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ABSTRACT 

The article presents some methods of calculating limits 
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Below we present some methods for calculating the limits of the numerical sequence. 

We recall the following definition.  
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Definition. A function :f N X  whose domain of definition is the set of natural numbers is called a 

sequence. 

The values ( )f n  of the function  are called the terms of the sequence. It is customary to denote them by a 

symbol for an element of the set into which the mapping goes, endowing each symbol with the corresponding 

index of the argument. Thus, ( )nx f n . In this connection the sequence itself is denoted {
nx } and also 

written as 
1 2, ,..., ,...nx x x  — It is called a sequence in X  or a sequence of elements of X . The element 

nx  is called the nth term of the sequence. Throughout the next few sections we shall be considering only 

sequences :f N R  of real numbers. 

A number a R  is called the limit of the sequence {
nx } if for every 0   there exists an index N  such 

that 
nx a    for all n > N. We now write these formulations of the definition of a limit in the language of 

symbolic logic, agreeing that the expression lim n
n

x a


  is to mean that n a  is the limit of the 

sequence {
nx }. 

Let us consider some examples. 
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Example 2. Let, 1,  aRa и R . Prove that 
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Example 3.Prove equality       0
lg

lim 
 n
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n
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Solution.Since  for 0  and Nn  we have 
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Noting  that 110 
and using the Example 2 we obtain  
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Example 4.Take limit
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Solution.Assuming that 
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Example 5.Take limit
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Solution.We have
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      .  Subtracting the second equation from the first, we 
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Example 6.Prove that if the sequence { }na converges, then the sequence of arithmetic means{ }n , where

1 2 ... n
n
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 also converges and lim limn n

n n
a

 
 . 

Solution.We use Theorem Stolz: i.e.if 
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