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INTRODUCTION 

Minimal spaces have been the subject of many research papers recently; see [1], [2], [3], [4], [5], [7] and [8]. Maki, H., 
Umehara J. and Noiri T. introduced the notions of minimal structure and minimal spaces in 1950, [9]. While the notion of 
biminimal space was introduced by Boonpok, C. [5] in 2010, which A set equipped with two minimal spaces is called a 
biminimal space, denoted by (X, M,N), where (X,M),(X, N) are two minimal spaces defined on X .  

In 2013, Hashoosh and Farawi gave definition of mα-open in biminimal space. A subset A of X is said to be ( mα-open set 
in biminimal space ) if  A ⊆ M-int ( N - cl ( M– int (A) )) [6] . 

In this paper we introduce new definitions of mα-M0 space, mα-M1 space and mα-M2 space, and give some theorems and 
results, for them in biminimal space .In addition to the definitions of mα-regular space and mα-normal space are 
introduced and studied . Moreover, We got a series of theorems and important results as well as the basic concepts and 
the relationships of it . 

   The aim of this paper is to continue the discussion new classes of separation axioms in biminimal spaces.    

1. PRELIMINARIES 

1.1. Definition [9] 

    Let X be a nonempty set. A family M  P(X) is said to be minimal structure on X if   Ø  , X ∊ M . In this case (X, M) is 
called an minimal space.  

      A set A ∊ P(X) is said to be an m-open  if  A∊ M, B∊ P(X) is an m-closed set if  B
c 
∊ M. We set 

m-Int(A) = ⋃{ U:U⊆ A,U∈M} 

m-Cl(A)=⋂{F:A⊆F, F
c ∈M}. 

1.2. Definition 

i) Let (X,M) be an m-space then we say that (X,M) has the property 𝒰 if the arbitrary union of m-open sets is an m-open 
set [10] .        

ii) Let (X , M) be an m-space then we say that (X , M) has the property 𝒥 if  the any finite intersection of an m-open sets is 
an m-open [1]. 

 1.3. Definition [ 5] 

  Let (X,M) , (X,N ) are two minimal spaces defined on X, then the triple (X,M ,N)  is called a biminimal space . 

1.4. Definition [7]. 

    Let A be a subset of X , then  A is said to be mα-open set in biminimal space iff A ⊆ M-int ( N - cl ( M– int (A) )). The 
family of all mα-open set of X is denoted by mα.(X).                                                                                          

1.5. Example: 

     Let X = { a, b, c } , M= { X , Ø , {a} , {b} } and N  = { X , Ø ,{a},{c}}  

(X, M) , (X, N ) are two minimal spaces on X , then (X,M,N) is a biminimal space .  

mα.(X) = { X , Ø , {a} , {b} {a, b}} . 

Assume Y = {a}, then M-int ({a}) = {a} and N -cl ( M-int {a} ) = {b, a} hence  M-int (N -cl (M-int {a})) =M-int({a, b}) = {a, b} 
.Thus, {a} ⊆ M-int (N -cl (M-int {a})). Therefore {a} is mα-open set in (X,M,N) , and in general in any biminimal space X, 
both X and Ø are clearly mα-open sets , so are the other cases {b} , {a, b} .     

1.6. Remarks [7] 

   Let (X, M, N) be a biminimal space.  

(1) A subset Y of X is called mα-closed set of X if the complement of Y is mα-open set of X. 

(2) Every M-open set is  mα-open set . 

(3)  mα-cl {x} ⊆ mα-cl (mα-cl {x}). 

2. Mα-M0 SPACE,  Mα-M1 SPACE AND Mα-M2 SPACE IN BIMINIMAL SPACE 

In this section, we introduce new definitions of mα-M0 space, mα-M1 space and mα-M2 space, in addition to we recall 
some the results and relations between them with illustrated examples. 

2.1. Definition  

 Let (X, M, N) be a biminimal space , then (X, M, N) is called mα-M0 space iff for each pair of points x, y of X , such that x 
≠ y , there exists mα-open set G containing x but not containing y or mα-open set H containing y but not containing x . 
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2.2. Example  

 Let X = { a, b, c } , M= { X , Ø , {a} , {b} } and N  = { X , Ø  ,{a},{c}}  

(X, M) and (X, N) are two minimal spaces on X, then (X, M, N) is a biminimal space and  mα.(X) = {X, Ø, {a} , {b} {a, b} } . 

 We note for every α and β in X such that α ≠ β, there exists mα-open {α} contains α but not containing β, therefore then 
(X, M, N) is mα-M0 space.  

2.3. Proposition  

 Let (X, M, N) be a biminimal space, if (X, M) is M0 space, then (X, M, N) is mα-M0 space .  

Proof: 

   Let x , y  X  such that x ≠  y .Since ( X, M) is M0-space ,there exists M-open set A in X such that x  A and y  A . 

Since every M-open set is mα-open set by   (1.6) Remarks, so A is mα-open set such that x  A and yA. Therefore (X, 
M, N) is mα-M0 space .But the opposite of this proposition is not true (see 2.4. example below).   

2.4. Example    

   Let X = { a, b, c } , M= { X , Ø , {a} , {b, c} } and N  = { X , Ø ,{a }}.Then, (X, M) is not M0-space. Since, mα.(X) ={ X , Ø 
,{a},{b},{c},{a, b},{b, c},{a, c}}, so (X, M, N) is  mα-M0 space. 

2.5. Theorem 

   Let  (X, M, N)  be  biminimal  space with  property  𝒥,  then  (X,M,N)  is  M0  space  iff  for  each  distinct  point x , y of X ,  

mα-cl {x} ≠ mα-cl {y} . 

Proof : 

    Let x, y X, such that x ≠ y and let mα-cl {x} ≠ mα-cl {y}.Then there exists at the least one point w in X  such that   w  

mα-cl {x} , w  mα-cl {y} .Suppose that x  mα-cl {y} , so {x} ⊆ mα-cl {y}.Then mα-cl {x} ⊆ mα-cl (mα-cl {y}), by   (1.6) 
Remarks. 

But mα-cl(mα-cl {y}) = mα-cl {y} , then w  mα-cl {y} and this is a contradiction . 

So x  mα-cl {y}, then x  X-(mα-cl {y}). Since mα-cl {y} is mα-closed set, so X-(mα-cl {y}) is mα-open set. 

Therefore,  X-(mα-cl {y}) is mα-open set containing x but not y. Thus (X, M, N) is mα-M0 space .Conversely, since (X, M, 

N) is mα-M0 space , then for each two distinct point x , yX , there exists a mα-open set G such that xG , yG . X-G is 
mα-closed set which does not contain x , but contains y .By definition (2.1), mα-cl{y} is the intersection of all mα-closed set 

containing {y}.Thus  mα-cl{y}⊆ X-G , then xX-G . This implies that xmα-cl {y}, so we have x mα-cl {x}, xmα-cl {y}.  

Therefore mα-cl{x} ≠  mα-cl {y}.   

2.6. Theorem  

  The mα-M0 space has the hereditary property, if mα-M0 space has the property 𝒥. 

Proof : 

     Let Y be a minimal subspace of mα-M0 space X , to prove Y is mα-M0 space , let z1 ≠  z2  Y , since Y ⊆ X . 

Then z1 ≠ z2  X and X is mα-M0 space. There exists mα-open set G in X, such that z1G and z2G, so G ∩ Y is mα-open 

set in Y,  and z1 G ∩ Y and z2  G ∩ Y. 

Thus, Y is a mα-M0 space. 

2.7. Definition  

    A biminimal space (X, M, N) is called mα-M1 space iff for each pair of distinct points x, y of X there exists two mα-open 

sets U, V such that xU, yU and yV, xV.  

2.8. Theorem  

    If (X, M) is M1 space, then (X, M, N) is mα-M1 space. 

Proof: 

   Let a, bX, a ≠ b. Since (X, M) is M1 space, then there exists two M-open sets A and B in X such that aA, but bA, 

and bB, but aB. Since every M-open set is mα-open set by (1.6) Remarks , then A , B are mα-open sets , such that a 

A , but b A ; and b B , but aB .Therefore (X,M,N)  is mα-M1 space . 

2.9. Remark 
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   The converse of the above proposition is not true , that is if (X, M, N) is mα-M1 space , then it is not true that (X,M) is M1 
space by the previews example. 

2.10. Theorem   

   The mα-M1 space has the hereditary property, such that mα-M1 space has the property 𝒥. 

Proof:  

   Let (X, M, N) be a mα-M1 space and let (Y, MY, NY) be a minimal sub space of (X, M, N) ,and assume y1 ≠ y2Y and 

since Y⊆ X , then y1 ≠ y2  X . 

Since X is mα-M1 space, there exist two mα-open sets U, V in X, such that y1U, but y2U, and y1V, but y2V. Then   U1 

= U ∩ Y, V1 = V ∩ Y are mα-open sets in Y and we have y1U1, but y2U1; and y1V1, but y2V1. Therefore (Y, My, N y) is 
mα-M1 space. 

2.11. Theorem 

    A biminimal space (X, M, N) is a mα-M1 space iff every single subset {x} of X is mα-closed. 

Proof :  

    Suppose X is mα-M1 space, and x be any point of X. 

Let y{x}
c
 , then x ≠ y and so there exists mα-open set U containing y but not x , and mα-open set V containing x but not 

containing y, y  U ⊆ {x}
c
. Therefore {x}

c
  is mα-open set , then {x} is mα-closed set .Conversely, suppose x , yX, such 

that x ≠ y. Since {x} is mα-closed set , then {x}
c
 is mα-open set containing y but not x Similarly , {y}

c
 is mα-open set 

containing x but not containing y .Therefore (X,M,N) is mα-M1 space . 

2.12. Theorem 

  Let (X,M,N) be a biminimal space has the property 𝒥,then (X,M,N) is mα-M1 space iff mα-cl{a}is empty set for each a  X  

Proof:  

   Suppose (X, M, N) be a mα- M1 space. Let mα-cl {a}≠ Ø , for some aX, then there is a point b , such that bmα-cl {a} , 

and b ≠ a . Since X is mα-M1 space, then there exist mα-open set G such that aG, b G. Thus G ∩ {a} = Ø . 

Therefore bmα-cl {a} , which is contradiction. Thus mα-cl {a} is empty set. 

On the other hand, Let mα-cl {a} is empty set , for each aX , and let x , y  X , such that x ≠ y .Then xmα-cl {y} , and 

there exists mα-open set G such  that  xG and G ∩ {y}= Ø , Therefore G contains x but not containing y .Similarly, there 
exists mα-open set contains y but not containing x . Thus (X, M, N) is mα-M1 space. 

2.13. Definition  

   Let (X,M,N) be a biminimal space has the property 𝒥,then (X,M,N) is called mα-M2 space(mα-Hausdorff ) iff for each 

pair of distinct points x , y of  X there exists two mα-open sets G , H Such that xG , y  H , G ∩ H = Ø  . 

2.14. Proposition  

   Let (X, M, N) be a biminimal space has the property 𝒥. If (X, M) is M2 space, then (X, M, N) is mα-M2 space .  

Proof : 

   Assume x, y  X, such that x ≠ y. Since (X, M) is M2 space, then there exist two M-open set U and V in X such that 

xU, yV and U ∩ V = Ø.  

Since every M-open set is mα-open by   (1.6) Remarks, then U, V are mα-open sets such that x U , yV , U ∩ V = Ø . 
Hence (X, M, N) is mα-M2 space .The opposite of this proposition is not correct by the following example . 

2.15. Example 

    Let (X, M, N) be biminimal space has the property 𝒥  such that  

X ={a, b, c },  M = { X , Ø , {a} , {b},{a, c} and N  = { X , Ø},(X, M) , (X, N ) are two minimal spaces on X , then (X,M,N) is a 
biminimal space. Then   

mα.o(X) = { X , Ø , {a} , {b} {a, b},{a, c},{b, c} } . 

  We note (X, M) is not M2-space, while (X,M,N) is mα-M2 space. 

2.16. Remark 

    Every mα-M2 space is a mα-M1 space, but the opposite is not correct (see 2.17. example below). 

2.17. Example  
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    Let X ={a, b, c },  M = { X , Ø ,{b},{a, b},{b, c}} and N  = { X , Ø,{a, b}},(X, M) , (X, N ) are two minimal spaces on X , then 
(X,M,N) is a biminimal space such that, it has the property 𝒥. Then mα.o(X) = { X , Ø ,{b},{a, b},{b, c},{a, c}}.So, (X,M,N) is 
a mα-M1 space, but is not a mα-M2 space . 

2.18. Theorem 

   The mα-M2 space has the hereditary property, such that mα-M2 space has the property 𝒥. 

Proof : 

   Let (X, M, N) be a mα-Hansdorff, such that  Ø ≠ Y ⊆ X , and x ≠ y Y , then x ≠ y  X and , since (X,M,N) is  mα-

Hansdorff , there exists two mα-open sets G , H such that x  G , y  H , G ∩ H = Ø  . 

So G ∩ Y , H ∩ Y , is mα-open set in Y ,and xG ∩ Y, yH ∩ Y , and (G ∩ Y) ∩ (H ∩ Y) = (G ∩ H) ∩ Y = Ø  .Therefore 
(Y,MY,N Y) is mα-M2 space . 

3. ON Mα-REGULAR SPACE AND Mα-NORMAL SPACE 

   In this section, we introduce new definitions of mα-M3 space, mα-M4 space, mα-regular and mα-normal space, as well 
as, we recall several the results and facts between them . 

3.1. Definition 

   Let (X, M, N) be biminimal space  has the property 𝒥, then (X,M,N) is called mα-regular space iff for each mα-closed set 

F is in X , and each x  F ; and there exist mα-open sets U , V such that x  U , F⊆ V ,  U ∩ V = Ø  .  

3.2. Proposition 

     Let (X, M, N) be biminimal space  has the property 𝒥, then if (X, M) is regular space , then (X,M,N) is mα-regular . 

Proof : 

   Let F be M-closed set in X , xX such that x  F .Since (X, M) is regular space , then there exists G , H are M-open set 

in  X  such  that x  G  ,  F ⊆ H , G ∩ H = Ø  . Since  every M-open set is mα-open set by  ( (1.6) Remarks),  then G, H are  

mα-open sets , such that xG ,F⊆ H ,G∩H = Ø  Hence (X, M, N) is mα -regular . 

3.3. Remark  

   The converse of the above proposition is not true as shown in the following example.  

3.4. Example 

Let (X, M, N) be a biminimal space , such that : 

X = {a, b, c}, 

M = { X , Ø  , {a} , {b}, {c}, {a, c} ,{a, b}} , 

N = { X,Ø ,{c} } .  

(X, M), (X, N) are two m-spaces on X . 

Then mα-o(X) = { X , Ø  , {a} , {b}, {c} , {b, c} , {a, c} ,{a, b} } . 

Take K = {b, c}, a  K, then there exists {a}, {b, c}  

mα-open sets such that a{a} , {b, c} ⊆ {b, c} , 

and {a} ∩ {b, c} = Ø  .And similarly the other cases .Hence (X, M, N) is mα-regular space, but (X, M) is not m-regular 
space. 

3.5. Theorem   

Let (X, M, N) be biminimal space  has the property 𝒥, then (X, M, N) is mα-regular iff for each mα-open set U and xU , 

there exists  mα-open set V such that xV, mα -cl (V) ⊆ U . 

Proof : 

Let (X, M, N) be mα-regular space . Let x U where U is mα-open. Let H = U
 c
, then H is mα-closed , x  H .Hence there 

exists mα-open sets K and M such that : x M , H ⊆ K , M ∩ K = Ø  .  

Then M ⊆ K 
c
 , mα-cl (M) ⊆ mα-cl( K 

c
) = K 

c
 ………….(1)                     

H ⊆ K, then K 
c
 ⊆ H 

c
 = U , then K 

c
 ⊆ U ………….(2) 

From (1), (2) we have , xM , mα-cl (M) ⊆ U . 

Conversely : 



  ISSN 2347-1921                                                           

3522 | P a g e                                                      M a y 1 1 ,  2 0 1 5  

 

Let H be mα-closed set and xH. Let U = H 
c
, then U is mα-open and xU. By hypothesis , there exists mα-open set M 

such  that xM , mα-cl (M)⊆ U , H ⊆ (mα-cl (M)) 
c
 .Since xM , M  ⋂ (mα-cl (M)) 

c
 = Ø  .Hence (X,M,N) is mα-regular . 

3.6. Theorem 

The mα-regular space has the hereditary property, such that mα-regular space has the property 𝒥. 

Proof : 

Assume (X, M, N) is mα-regular space, let (Y, My, Ny) be a subspace of X. To prove (Y, My, N y) is mα-regular ,Let qY 

and F be mα-closed set in Y , such that qF. Then   mα-clY (F) = m α-clx (F) ∩ Y , and since F is mα-closed in Y so  mα-clY 

(F) = F. Then , F = mα-clx (F)∩ Y . Since qF , then qmα–clx (F) ∩ Y , qmα-clx (F) , thus mα-clx (F) is mα-closed in X , 

and since (X,M,N) is mα-regular , then there exist two disjoint mα-open sets G , H in X , such that qG , mα-clx (F) ⊆ H 

and  G∩H = Ø . Hence qG∩Y and mα-clx (F) ∩ Y ⊆ H∩Y , F⊆ H∩Y , since G , H are mα-open in X  then G∩Y , H∩Y are 
mα-open set in Y . Since G∩H = Ø, then (G∩Y) ∩ (H∩Y) = (G∩H )∩ Y = Ø  ∩Y = Ø .Therefore (Y, My, N y) is mα-regular 
subspace of (X,M,N) .  

3.7. Definition 

    Let (X, M, N) be biminimal space  has the property 𝒥, then (X, M, N) is called mα-normal space iff for each pair of mα-
closed set G, H in X , such that G ∩ H = Ø  , there exists mα-open sets U , V such that G ⊆ U , H ⊆ V and U ∩ V = Ø  . 

3.8. Proposition 

Let  (X, M, N)  be biminimal space has the property  𝒥,  then  (X, M, N)  is  mα-normal  space if (X, T) is normal space . 

Let R, S be two M-closed set in X, such that R ∩S= Ø  Since (X, M) is normal space, then there exists G, H are M-open 
set in X such that S ⊆ G, R ⊆ H , G ∩ H = Ø ,but every M-open set is mα-open set by ( (1.6) Remarks), then G, H are mα-
open sets , such that S ⊆ G , R ⊆ H and  G∩H = Ø  . Hence (X, M, N) is mα -regular. 

3.9. Remark  

    The converse of the above proposition is not correct, as shown in the following example . 

 3.10. Example  

    Let (X, M, N) be biminimal space  has the property I, such that               

X = { a, b, c, d } ,  

M = { Ø  , X , {a} , {a, d} , {b, c}, {c, d}, {a, b, c}  } ,  

N = { X , Ø  } , such that : 

mα-o(X)={ Ø ,X,{a},{a, d},{b, c},{c, d},{a, b, c},{a, b},{a, c},{a, c, d},{b, c, d},{a, b , d} }. 

Then ( X,M,N) is mα-normal space, but ( X,M) is not m-normal space.   

3.11. Theorem  

    Let (X, M, N) be biminimal space  has the property 𝒥.Then (X,M,N) is  mα-normal space iff for every mα-closed set H in 
X and mα-open set U in X containing H , there exist mα-open set V, such that H ⊆ V ⊆ mα-cl (V) ⊆ U . 

Proof : 

  Suppose (X,M,N) is mα-normal space , let H be mα-closed in X and U is mα-open in X , such that H ⊆ U . Then U 
c
 is  

mα-closed in X and H ∩ U 
c
 = Ø  . So there exist  mα-open sets V,K such that U 

c
 ⊆ K  , H ⊆ V , V ∩ K = Ø  , K 

c
 ⊆ U , V⊆ 

K 
c
 .This implies that mα-cl (V) ⊆ mα-cl (K 

c
) = K 

c
. Then H ⊆ V ⊆ mα-cl(V) ⊆ U.  

Conversely, let H and G be mα-closed sets in X  such that H ∩ G = Ø , then G 
c
 is mα-open in X, and H ⊆ G 

c
. By 

hypothesis , there exist mα-open set V , such that H ⊆ V , mα-cl (V) ⊆ G 
c
 , then G ⊆ (mα–cl (V)) 

c
 . So we have H ⊆V, G 

⊆ (mα–cl (V) ) 
c
 , and V ∩ (mα–cl (V) ) 

c
 = Ø .Therefore , ( X,M,N) is mα-normal space.   

3.12. Corollary  

   Let (X, M, N) be biminimal space  has the property 𝒥,then (X, M, N) is mα-normal space iff for each mα-closed set H in 
X and each mα-open set U in X containing H , there exists a subset A of X , such that H ⊆ mα-int (A) ⊆ mα-cl ( A ) ⊆ U . 

Proof: 

      To prove 3.12. Corollary, we only replace the mα-open set V in 3.11. Theorem by a subset A of X with observing  mα-
int (V)=V. Thus, we have finished the proof. 

3.13. Definition  

   Let (X, M, N) be biminimal space  has the property 𝒥,then (X, M, N) is called a mα-M3 space iff X is mα-M1 and mα-
regular.  
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3.14. Remark  

   Every mα-M3 space is mα-regular and the converse is not true in general (see 3.15. example below). 

3.15. Example 

    Let  X= {a, b, c},  M={ Ø, X, {b}, {a, c}},  N={ Ø, X, {c}}, then mα-o(X) = { Ø, X, {b}, {a, c}}.So, we have (X, M, N) is mα-
regular space, but it is not mα-M1 space, therefor it is not mα-M3 space.  

3.16. Definition  

    Let (X, M, N) be biminimal space has the property 𝒥, then (X,M,N) is called mα-M4 space iff X is mα-normal and mα-M1 
space .  

3.17. Remark  

    Every mα- M4 space is mα-normal and the converse is not correct in general, (see in 3.15.Example ,  (X, M, N) is also 
mα-normal space but it is not mα-M1 space, therefor it is not mα-M4 space). 

3.18. Proposition  

    Every mα- M4 space is also mα-M3 space. 

Proof : 

    Let (X,M,N) be a mα-M4 space , then (X,M,N) is mα-normal as well as mα-M1 space . To prove that the space is mα-M3 
space , it suffices to show that the space is mα-regular . 

   Let F be a mα-closed subset of X and, let x be a point of X such that x  F. Since (X,M,N) is a mα-M1 space .Thus {x} is 
a mα-closed subset of X , such that {x} ∩ F = Ø , then by mα-normality , there exist mα-open sets disjoint G , H such that 

{x} ⊆ G, F ⊆ H .Also {x}⊆ G , then xG , then there exist mα-open sets G , H such that xG , F⊆ H and G∩ H = Ø  .It 
follows that the space (X, M, N) is mα-regular . 
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