Some methods for calculating limits
 I.F.Sharipova, G.U.Umarova
 Department of Foundations of elementary education Bukhara State University, Uzbekistan
 Ikbol_sharipova@mail.ru, guljahon-7779@mail.ru

ABSTRACT

The article presents some methods of calculating limits
Keywords: sequence ,limit,theorem Stolz
Below we present some methods for calculating the limits of the numerical sequence.
We recall the following definition.

Council for Innovative Research

Peer Review Research Publishing System
Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol.10, No. 7
www.cirjam.com , editorjam@gmail.com

Definition. A function $f: N \rightarrow X$ whose domain of definition is the set of natural numbers is called a sequence.
The values $f(n)$ of the function are called the terms of the sequence. It is customary to denote them by a symbol for an element of the set into which the mapping goes, endowing each symbol with the corresponding index of the argument. Thus, $x_{n}=f(n)$. In this connection the sequence itself is denoted $\left\{x_{n}\right\}$ and also written as $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ It is called a sequence in X or a sequence of elements of X. The element x_{n} is called the nth term of the sequence. Throughout the next few sections we shall be considering only sequences $f: N \rightarrow R$ of real numbers.

A number $a \in R$ is called the limit of the sequence $\left\{x_{n}\right\}$ if for every $\mathcal{E}>0$ there exists an index N such that $\left|x_{n}-a\right|<\varepsilon$ for all $\mathrm{n}>\mathrm{N}$. We now write these formulations of the definition of a limit in the language of symbolic logic, agreeing that the expression $\lim _{n \rightarrow \infty} x_{n}=a$ is to mean that $n \rightarrow \infty a$ is the limit of the sequence $\left\{x_{n}\right\}$.

Let us consider some examples.
Example 1.Let $a \in R,|a|>1$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{a^{n}}=0 .
$$

Solution.Let $|a|=1+\delta$. Then $\delta=|a|-1>0$ and $\forall n \in N$ by inequality Bernoulli's we obtain $(1+\delta)^{n} \geq 1+n \delta>n \delta$ therefore

$$
\frac{1}{|a|^{n}}<\frac{1}{n \delta}
$$

$$
\text { Thus } \quad\left|\frac{1}{a^{n}}-0\right|=\frac{1}{a^{n}}<\varepsilon(\varepsilon>0)
$$

Inequality holds for all

$$
n>\frac{1}{\varepsilon \delta}
$$

If

$$
n_{0}=\left[\frac{1}{\varepsilon \delta}\right]+1
$$

then, for $\forall n>n_{0}$

$$
\left|\frac{1}{a^{n}}-0\right|<\varepsilon .
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{1}{a^{n}}=0
$$

Example 2. Let, $a \in R,|a|>\ln \alpha \in R$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{a^{n}}=0 .
$$

Solution.Suppose that for a number k holds the inequality $k \geq \alpha+1$. Since $|a|^{\frac{1}{k}}>1$ therefore, assuming that $|a|^{\frac{1}{k}}=1+\delta$, т. e. $\delta=|a|^{\frac{1}{k}}-1>0$. Thenby inequality Bernoulli's $\forall n \in N$, we obtain $|a|^{\frac{n}{k}}=(1+\delta)^{n} \geq 1+n \delta>n \delta$.

$$
\begin{aligned}
& \text { Hence } \frac{n^{k-1}}{a^{n}}<\frac{1}{n \delta^{k}} \\
& \text { Let } n_{0}=\left[\frac{1}{\delta^{k} \cdot \varepsilon}\right]+1 \quad(\varepsilon>0)
\end{aligned}
$$

For $\forall n>n_{0}$ we obtain

$$
\left|\frac{n^{\alpha}}{a^{n}}-0\right|=\frac{n^{\alpha}}{|a|^{n}} \leq \frac{n^{k-1}}{|n|^{n}}<\varepsilon .
$$

Thus $\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{a^{n}}=0$.
Example 3.Prove equality $\quad \lim _{n \rightarrow \infty} \frac{\lg n}{n}=0$.
Solution.Since for $\forall \varepsilon>0$ and $\forall n \in N$ we have

$$
0 \leq \frac{\lg n}{n}<\varepsilon \Leftrightarrow \lg n<n \varepsilon \Leftrightarrow n<10^{n \varepsilon} \Leftrightarrow \frac{n}{\left(10^{\varepsilon}\right)^{n}}<1 .
$$

Noting that $10^{\varepsilon}>1$ and using the Example 2 we obtain

$$
\frac{n}{\left(10^{\varepsilon}\right)^{n}} \rightarrow 0 \text { npu } n \rightarrow \infty \text { and } \exists n_{0} \in N, \forall n>n_{0}: \frac{n}{\left(10^{\varepsilon}\right)^{n}}<1
$$

And so, for $\forall n>n_{0} \frac{\lg n}{n}<\varepsilon$. Hence, $\lim _{n \rightarrow \infty} \frac{\lg n}{n}=0$.
Example 4.Take limit $\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{3}{2^{2}}+\frac{5}{2^{3}}+\ldots+\frac{2 n-1}{2^{n}}\right)$.

Solution.Assuming that $S_{n}=\frac{1}{2}+\frac{3}{2^{2}}+\frac{5}{2^{3}}+\ldots+\frac{2 n-1}{2^{n}}$. Then
$S_{n}-\frac{1}{2} S_{n}=\frac{1}{2}+\left(\frac{3}{2^{2}}-\frac{1}{2^{2}}\right)+\left(\frac{5}{2^{3}}-\frac{3}{2^{3}}\right)+\ldots+\left(\frac{2 n-1}{2^{n}}-\frac{2 n-3}{2^{n}}\right)-\frac{2 n-1}{2^{n+1}}=$
$\frac{1}{2}+\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}}\right)-\frac{2 n-1}{2^{n+1}}, S_{n}=1+1+\frac{1}{2}+\ldots+\frac{1}{2^{n}}-\frac{2 n-1}{2^{n}}=1+\frac{1-\frac{1}{2^{n-1}}}{1-\frac{1}{2}}-\frac{2 n-1}{2^{n}}$.
Thus
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1-\frac{1}{2^{n-1}}}{1-\frac{1}{2}}-\frac{2 n-1}{2^{n}}\right)=\lim _{n \rightarrow \infty}\left(1+2-\frac{1}{2^{n-2}}-\frac{2 n-1}{2^{n}}\right)=\lim _{n \rightarrow \infty} 3-\lim _{n \rightarrow \infty} \frac{1}{2^{n-2}}-$
$2 \lim _{n \rightarrow \infty} \frac{n}{2^{n}}+\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=3$.
Since
$\left|\frac{n}{2^{n}}\right|=\frac{n}{(1+1)^{n}}=\frac{n}{1+n+\frac{n(n-1)}{2}+\ldots+1}<\frac{n}{\frac{n(n-1)}{2}}=\frac{2}{n-1}<\varepsilon$
for an arbitrary $\varepsilon>0$, if $n>1+\frac{2}{\varepsilon}$, i.e. $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0$.
Example 5.Take $\operatorname{limit} \lim _{n \rightarrow \infty} \frac{1^{2}+3^{2}+\ldots+(2 n-1)^{2}}{2^{2}+4^{2}+\ldots+(2 n)^{2}}$.
Solution. We have $2^{2}+4^{2}+\ldots+(2 n)^{2}=4\left(1^{2}+2^{2}+\ldots+n^{2}\right)=\frac{2 n(n+1)(2 n+1)}{3}$,
$1^{2}+2^{2}+\ldots+(2 n-1)^{2}+(2 n)^{2}=\frac{n(2 n+1)(4 n+1)}{3}$. Subtracting the second equation from the first, we
obtain $1^{2}+3^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n+1)(4 n+1)}{3}-\frac{2 n(n+1)(2 n+1)}{3}=\frac{n\left(4 n^{2}-1\right)}{3}$. Thus
$\lim _{n \rightarrow \infty} \frac{1^{2}+3^{2}+\ldots+(2 n-1)^{2}}{2^{2}+4^{2}+\ldots+(2 n)^{2}}=\lim _{n \rightarrow \infty} \frac{n\left(4 n^{2}-1\right)}{2 n(n+1)(2 n+1)}=1$.
Example 6. Prove that if the sequence $\left\{a_{n}\right\}$ converges, then the sequence of arithmetic means $\left\{\xi_{n}\right\}$, where $\xi_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$ also converges and $\lim _{n \rightarrow \infty} \xi_{n}=\lim _{n \rightarrow \infty} a_{n}$.

Solution.We use Theorem Stolz: i.e.if
a) $\left.\left.\forall n \in N, y_{n+1}>y_{n}, b\right) \lim _{n \rightarrow \infty} y_{n}=+\infty, c\right) \exists \lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}$ then $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}$.

Putting $x_{n}=a_{1}+a_{2}+\ldots+a_{n}$ и $y_{n}=n$ we obtain
$\lim _{n \rightarrow \infty} \xi_{n}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}=\lim _{n \rightarrow \infty} a_{n}$.

References

1. Fikhtengol'ts G.M. Cource of Differential and Integral calculus. T.1-3. M., 1970.
2. Ilyin V. A. ,Sadovnichny V. A., Sendov B. H. Mathematical analysis. M .; Moscow State University in 1987.
3. ZorichV. A. Mathematical analysis. Part I, II. M. 1981, 1984.
4. DemidovichB. P. A collection of problems and exercises in mathematical analysis. M. 1972.
5. Kudryatsev L. D. Course of mathematical analysis.T.I, II -M. 1981.
6. Nicholas S. Course of mathematical analysis.T.I, II - M, 1990, 1991.

IKBOL SHARIPOVA

Faculty of pedagogy

Department of Foundations ofelementary education
Bukhara State UniversityAssistant lecturerat Bukhara State University

GuljahonUmarova
 Faculty of pedagogy

Department of Foundations ofelementary educationBukhara State University, Assistant lecturer at Bukhara State University.

