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ABSTRACT 

The history of modal intervals goes back to the very first publications on the topic of interval calculus. The modal interval 
analysis is used in Computer graphics and Computer Aided Design (CAD), namely the computation of narrow bounds on 
Bezier and B-Spline curves. Since modal intervals are used in different fields, we have constructed a new sequence space 

)(0 gIp  of modal intervals. Also , we have given some new definitions and theorems about the sequence space )(0 gIp  

of modal interval numbers.  
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1  INTRODUCTION 

Interval arithmetic was first suggested by Dwyer [1] in 1951. Development of  interval arithmetic as a formal system and 
evidence of its value as a computational device was provided by Moore [8] in 1959 and Moore and Yang [9] 1962. 
Furthermore, Moore and others[10] have developed applications to differential equations. 

Chiao in 2002 [4] introduced sequence of interval numbers and defined usual convergence of sequences of interval 
number. Sengönül and Eryilmax [11] in 2010 studied bounded and convergent sequence space of interval numbers and 
showed that these spaces are complete metric space. Recently, Zararsız  and Sengönül[13] introduced null, bounded and 
convergent sequence space of modal interval numbers. 

Let us denote the set of all real valued closed interval by  , the set of positive integers by  and the set of all real 

numbers by  . Any element of    is called interval number and it is denoted by x̂ . That is }.:{ˆ xxxxx  An 

interval number x̂ is a closed subset of real numbers. Let xandx  be be respectively first and last points of the interval 

number x̂ .Therefore, when xx 
,
x̂  is not an interval number. But in modal analysis ],[ xx  is a valid interval. A modal 

interval number },:],{[~  xxxxx  is defined by a pair of real numbers xx, . Let us denote the set of all modals 

by gI .Let us suppose that .~,~ gIyx   Then the algebraic operations between x~ and y~  are defined in the Kaucher 

arithmetic, [6].  For a modal  ],[~ xxx  dual  operator is defined as ],[~ xxxdual 
. 

Thus, if  gIx ~
, then 

0
~

]0,0[~~  xdualx
,

gIxdual ~ .Let us suppose that ,~ gIx   then x~  is called symmetric modal if xx  or 

vice-versa. 

The set of all modals gI is metric space defined as 

  },max{)~,~( 212121 xxxxxxd               (1.1) 

If  gIyx ~,~
and yyxx  , then the set gI  is reduced ordinary set of interval numbers which is complete 

metric space with the metric d defined in (1.1) [6]. If we take ],[~
1 aax   and ],[~

2 bbx  ,we obtain the usual metric of 

  with  baxxd )~,~( 21 ,
 
where ba,  

Let f  be a function from N to gI  which is defined  by )~(~,~)( kxxxkfk  .Then )~( kx   is called sequence of  

modals. We will denote the set of all sequences of modals by )(gI . For  two sequences of modals )~( kx and  )~( ky  , 

the addition, scalar product and multiplication are defined as follows   ],[)~~( kkkkkk yxyxyx 
, 

  ],,[)~( kkk xxx
, 

)],,,max(),,,,[min()~~( kkkkkkkkkkkkkkkkkk yxyxyxyxyxyxyxyxyx 
 

respectively. 

 The set )(gI  is a vector space since the vector space rules are clearly provided.  The zero element of  )(gI  

is the sequence  ])0,0([)
~

(
~

 k all terms of which are zero interval.  If  )()~( gIxk   then inverse of  )~( kx , 

according to addition, is )~( kxdual . 

Proposition 1.1.  If  )~( kx
,

)~( ky  , )~( kr are sequences of symmetric modal, then the following equality holds: 

  )~)(~()~)(~()~()~()~( kkkkkkk rxyxryx 
       (1.2)

 

Definition 1.2.  A sequence )()~(~ gIxx k   of modals is said to be convergent to the modal  0
~x  if for each 

0 there exists a positive integer 0n  such that )~,~( 0xxd k   for all 0nk    and we denote it by writing 

0
~~lim xxk

k
 .Thus, 

000 limlim~~lim xxandxxxx k
k

k
k

k
k




. 

Definition 1.3.  A sequence of modals, )()~(~ gIxx k  , is said to be modal fundamental sequence if for every 

0 there exists 0k such that )~,~( nk xxd   whenever 0, kkn   .                     
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Let )( kpp  be any sequences of strictly positive real numbers. The class of sequences of modal interval 

numbers is defined by )(0 gIc p
. For each fixed k, we define  

              })]0
~
,~([:()~(~{)(0   kp

kk

p xdgIxxgIc  

If  lpp k )( ,then )(0 gIc p
 becomes a locally convex FK space, under paranorm 

                          Mp

k
k

kxdxg )]0
~
,~([sup)(   where }sup,1max{ kpM      

When all the terms of }{ kp are constants and all equal to 0p , we have )()( 00 gIcgIc p   the space of all null 

sequences space of modal interval numbers. }.~lim:)(~{)(0   k
k

xgIxgIc
 

The class of entire sequence space of modal interval numbers is defined by  

})]0
~
,~!([:)()~(~{)( 1   k

kk xkdgIxxgI . Let ,...}
~

,
~

{
~

21    be a fixed sequence of modal interval 

numbers such that  k

~
 for all k. 

Consider the subspace )(0 gIp   of all those sequences )~(~
kxx  in )(0 gIc p

 such that )(~~
0 gIcx p  Here x~

~
 is the 

sequence }~~
{ kk x . If 0 ppk for all k, then )()( 00 gIgIp    where )}(~~

:)(~{)( 000 gIcxgIcxgI  
. 

 If 
k

pk

1
  and ]!,![ kkk  for all k, then )()(0 gIgIp    

Throughout this paper, )( kpp   a bounded sequence of strictly positive real numbers and }sup,1max{ kpM  . Now 

)(0 gIp is endowed with two topologies. One is the metric topology )(gI given by the metric d
~

,  

where )}(~,~,)]~,~([sup)~,~(
~

0 gIyxyxdyxd p

kk

Mp

kk
k

k             (1.3) 

The metric d
~

is induced by the paranorm  (1.3) .  

The other is the topology )(~ gI

 whose metric  


~

~
d is given by 

 )}(~,~,)]~,~()[0
~
,

~
({sup)~,~(

~
0~ gIyxyxddyxd p

kk

Mp

kkk
k

k 


           (1.4) 

2   MAIN RESULTS 

Theorem  2.1.   )()( 00 gIcgI pp  if and only if )(
~

gIl p

  

Proof.  Suppose that )(
~

gIl p

  

Always )()( 00 gIcgI pp                                                                   (2.1) 

Since )(
~

gIl p

 , we have )(~~
0 gIcx p  for every  )(~

0 gIcx p    

Consequently, )(~
0 gIx p  and so  

   )()( 00 gIgIc pp                                    (2.2) 

From equations (2.1) and (2.2), )()( 00 gIcgI pp   

On the other hand, Suppose that )()( 00 gIcgI pp   

If  )(
~

gIl p

 , then for each positive integer r there is a k(r) such that  )(1

)( )0,
~

( rkp

rk rd   
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Define x~ by 

 



 





otherwise

rrkkr
x

rkp

k
]0,0[

,...2,1),(]1,1[~
)(1

 

then )(~
0 gIcx p  and   1

1
)0

~
,~~

(
)(

)(

1

1


rk

rk

p

p

kk
r

rxd      

This shows that )(~~
0 gIcx p . This contradiction shows that )(

~
gIl p

  

Corollary . )()( 00 gIcgI  if and only if )(
~

gIl  

Theorem 2.2.  In order that )()( 00 gIgI pp    it is necessary and sufficient that                 

 })0
~
,~(,)]0

~
,

~~(min{[ kk p

k

p

kk dd             (2.3) 

is bounded 

Proof.   Let A denote the set of those positive integers k for which [ 1)]0
~
,

~
( kp

kd   

 Let B denote the set of those positive integers k for which [ 1)]0
~
,~( kp

kd   

Ak  implies kkk p

kk

p

k

p

kk ddd )]0
~
,

~~([})0
~
,~(,)]0

~
,

~~(min{[    

Bk  implies kkk p

k

p

k

p

kk ddd )0
~
,~(})0

~
,~(,)]0

~
,

~~(min{[    

Hence (2.3) is equivalent to the assertion that kp

kkd )]0
~
,

~~([   is bounded for Ak  

kp

kd )0
~
,~(  is bounded for Bk  

Suppose that this holds and that )(~
0 gIx p  

If Ak , write 
kkkkkk xx 

~~)
~~(~~   

If Bk , write 
kkkk xx  ~)~(~~   

In either case 
kp

kkxd )]0,~~([  is arbitrary small for sufficiently large k. Hence )(~
0 gIx p  

Thus )()( 00 gIgI pp    

 On the other hand if (2.3) is false ,we can find an increasing sequence of positive integers {k(r)} such that     

  rd rkp

rkrk )()]0,
~~([ )()(              (2.4) 

and rd rkp

rk })0
~
,~( )(

)(  for r=1,2,...                   (2.5) 

If 1})0
~
,

~
( )(

)( rkp

rkd  choose  



 





otherwise

rrkkifr
x rk

p

rk

rk

]0,0[

,...2,1),(
~

]1,1[~ )(

1

)(

)( 
 

Then (2.4) gives 1)]0
~
,~~([ )(

)()( rkp

rkrk xd   

If 1})0
~
,

~
( )(

)( rkp

rkd  choose  ]1,1[~ )(1

)(
rkp

rk rx



.
Then (2.5) gives 1)]0

~
,~~([ )(

)()( rkp

rkrk xd   

Thus in either case )(~
0 gIx p  but )(~

0 gIx p  

This contradicts our present hypothesis that )()( 00 gIgI pp    

This proves the theorem. 
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Corollary . )()( 00 gIgI    if and only if )}0
~
,~(,)0

~
,

~~(min{ kkk dd   is bounded 

Theorem 2.3. 
  The sequence space of modals ))(),(( ~0 gIgIp




 
is a complete metric space if and only if 

 0})0
~
,

~
(inf{lim 



Mp

k
k

kd                         (2.6) 

Proof. Suppose (2.6) holds. Let )~( nx be a modal fundamental sequence in )
~

),(( ~0 
 dgIp . Then for a given 

0 there exists n0 N such that  

 


)~,~(
~

~
m

k

n

k xxd   for all n,m n0 

then      
Mpm

k

n

kk
kxxdd )]}~,~()[0,

~
({      for all n,m n0                   (2.7) 

and so Lxxd
Mpm

k

n

k
k )]~,~([            for all n,m n0                       (2.8) 

where ,..}2,1)0,
~

(inf{  kdL
Mp

k
k     

      This means that ,..}2,1,~{ nx
n

k
is a modal fundamental sequence in gI . Since gI  is a Banach space , )~(

n

kx is 

convergent. Now , let 
k

n

k
n

xx ~~lim  for each k N and )~(~
kxx   

Using the inequalities (1.4), (2.7), (2.8) and the fact that )()~( 0
0 gIx pn

k  for each fixed 0n . It can be shown that 

)()~( 0 gIx p

k  and )(~~ gIinnasxx
n

 . Hence the condition is sufficient for ))(),(( ~0 gIgIp


  to be 

complete. 

 Conversely, Suppose that ))(),(( ~0 gIgIp




 
is a complete metric space. If (2.6) is not true, then 

})0,
~

({
Mp

k
kd  contains a subsequence })0,

~
({ )(

)(

Mp

ik
ikd   which steadily decreases and tends to zero. 

Consider the sequence of modals ,..}2,1,~{ nx
n

k  

where 



 


otherwise

nkkkkif
x

n

k
]0,0[

)(),...2(),1(]1,1[~  

then )(~
0 gIcx pn

k   for all n=1,2,.. 

For mn  , we have  

 mnasdxxd
Mp

nk

n

k

m

k
nk ,0)]0

~
,

~
([)~,~(

~
)1(

)1(~ 


 

So that 
n

kx~  is a modal fundamental sequence in )
~

),(( ~0 
 dgIp . 

 If 
n

k
n

x~lim exists, then ],...}1,1[],1,1{[~lim 
n

k
n

x which is not in )(0 gIp . Thus )(0 gIp would cease to be 

complete, a contradiction. Hence (2.6) must hold whenever )(0 gIp is complete. 

Corollary . The sequence space )
~

),(( ~0 
 dgI

 
is a complete metric space if and only if  

 0)}0
~
,

~
({lim 


k

k
d  Where )}~,~()0

~
,

~
(sup{)~,~(

~
~ kkk yxddyxd 


 . 

Remark. )(gI  is a complete metric space with respect to the metric })]~,~([!sup{),(~ 1 k

kk yxdkyx  for 

)~(~
kxx  , inyy k )~(~  )(gI . 

Theorem 2.4. )(gI is finer than )(~ gI

 if and only if   

   


})0
~
,

~
(sup{lim

Mp

k
k

kd        (2.9) 
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Proof. Suppose  that (2.9) holds. Then  

    Dd
Mp

k
k })0,

~
(sup{                              (2.10) 

For some positive real number D.  

 Let 0 be any real number. Let )~( nx be a any sequence of modal interval numbers converging to zero in 

)(0 gIp  with respect )(gI .Then there exists some 0n such that Dxd
Mpn k )]0

~
,~([

0nnallfor  . 

 Consequently, Dxd
Mpn

k

k )]0
~
,~([sup 0nnallfor                                  (2.11) 

Now by using (2.10) and (2.11), 
Mpn

kk
k

n

k
kxddxd )]}0

~
,~()[0

~
,

~
({sup)0

~
,~(

~
~ 


  

         })]0
~
,~([)]0

~
,

~
({[sup

Mpn

kk
k

k
Mkp

xdd   

            


 D
D

  
0nnallfor   

 Therefore, )~( nx  converging to zero in )(0 gIp  with respect )(gI . In other words, the identity map on 

))(),(( 0 gIgIp   onto ))(),(( ~0 gIgIp


  is continuous. Hence )()( ~ gIgI


   

 Conversely, Suppose that )(gI is finer than )(~ gI

 . If (2.9) were not true, then there exists a subsequence 

 ,....2,1,)]0
~
,

~
([

)(

)( nd
Mnkp

nk  which is strictly increasing and tends to infinity.  

This implies that  nas
d

Mnkp

nk

0
~

)]0
~
,

~
([

1
)(

)(

                                                                           (2.12) 

 Take ,.....},
)0

~
,

~
(

]1,1[
,,....,{)~(

)(





ik

i

d
x   where )0

~
,

~
( )(ikd  occurs in the k(i)

th
 place, for i=1,2,.. and zeros 

elsewhere. Then 
1~x ,

2~x ,...
nx~ ,..all belong to )(0 gIp . 

 Also 1)0
~
,~(

~
~ nxd


, so that 
nx~ does not tends to zero with respect to )(~ gI


 .But 

 nasxd
Mpn k 0)]0

~
,~([  using (2.12) 

Hence )()(~ gIgI 


 . Thus (2.9) is necessary. 

Theorem 2.5. Let )(0 gIp  be a complete metric space and let )( kqq   a bounded sequence of strictly positive real 

numbers. Then the following are equivalent. 

(i) )()( 00 gIgI qp    

(ii) 0inflim 









k

k

k p

q
 

Proof.  Proof of  (i) (ii): 

 Assume that (ii) is not true. Then we can determine an increasing sequence of positive integers 

....)2()1(  kk  such that 
)()(

1
ikik p

i
q  . 
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 Define  


























otherwise

ikkfor
idx

ik

ik

p

p

ik

i

k

]0,0[

)(]1,1[
)]0

~
,

~
([

1
~

)(

)(

1

)(
 

Then  ias
i

xd ikp

ikik 0
1

)]0
~
,~~

([ )(

)()(  

Also  ias
iLdi

xd
ik

ik

p

ik

p

ik 0
1

)]0
~
,

~
([

1
)]0

~
,~([

)(

)(

)(

)(


 

Since )(0 gIp  is complete , but    21explogexp)]0
~
,~~

([ )(

)()(  iixd ikp

ikik  

This shows that )~(x  does not belong to )(0 gIq  which contradicts (i) and so (ii) must hold. 

Proof of  (ii) (i): 

Suppose (ii) holds. Then there exists 0 such that kk pq  for all sufficiently large k. 

Let )(~
0 gIx p  then for all sufficiently large k,   kk p

kk

q

kk xdxd )]0
~
,~~

([)]0
~
,~~

([   

Since 1)]0
~
,~~

([ kk xd 
 
for such k. 

Hence ))(}~~
{ 0 gIcx q

kk   Also )(}~{ 0 gIcx q

k  . Therefore ))(~
0 gIx q  

Consequently, )()( 00 gIgI qp    

Hence (ii)  (i). 
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