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ABSTRACT 

In this article, we study a numerical solution of the coupled kdv equation with initial condition by the Adomian 
Decomposition Method.The solution is calculated in the form of a convergent power series with easily computable 
components. Numerical results obtained by this method have been compared with the exact solution to show that the 
Adomian Decomposition method is a powerful method for the solution of coupled kdv equation. 

Indexing terms/Keywords 

Adomian decomposition method; Coupled KdV equations. 

Academic Discipline And Sub-Disciplines 

Numerical analysis, Partial differential equations, Pure mathematics. 

SUBJECT  CLASSIFICATION 
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1- Introduction 

Nonlinear phenomena that appear in many areas of scientific fields such as solid state physics, plasma physics, fluid 
dynamics, mathematical biology and chemical kinetics can be modeled by partial differential equation. A broad class of 
analytical solutions methods and numerical solutions methods were used in handle these problems. The Adomian 
decomposition method has been proved to be effective and reliable for handling differential equations, linear or nonlinear. 

Various methods for seeking explicit travelling solutions to nonlinear partial differential equations are proposed such as 
Wadati et al. (1992), Wadati et al. (1975), Wadati (2001), Wadati (1972), Drazin et al. (1997). In the beginning of the 1980, 
a so-called Adomian decomposition method (ADM), which appeared in Adomian (1994), Adomian and Serrano (1998), 
Adomian et al. (1995), Deeba and Khuri (1996), Oldham (1974), Podlubny (1999), Wazwaz (2002), Wazwaz (2000), 
ElWakil et al. (in press), Abdou (2005), Kaya and El-Sayed (2003), Seng and Abbaoui (1996), and Lesnic (2006) has been 
to solve effectively. The nonlinear equations are solved easily and elegantly without transforming the equation by using the 
ADM. The technique has many advantages over the classical techniques, mainly, it avoids linearization and perturbation in 
order to find explicit solutions of a given nonlinear equations.  

2- The Adomian decomposition 

For the purpose of illustration of the methodology to the proposed method, using ADM, we begin by considering the 
differential equation 

LU RU NU g                                                                                                  (1) 

with prescribed conditions, where U   is the unknown function, L  is the highest order derivative 

which is assumed to be easily invertible, R  is a linear differential operator of less order than L  (operator L  is linear 

also), NU  represents the nonlinear term and g is the source term. 

Assuming the inverse operator L  exists and it can be taken as the definite integral with respect 

to t   from 0t  to t , i.e. 

1

0

( )

t

tL dt                                                                                          (2) 

Applying the inverse operator 
1

tL
 to both sides of equation (1) and using the initial conditions we find 

1[ ]tU f L RU NU                                                                                 (3) 

where the function ( )f x  represents the term arising from integrating the source term g  and from using the given initial or 

boundary conditions, all are assumed to be prescribed. The nonlinear operator [ NU ] can be decomposed by an infinite 

series of polynomials given by 
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n
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

                                                                          (4) 

where 0 1( , ,..., )n nA u u u  the appropriate Adomian’s polynomials are defined by Adomian. (1994) Adomian G, Serrano 

SE. (1998). 
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This formula is easy to compute by using Mathematica software or by setting a computer code to get as many polynomials 
as we need in the calculation of the numerical as well as explicit solutions. The Adomian decomposition method assumes 

a series that the unknown function u( , )x t  can be expressed by an infinite series of the form 
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0

( , ) (x, t)n

n

u x t u




                                                                                         (6) 

Identifying the zeros component u( ,0)x  the remaining components where 1n   can be determined by using the 

recurrence relation 

0u ( ) f(x)x                                                                                                  (7) 

1

1u ( , ) L [ ( ) ], 0n t n nx t R u A n

                                                                    (8) 

 

Then other polynomials can be generated in a similar way. The scheme (8) can easily determine the components 

u ( , t)n x  It is in principle, possible to calculate more components in the decomposition series to enhance the 

approximation. One cannot compute an infinite number of terms; only a quite limited number of terms are determined of 

the series 

0

u ( , t)n

n

x




   and hence the solution u( , t)x  is readily obtained. It is interesting to note that we obtained the 

solution by using the initial condition only. 

3. Application 

For simplicity, we are interested to deal with Adomian decomposition solution associated with the operator 
1

tL
 rather than 

the other operators in our example. 

Nonlinear partial deferential equations are known to describe a wide variety of phenomena not only in physics, where 
applications extend over magneto fluid dynamics, water surface gravity waves, electromagnetic radiation reactions and ion 
acoustic waves in plasma, but also in biology, chemistry and several other fields. The main objective of the present paper 
is to use the Adomian decomposition method to the Coupled KdV equations which given by Lou (2006), Feng X (1996), 
Billingham (2004), Rogers and Ames (1988). 

u 2 2 0t xxx x xu u u u v                                                                                             (9) 

2 2 0t xxx x xv v v v v u                                                                                           (10) 

With initial conditions 

( ,0) kxu x e                                                                                                                   (11) 

                                                    
v( ,0) kxx e                                                                                                                (12) 

Where K is constant. 

Equations (9, 10) can be written in an operator form as 

1 1Lu [L 2 ( , ) 2 ( , )]xxx x xu N u u K u v                                                                          (13) 

2 2[L 2 ( , ) 2 ( , )]xxx x xLv v N v v K v u                                                                                    (14) 

Where 
d

L
dt

  and 

3

3
.xxx

d
L

dx
  

The Adomian Decomposition Method (ADM) assumes a series solution of the unknown functions 

0

( , ) (x, t)n

n

u x t u




                                                                                                     (15) 
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0

v( , ) (x, t).n

n

x t v




                                                                                                  (16) 

Substituting equations (15, 16) with initial conditions into equations (13, 14) yields 

1 1

1 1

0

(x, t) ( ,0) (L ) [2 ( , ) 2 (u , )]n t xxx t x x

n

u u x L u L N u u K v


 



                                                                (17) 

1 1

2 2

0

(x, t) ( ,0) (L v) L [2 ( , ) 2 ( , )],n t xxx t x x

n

v v x L N v v K v u


 



                                                               (18) 

where the functions   1 1 2 2( , ), ( , ), ( , ), ( , )x x x xN u u K u v N v v K v u  are 

1 1 0 0 1 0 0 1 ( )

0 0 0

(u, ) (u, ) ( ) ...x x n x x x x m n m x

n n m

N u uu A u u u u u u u u u
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

  

                                         (19) 

1 1 0 0 0 1 1 0 ( )

0 0 0

( , v) ( , v) ( ) ...x x n x x x x m n m x

n n m

K u u v B u u v u v u v v u
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

  

                                         (20) 

2 2 0 0 1 0 0 1 ( )
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(v, v ) (v, v ) (v ) ...x x n x x x x m n m x

n n m

N vv A v v v v v v v
  



  

                                      (21) 

2 2 0 0 0 1 1 0 ( )

0 0 0

(v ,u) (v ,u) (v ) ...x x n x x x x m n m x

n n m

K v u B v u u v u u v
  



  

                                      (22) 

Identifying the zeros components of 0 0u and v   the remaining components ( , ) and ( , ),n 1n nu x t v x t   

 can be determined by using recursive relations given by 

( ,0) kxu x e  

v( ,0) kxx e  , 

         

1 1

1 1 1( , t) (L ) [2 ( , ) 2 (u , )],n t xxx t x xu x L u L N u u K v 

                                                                 (23) 

        

1 1

1 2 2( , t) (L v) L [2 ( , ) 2 ( , )]n t xxx t x xv x L N v v K v u 

                                                                (24) 

The remaining components n nu and v  can be completely determined such that each term that determined by using the 

previous terms, and the series solutions thus entirely evaluated. 
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The solution of ( , ) ( , )u x t and v x t  are 

              

( , t)

v( , t) .

x t

x t

u x e

x e

 

 



 
                                                                                                            (26) 

Adomian solutions coincides with the exact solution 

( , ) ( , )x t x tu v e e                                                                                                                                (27) 

 

Fig.1 (the exact solution of u(x,t)in (27))               Fig.2 ( the numerical solution of u(x,t) in (23)) 

 

 Fig.  3 (comparison between the exact solution and numerical solution of u (x,t)) 
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       Fig.  4 (the exact solution of v(x,t)in (27))                     Fig. 5  (the numerical  solution of 
v(x,t)in(24)) 
 

 

                           Fig. 6 (comparison between the exact and numerical solution of v(x,t)) 

 

CONCLUSIONS 

 In this work. The Adomian decomposition method has been successfully applied to find the solution of nonlinear Coupled 
KdV Equations is presented in Fig. (2,5). This method converts this equation to recurrences relation whose terms are 
computed using maple 15. 

Moreover, the computations are simpler and faster than classical techniques. 
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