate solution of the FLDE 

We start with the initial approximate 85.0)(0 tx ; and by using the SDM Eq. (15) ; we can directly obtain the 

components of the solution. Consequently, the exact solution may be obtained by using (11) . 
On comparing both sides of (15) we get 

 

 

    
   

           
     



,
14121

1311201137.012104373.0
)(

,
131

1201625.0106247.0
)(

,
12

08925.0
)(

,
1

1275.0
)(

,85.0)(

2

4422

4

2

332

3

22

2

1

0













































t
tx

t
tx

t
tx

t
tx

tx

           (16)        

If we 1  in Eq.(16) or solve Eq.(6) and (7) with 1 ; we obtain 

 432 00003.000067.01115.006375.085.0)( tttttx  

The numerical results of the proposed problem (6) are given in Figures 1 and 2 with different values of   in the interval 

[0; 3] with 4m ; 5.0  and 85.0)(0 tx . Where in Figure 1, we presented a comparison between the behavior 

of the exact solution and the approximate solution using the introduced technique at 1  (Figure 1(a)), and the 

behavior of the approximate solution using the proposed method at 85.0  (Figure 1(b)). But, in Figure 2, we 

presented the behavior of the approximate solution with different values of   ( 25.0  (Figure 2(a)) and 55.0  

(Figure 2(b))). 
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 ( a) 

 

 
( b) 

Figure 1: A comparison between the approximate solution and the exact solution at 1  (a).The behavior of the approximate 

solution using the proposed method at 85.0  (b). 
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( a) 
 

 
( b) 

Figure 2: The behavior of the approximate solution using the proposed method at 25.0  (a) and at 55.0  

(b). 
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5 Conclusions 
This present analysis exhibits the applicability of the Sumudu decomposition method to solve fractional-order Logistic 
differential equation . The work emphasized our belief that the method is a reliable technique to handle linear and 
nonlinear fractional differential equations. It provides the solutions in terms of convergent series with easily computable 
components in a direct way without using linearization, restrictive assumptions. The numerical results obtained with the 
proposed techniques are in an excellent agreement with the exact solution. All numerical results are obtained using Maple 
16. 
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