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Abstract  

In this paper, an efficient iterative method of arbitrary integer order of convergent 2  will be established for the solution 
of differenced  hyperbolic Kepler’s equation. The method is of dynamic nature in the sense that, on going from one 
iterative scheme to the subsequent one, only additional instruction is needed. Moreover, which is the most important, the 
method does not need any priori knowledge of the initial guess. Aproperty which avoids the critical situations between 
divergent to very slow convergent solutios, that  may exist in other numberical methods which depend on initial guess. 
Computeational package for digital implementation of the method is given.  
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1.INTRODUCTION 

Usually ,equations resulting in most problems of applied mathematics , are highly transcendental and could be solved by 
iterative methods which in turn need: (a) initial guess, (b) an iterative scheme. In fact, these two points are not separated 
from each other, but there is a full agreement that, even accurate iterative schemes are extremely sensitive to initial 
guess. Moreover, in many cases the initial guess may lead to drastic situation between divergent and very slow 
convergent solutions. 

In the field of numerical analysis, powerful techniques have been devoted [4] to solve transcendental equations without 
any priori knowledge of the initial guess. These techniques are known as homotopy continuation methods. The method 
was first applied to the  universal initial value problem of space dynamics [5] , in stellar  statistics in reference [6] and for 
non linear algebraic equation in many papers of these is for example reference [7]. 

In the present paper , an efficient iterative method of arbitrary integer order of convergent 2  will be established for the 
solution of differenced Kepler’s equation. The method is of dynamic nature in the sense that, on going from one iterative 
scheme to the subsequent one, only additional instruction is needed. Moreover, which is the most important, the method 
does not need any priori knowledge of the initial guess. Aproperty which avoids the critical situations between divergent to 
very slow convergent solutios, that  may exist in other numberical methods which depend on initial guess. Computeational 
package for digital implementation of the method is given  

2-One-Point Iteration Formulae for Solving Y(x) = 0 

Let Y(x) = 0 such that Y: R      R smooth map and has a solution x . To construct iterative schemes for solving this 

equation, some basic definitions are to be recalled as follows: 

 1-The error in the k
th

 iterate is defined as 
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we say that, the iterative scheme is of order p  at   . The constant K is called the asymptotic error constant. For p =1, 

the convergence is linear; for p = 2, the convergence is quadratic; for p =3,4,5 the convergence is cubic, quartic and 

quintic, respectively. 

4-One- point iteration formulae are those which use information at only one point. Here, we shall consider only stationary 
one-point iteration formulae which have the form 

,1,0i),x(Rx i1i                                                      (1) 

5.-The order of one point iteration formulae could be determine either from: (a) The Taylor series of the iteration function R

)( nx about   e.g. [1]. or from  , (b) The Taylor series of the function )( 1kxY  about 
kx  [2]. 

On the bases of the second approach mentioned above [point ( b)] it is easy to form a class of iterative formulae 
containing members of all integral orders [3] to solve Equation (1) as 

2m,ii1i xx   ; i=0,1,2,…; m =0,1,2,...                                  (2) 
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The convergence order is m 2 and is given as 
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where   between 1ix   and ix    and 1  between  1ix   and  . 

3-Homotopy Continuation Method for solving Y(x) = 0 

3-1 Formulations 

Suppose one wishes to obtain a solution of a single non-linear equation in one variable  x  

0)x(Y  ,                                                     (6) 

where , RR  :    is a mapping which , for our application assumed to be smooth  that is , a map has as many 

continuous derivatives as requires . Let us consider the situation in which no priori knowledge concerning the zero point of 
Y is available. Since we assume that such a priori knowledge is not available, then any of the iterative methods will often 

fail to calculate the  zero x  , because poor starting value is likely to be chosen As a possible remedy, one defines a 

homotopy or deformation RRR  :   such that 

        ,xΥx,0Η;xQx,1Η   

where RR :Q  is a ( trivial ) smooth map having known zero point and   is also smooth . Typically, one may 

choose a convex 

        .xΥλ1xQλλx,Η                                  (7) 

and attempt to trace an implicitly defined curve    0ΗzΦ 1    from a starting point   ,1x1   to a solution point   ,0x  

.If this succeeds, then a zero point   x  of    is obtained. 

3-2 Embedding methods 

The basic idea of the embedding methods referred to at the end of Subsection 3-1 is explained in the following algorithm 

for tracing the curve )0(H)z( 1  from, say 1  to  .0  

Computational Algorithm1 

● Purpose 

To solve Y(x) = 0  by embedding method. 

● Input 

 (1) The function Q(x) with defined root 1x  such that  H ( 1x ,1) = 0, 

(2) positive integer m. 

● Output 

Solution x of Y(x) = 0. 

Computational sequence: 

1-Set .m/1,m/)1m(,xx 1   

2-For i = 1  to m do 

begin 

Solve H (y, 0)y()1()y(Q)     iteratively for y using x as starting value. 

x = y. 
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.  

End 

4- Application of Homotopy Method for Solving Differenced hyperbolic  Kepler's 
Equation 

4-1 Differenced  hyperbolic Kepler's equation 

Let  )M,M(, )H,H( nn  be the hyperbolic eccentric and the mean anomalies associated 

with the position vectors )( r,rn
at the two epochs nt and t )n(  of a  hyperbolicorbit. 

The differenced hyperbolic Kepler's equation is given as: 
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The above equation could be written as: 

,SGcoshSGsinhCGW nnn                                            (8) 

where 
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The computed value of G may be checked by the condition that; 

0SGcoshSGsinhCGWF nnn   

Two notes are to be recorded as follows: 

1-From Equation (5) it is clear that, an iterative scheme for solving Equation (8) includes derivatives of Y as  much as the 
order of the scheme. On the other hand, the higher the order of an iterative scheme, the higher its accuracy and rate of 
convergence will be .Regarding this last fact, the remarkable simplicity of  the derivative formulae of Y which are 

GsinhSGcoshC1)G(Y nn

)1(  , 

GcoshSGsinhC)G(Y nn

)2(  , 

,GsinhSGcoshC)G(Y nn

)3(   

4k;Y)G(Y )2k()k(  
 

enables us to find derivatives of )G(Y  as many as we need. 

2-Homotopy continuation method is powerful technique for solving  0)G(Y   without priori knowledge of the initial 

guess. 

From these two notes, we can now establish for the solution of  Kepler’s Equation (8), an iterative algorithm of any positive 

integer order .2l  Moreover, the algorithm does not need priori knowledge of the initial guess. According to Equation 

(5), the algorithm is of dynamic nature in the sense that, it includes iterative schemes up to the 
thl order such that, in 

going from one scheme to the subsequent one, only additional instruction is needed. 

This algorithm is illustrated in what follows with algorithm 1 augmented to it, together with the Q function of the homotopy 

H [ Equation (7)] as Q(x) = x-1, so that ,0)1,x(H 1   where .11 x  

4.2 Computational Algorithm 2 
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Purpose : To solve Kepler’s  hyperbolic equation by iterative schemes of quadratic up to 
thl  convergence orders 

without priori knowledge of the initial guess using homotopy continuation method with  1G)G(Q   

Input :m ( positive integer 20m3  ), W, )S(Sn),C(Cn nn  ,
 
   ( specified tolerance

610 ) , 

 Computational Sequence 

        1-   Set ;1G       ;m/1      1  

        2-   For  i : =1 to m do 

         begin{i} 

              1Q  

              }WSnGcoshSnGsinhCnG{Q)1G(Y   

              }GsinhSnGcoshCn1{QY )1(   

              
)1(Y/YG   

               If ,G[If,2[   go to step 4] 

              )GcoshSnGsinhCn(QY )2(   

              2/Y*DEYH )2()1(   

              H/YG   

               If ,G[If,3[   go to step 4] 

              )GsinhSnGcoshCn(QY )3(   

             6/Y*)DE(2/Y*DEYH )3(2)2()1(   

             H/YG   

               If ,G[If,4[   go to step 4] 

              1L    

              For k: = 4 to L do  

              begin {k} 

              set  ;YY )2k()k(     ;1kn     1B;YH )1(   

              For j: = 1 to n do  

              begin {j} 

             )1j/(B*GB   

             
)1j(Y*BHH   

              end  {j} 

              H/YG   

              end  {k} 

              GGG   

                

              end  {i} 
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          4-  End 

 4.3 Numerical examples 

In Table 1 four hyperbolic orbits, the applications of   algorithm 2 for these orbits  with 
-610 and 7m    are listed in 

Table 2 together with 

the values of nn S  C,W and the Check 

 0SGcoshSGsinhCGWCheck nnn   

Table 1: Position , velocity vectors  and the eccentricities of some hyperbolic orbits 

 

Table 1 Continued 

 

Table 2: The  values of nn S  CW, , and  the difference in the eccentric anomalies 

nHHG   and the accuracy check 

 

In concluding the present paper we stress that ,an efficient iterative method of arbitrary integer order of convergent 2  
was established for the solution of differenced hyperbolic Kepler’s equation. The method is of dynamic nature in the sense 
that, on going from one iterative scheme to the subsequent one, only additional instruction is needed. Moreover, which is 
the most important, the method does not need any priori knowledge of the initial guess. A property which avoids the critical 
situations between divergent to very slow convergent solutios, that  may exist in other numberical methods which depend 
on initial guess. Computeational package for digital implementation of the method is given  
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No x0km y0km z0km
1 10 316. 6389.96 4005.12

2 4263.53 13 126.7 12 527.9

3 751.533 17 195.3 19 228.5

4 3665.13 3915.8 8980.83

x


0kmsec y


0kmsec z


0kmsec e

4.4527 1.56666 10.8731 3.49358

6.23532 5.92079 6.18651 4.21002

1.35844 7.84021 5.48379 5.01468

11.0592 5.02881 3.45566 3.11583

No W C n S n G Check

1 6.23587 3.50438 0.27489 1.59246 6.21725 1015

2 5.22598 4.24715 0.560281 1.27743 8.88178 1016

3 4.46202 5.04611 0.562236 0.973124 4.44089 1016

4 6.86974 3.18674 0.668495 1.89625 8.43769 1014


