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ABSTRACT

The history of modal intervals goes back to the very first publications on the topic of interval calculus. The modal interval
analysis is used in Computer graphics and Computer Aided Design (CAD), namely the computation of narrow bounds on
Bezier and B-Spline curves. Since modal intervals are used in different fields, we have constructed a new sequence space
A (gl) of modal intervals. Also , we have given some new definitions and theorems about the sequence space A2 (gl)
of modal interval numbers.
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1 INTRODUCTION

Interval arithmetic was first suggested by Dwyer [1] in 1951. Development of interval arithmetic as a formal system and
evidence of its value as a computational device was provided by Moore [8] in 1959 and Moore and Yang [9] 1962.
Furthermore, Moore and others[10] have developed applications to differential equations.

Chiao in 2002 [4] introduced sequence of interval numbers and defined usual convergence of sequences of interval
number. Sengdnil and Eryilmax [11] in 2010 studied bounded and convergent sequence space of interval numbers and
showed that these spaces are complete metric space. Recently, Zararsiz and Sengoénil[13] introduced null, bounded and
convergent sequence space of modal interval numbers.

Let us denote the set of all real valued closed interval by 1 , the set of positive integers by N and the set of all real
numbers by R Any element of I is called interval number and it is denoted by X. Thatis X ={x € R:x<x<X}.An

interval number Xis a closed subset of real numbers. Let X and X be be respectively first and last points of the interval

number X .Therefore, when X >X X is not an interval number. But in modal analysis [X, X] is a valid interval. A modal

interval number X ={[x,X]: X ,X € R} is defined by a pair of real numbers X, X . Let us denote the set of all modals
by gI .Let us suppose that X, )7 € gl. Then the algebraic operations between X and 37 are defined in the Kaucher
arithmetic, [6]. For a modal X =[x, X] dual operator is defined as dual X=[X,x] Thus, if Xegl then
X —dualX =[0,0] = 6'duali e gl .Let us suppose that X € gl, then X is called symmetric modal if X = —X or

vice-versa.

The set of all modals gl is metric space defined as
d(x,,X,) :max{‘ﬁ—ﬁ‘,b‘(l—)‘(z[} (1.1)

If X,Y €9l gng X< X,y <Yythenthe set gl is reduced ordinary set of interval numbers which is complete

metric space with the metric d defined in (1.1) [6]. If we take X, =[a,a] and X, =[b,b] we obtain the usual metric of
R with d(X,,X,) =[a—b| where a,beR

Let f beafunction from Nto gl which is defined by k — f (k) =X, X = (X ).Then (X, ) is called sequence of
modals. We will denote the set of all sequences of modals by a)(gl ) . For two sequences of modals (Yk ) and (Vk) ,
the addition, scalar product and multiplication are defined as follows (X, + Y, ) =[X, + Yoo X + Vil ’
(X)) =[ax, %], a e iR' (X ¥i) :[min()_(kzk X Vi Xi Yo X Vi), max()_(kzk X Yo )_(ka X Yol
respectively.

The set w(gl) is a vector space since the vector space rules are clearly provided. The zero element of w(gl)
is the sequence @ = (gk) = ([0,0]) all terms of which are zero interval. If (X,) € w(gl) then inverse of (X, ).

according to addition, is dual (X, ).

Proposition 1.1. if (X,) (Y, ) . (F,)are sequences of symmetric modal, then the following equality holds:

(ik){(yk)_(ﬁ()}:(ik)(yk)_(ik)(ﬁ() (1.2)

Definition 1.2. Asequence X = (X,) € @(gl) of modals is said to be convergent to the modal X, if for each
& > Othere exists a positive integer Ny such that d(X,,X,) <& forall K >N, and we denote it by writing
Il[n X, =X, .Thus, limX, =X, < Emgk =X, and limX, =X, .

k—o0 k—

Definition 1.3. A sequence of modals, X =(X,) € w(gl), is said to be modal fundamental sequence if for every

& > Othere exists k, € N'such that d(X,,X,) <& whenever N, K > K, .
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Let p=(p,)be any sequences of strictly positive real numbers. The class of sequences of modal interval

numbers is defined by c(;’ (gl) . For each fixed k, we define
cg (91) ={x = (X,) € (gl : [d(X,,0)]* <&}

If p= (pk) S |00 ,then COp (gl ) becomes a locally convex FK space, under paranorm

9(x) = sup[d (%,,0)]*/ where M =max{1,supp,}

k
When all the terms of {p, }are constants and all equal to p >0, we have cg (gl) =c,(gl) the space of all null
sequences space of modal interval numbers. C, (gl) :{i = a)(gl) “lim ik — 9}.
k

The class of entire sequence space of modal interval numbers is defined by
@) ={X =(X,) € w(gl) : [d (k!X O <&} Let 1 ={/i,j:2,...} be a fixed sequence of modal interval

numbers such that /Tk # @ forall k.
Consider the subspace A (gl) of all those sequences X = (Yk) in cl(gl) such that ;{i c c(f (gl) Here ZY is the
sequence{1, X, }.1f p, = p>0Oforallk, then A2(gl) = 4,(gl) where 2, (gl)={X ec,(gl): AX ec,(gl)}

It p, =% and 4, =[kLkI]for all k, then A (gl) = #(gl)

Throughout this paper, P = (pk) a bounded sequence of strictly positive real numbers and M = max{1,sup pk}. Now

A5 (gl) is endowed with two topologies. One is the metric topology 7(gl) given by the metric d |

where d (X, ¥) = sup[d (%, )I*™, %, Vi € 28 (g1)} (1.3)
k

The metric d is induced by the paranorm (1.3) .

The other is the topology r;(gl )whose metric d)i is given by

d; (X,9) = sup{d (4, O)ld (X, T )I* ™ % 9y € 28 (9} (L.4)
2 MAIN RESULTS

Theorem 2.1. 22(gl)=c?(gl)ifand onlyif 2 €l?(gl)

Proof. Suppose that 4 < I”(gl)
Always 22 (gl) < ¢ (1) (2.1)
since A 1°(gl), we have X e Cs (gl) forevery X ecl(gl)

Consequently, X e A2 (gl) and so

¢ (91) = A3 (gl) (2.2)

From equations (2.1) and (2.2), 1°(gl) =cp (gl)

On the other hand, Suppose that 22 (gl) = c®(gl)

If A &1°(gl), then for each positive integer r there is a k(r) such that d(Zk(r) ,0) > /P
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Define X by
. _{r]/p“" L k=k(r),r=12,..

< [0,0] otherwise

then X e C(? (gl) and d(Ik)"('k,a) > P o _]/g'() =1
r k(r

This shows that 1X ¢ ¢y (gl). This contradiction shows that 1el’(gl)
Corollary . 4,(gl) =c,(gl)ifand only if qe 1 (gl)

Theorem 2.2. In order that A2(gl) < ' (gl) itis necessary and sufficient that
min{[d (7, / 2.0)1" ,d (%, ,0)™} (2.3)
is bounded

Proof. LetA denote the set of those positive integers k for which [ d (/-fk ,6)] Po>1
Let B denote the set of those positive integers k for which [d (z, ,6)] o<1

k e A implies min{[d (%, /2, ,0)]™ ,d (%.0) " }=[d (%, / 4 0)]™

k € B implies min{[d (%, /4,0)]* ,d(%,0)™}=d(,.0)™

Hence (2.3) is equivalent to the assertion that [d (ﬁk/z( ,0)]" is bounded for k € A

d (4, ,6) P is bounded for k € B

Suppose that this holds and that X < ,15’ (gl)

If ke A, write X, 1z, < (ikzk)ﬁk /Zk

If k e B, write X, zz, < (X, )z

In either case [d (X, z,,0)]" is arbitrary small for sufficiently large k. Hence X e ul(gl)

Thus A8 (gl) < x4 (al)

On the other hand if (2.3) is false ,we can find an increasing sequence of positive integers {k(r)} such that
e > P (r
(A Gy [ Ay 01 = ¥ (2.4)

and d(Z,,,0)™"}>r forr=1.2,.. 2.5)

1 d (%) 0)™} 2 Lehoose %, = {r“’“f’ L4/, i k=k(D)F =1.2..
[0,0]  otherwise
Then (2.4) gives [d (Z, X,y 0] >1
If d (Zk(r) 6) P} < 1choose ik(r) —r¥Po [L1] Then (2.5) gives [d (ﬁk(f))?k(") 6)] Mo 21
Thus in either case X e AP (gl) but X ¢ uf (gl)
This contradicts our present hypothesis that ,1(')’ (g|) c ,Uop (g|)

This proves the theorem.
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Corollary . A,(gl) < u,(gl) ifand only if min{d (z, /2,,0),d(i,,0)} is bounded
Theorem 2.3. The sequence space of modals (/Ig (g|),z-Z (gl)) is a complete metric space if and only if

lim inf{d (4,0)*™M}>0 2.6)

Proof. Suppose (2.6) holds. Let (Y”)be a modal fundamental sequence in (ﬁg(gl),az). Then for a given

& > O there exists no € N such that
JZ (X", X.") <& forallnm>no
then  {d(4 ,0)[dX ", XM <& forallnmn 2.7)
andso [d(X,",X.")]"™ < &/L for alln,m>no (2.8)
where L =inf{d(4,,0)"™ k=12.}
This means that {X,", n=1,2,..}is a modal fundamental sequence in gl . Since gl is a Banach space , (X, ")is

convergent. Now, let limX," = X, foreachk €Nand X =(X,)
n

Using the inequalities (1.4), (2.7), (2.8) and the fact that (ikn") e A5 (gl)for each fixed N, . It can be shown that

(X)) e A (gl)and X" — X as n—> oo in z,(gl). Hence the condition is sufficient for (1 (gl),7;(gl)) to be
complete.

Conversely, Suppose that (jg(gl),rz(gl)) is a complete metric space. If (2.6) is not true, then

{d (4, ,0)*/™}contains a subsequence {d (Axgy:0) /™ } which steadily decreases and tends to zero,

Consider the sequence of modals {Ykn ,n=12.}%}

where R L i k=K@, k2)...k()
[0,0] otherwise
then X" ec?f(gl) forall n=1,2,..
For N> M, we have d (X", %") = [d (Aup O] —0asnm— 0

So that ik " is a modal fundamental sequence in (47 (gl), d}) y

it limX, " exists, then limX," ={[L1],[L1],...}which is not in AP(gl). Thus A2(gl)would cease to be
n n

complete, a contradiction. Hence (2.6) must hold whenever AP (gl)is complete.
Corollary . The sequence space (jo(g| ), JE) is a complete metric space if and only if
lim{d (7, 0} > 0Where d . (%, ) = supfd (4, .0)d (%,., 7,)}

Remark. y(gl) is a complete metric space with respect to the metric ,5()_(, y):sup«![d(ik,yk)]”k}for
X=(X). y=()in x(gl).

Theorem 2.4. z(gl)is finer than r_(gl) if and only if

lim sup{d (4,,0)"M}< oo (2.9)
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Proof. Suppose that (2.9) holds. Then
sup{d(4,,0)"™}=D <0 (2.10)
For some positive real number D.

Let & >0be any real number. Let (in) be a any sequence of modal interval numbers converging to zero in

A2 (gl) with respect 7(gl) .Then there exists some N, such that [d(X",0)]"™ <&/D for all n>n,.

Consequently, sup[d (X",0)]™M <&/D forall n>n, (2.12)
Now by using (2.10) and (2.11), d - (%,",0) = Slip{d (4., 0)[d(X.",0)]3"™
=sup{[d (2, 0)]"" [d(X", 01" "'}
<%D:g for all n>n,

Therefore, (f") converging to zero in 3P (gl) Wwith respect 7(gl) . In other words, the identity map on

(45 (gl),z(gl)) onto (A (gl), 7;(gl)) is continuous. Hence z(gl) o z;(gl)

Conversely, Suppose that z(gl)is finer than 7> (gl) . If (2.9) were not true, then there exists a subsequence

~ ~ Pk (n
J[d (A(ny:0)] - ,n= 1,2,....} which is strictly increasing and tends to infinity.
This implies that 1 o 0asn-—s oo (2.12)
u o (n)/Mm
[d (4. 0)]
[1,1] x = . th b
,0,.....} where d(/‘tk(i),O) occurs in the k(i)™ place, for i=1,2,.. and zeros

Take (Y')={9,6’,6’,T
d(4:0)

2,..X",.all belong to A°(gl).

elsewhere. Then X', X
Also JZ (i“,a) =1, so that X"does not tends to zero with respect to z-(gl) But

[d(X",0)]*™ — 0as n — oo using (2.12)

Hence 7;(gl) & z(gl). Thus (2.9) is necessary.

Theorem 2.5. Let A°(gl) be a complete metric space and let (| = (0], ) a bounded sequence of strictly positive real
numbers. Then the following are equivalent.

) 25 (gl) = A (1)
(i) lim inf {q—k} >0
Ko Py

Proof. Proof of (i) = (ii):

Assume that (i) is not true. Then we can determine an increasing sequence of positive integers

k(@) <k(2) <.... such that q,;, <_} Peg) -
|
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]/Pk(u)
1

' S _ 11] for k =k(i
Define X' = [id (Ak(i),O)]p“” [L1] for 0]

[0,0] otherwise
Then [d (4, Xy,0)1™" < ! oasioew
i

Also [d(ik(l) 16)] P < m < il_ —0asi—>wx
I k(i), k(i I

Since Ag (gl) is complete , but [d (Zk(i)ik(i) 0)]"" > exp[-logi/i]> exp(-1/2)
This shows that (f) does not belong to A8 (gl) which contradicts (i) and so (ii) must hold.
Proof of (ii)= (i):

Suppose (i) holds. Then there exists « > Osuch that (, > o), for all sufficiently large k.
Let X e A°(gl) then for all sufficiently large k, [d (;l-k X, ,6)]qk < {[d (/'ik X, ,6)] P }a
Since [d (Zk X, ,6)] <1 for such k.

Hence {1, X, } € cd(gl)) Also{X,} < cl(gl). Therefore X  A3(gl))

Consequently, A5 (gl) < A3(gl)
Hence (i) = (i).
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