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ABSTRACT 

Let M and N be two monoids consisting of idempotent elements. By the help of the presentation which defines M  N, the 

period of 2-step sequences and 3-step sequences in M  N is given. 
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INTRODUCTION 

The study of Fibonacci sequences in groups began with the earlier work of Wall [see 14].  He investigated the ordinary 
Fibonacci sequences in cyclic groups. The problem was extended to abelian groups in the mid eighties by Wilcox [see 15]. 
Campbell, Doostie and Robertson expanded the theory to some finite simple groups in [4]. Aydin and Smith proved in [2] 
that the lengths of ordinary 2-step Fibonacci sequences are equal to the lengths of ordinary 2-step Fibonacci recurrences 
in finite nilpotent groups of nilpotency class 4 and a prime exponent. In [5, 6, 11] the theory has been generalized  to the 3-
step Fibonacci sequences in finite nilpotent groups of nilpotency class 2,3,n. Then it is shown in [1] that the period of 2-
step general Fibonacci sequence is equal to the length of fundamental period of the 2-step general recurrence constructed 
by two generating elements of the group of exponent and nilpotency class . There has been much interest in applications 
of Fibonacci numbers and sequences for several years. 2-step Fibonacci sequences in finite nilpotent groups of nilpotency 
class 4 has been obtained by Karaduman and Aydin in [8]. Karaduman and Yavuz proved that the periods of the 2-step 
Fibonacci recurrences in finite nilpotent groups of nilpotency class 5 are the periods of ordinary 2-step Fibonacci 
sequences [see 9].  

A k-nacci sequence in a finite group is a sequence of group elements x₀,x₁,x₂,...,xn,... for which, given an initial (seed) set 

x₀,x₁,...,xj-1, each element is defined by 

x₀x₁x₂...xn-1 for j≤n < k 

xn-k xn-k+1... xn-1 for n≥k 

The initial elements of the sequence, x₀,x₁,x₂,...,xj-1 generate the group, thus forcing the k-nacci sequence to reflect the 

structure of the group. The k-nacci sequence of a group generated by x₀,x₁,x₂,...,xj-1 is denoted by Fk(G;x₀,x₁,x₂,...,xj-1). 2-

step Fibonacci sequence in the integers modulo can be written as F₂(Zm, 0,1). We call a 2-step Fibonacci sequence of a 
group elements a Fibonacci sequence of a finite group. A finite group is k-nacci sequenceable if there exists a k-nacci 

sequence of such that every element of the group appears in the sequence. 

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The 
number of elements in the repeating subsequence is called period of the sequence. For example, the sequence a, b ,c, d, 
e, b, c, d, e, b, c, d, e,... is periodic after the initial element a and has period 4. A sequence of group elements is simply 
periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence a, 
b ,c ,d, e, f, a, b, c, d, e, f, a, b, c, d, e, f,... is simply periodic with period 6. 

Semigroup presentations have been studied over a long period, usually as a means of providing examples of semigroups. 
In [10], B.H. Neumann introduced an enumeration method for finitely presented semigruops analogous to the Todd-
Coxeter coset enumeration process for group[13]. For about semigroup presentations see[12]. To find a minimal 
presentation for an arbitrary semigroup is another branch of study in semigroup theory. In [3] a minimal presentation for 
CLn is given. Thus it is shown that CLn is an efficient semigroup. It is also shown that CLm×CLn is inefficient for arbitary 
m,n∈N. 

Let M and N be two monoids consisting of idempotent elements. The direct product of monoids is M×N. Assume that the 
number of generators of M is m and the number of generators of N is n. Let p denote the period of sequences in M×N. In 
this paper we prove that the period of 2-step sequences in M×N is p=(m+n-2)(m+n)+2 and the period of 3-step sequences 

in M×N is p=
( 3)

2

m n 
(m+n)+2. (if m+n is odd) and p= 

( 2)

2

m n 
 (m+n)+2 (if m+n is even).  

Let A be an alphabet. We denote by A
+
 the free semigroup on A consisting of all non-empty words over A. A semigroup 

presentation is an ordered pair of <A∣R>, where R⊆ A
+
× A

+
. A semigroup is said to be defined by the semigroup 

presentation <A∣R> if S is isomorphic to A
+
/ρ where ρ is the congruence on A

+
 generated by R. Let u and v be two words 

in A
+
. We write u≡v if u and v are identical words, and write u=v if (u,v)∈ρ, that is v is obtained from u by applying relations 

from R or equivalently there is a finite sequence 

u≡α₁,α₂,α₃,...,αn≡v 

of words from A
+
 in which every αi is obtained from αi-1 by applying a relation from R.(see [7, Proposition 1.5.9]). If both A 

and R are finite sets then <A∣R> is said to be a finite presentation. If a semigroup S can be defined by a finite presentation 
then S is said to be finitely presented. 

DIRECT PRODUCT OF MONOIDS AND 2-STEP AND 3-STEP SEQUENCES 

Let M be a monoid with generating set A={a₁,a₂,...,am} and N be a monoid with generating set B={b₁,b₂,...,bn}. Assume that 

M and N consist of idempotent elements. Also assume that M is defined by the presentation <A∣R> and N is defined by 

the presentation <B∣Q>. Then M×N is defined by the presentation <A,B∣R,Q,C> where C is the group of relations {aibj=bjai 

(1≤i≤m,1≤j≤n)}. 

Now we define 2-step sequences in M×N as xi=xi-nxi-n-1 and 3-step sequences in M×N as  

xi=xi-nxi-n-1xi-n-2 for i>n.  
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Theorem 2.1. Let M and N be two monoids. Assume that M is defined by the presentation <A∣R> and N is defined by 

the presentation <B∣Q>. Also assume that M and N consists of only idempotent elements. Then 2-step sequences in M×N 
is periodic and the period of the sequence of is equal to p=(m+n-2)(m+n)+2. 

Proof. The first m+n terms of sequence are a₁, a₂, a3,…, am, b₁, b₂,..., bn. For simplicity, we use indices instead of 

generating elements of M×N in our process. Since xi=xi-nxi-n-1, for i>n we have  

xm+n+1=x₁x₂=a₁a₂ 

xm+n+2=x₂x₃=a₂a₃ 

xm+n+3=x₃x₄=a₃a₄ 

xm+n+4=x₄x₅=a₄a₅ 

. 

. 

. 

x2(m+n)=xm+n xm+n+1=bna₁a₂=a₁a₂bn 

x2(m+n)+1= xm+n+1 xm+n+2=a₁a₂a₃ 

x2(m+n)+2= xm+n+2 xm+n+3=a₂a₃a₄ 

x2(m+n)+3= xm+n+3 xm+n+4=a₃a₄a₅ 

. 

. 

. 

x3(m+n)=x2(m+n) x2(m+n)+1=a₁a₂a₃bn 

x3(m+n)+1=x2(m+n)+1 x2(m+n)+2=a₁a₂a₃a₄ 

x3(m+n)+2=x2(m+n)+2 x2(m+n)+3=a₂a₃a₄a₅ 

. 

. 

. 

x(m+n-2)(m+n)=x(m+n-3)(m+n)x(m+n-3)(m+n)+1=x₁x₂...x(m+n-2)x(m+n)= 

a₁a₂...amb₁b₂...bn-2bn 

x(m+n-2)(m+n)+1=a₁a₂...amb₁b₂...bn-1 

x(m+n-2)(m+n)+2=a₂a₃...amb₁b₂...bn 

x(m+n-2)(m+n)+3=a₁a₂a₃...amb₁b₂...bn 

 Thus we have the period of 2-step sequences of M×N is p=(m+n-2)(m+n)+2. Now we will examine the period of 3-step 
sequences of M×N.  

Theorem 2.2. Let M and N be two monoids. Assume that M is defined by the presentation <A∣R> and N is defined by the 

presentation <B∣Q>. Also assume that M and N consists of only idempotent elements. Then 3-step sequences in M×N is 
periodic and the period of the sequence of is equal to p=((m+n-3)/2)(m+n)+2 (if m+n is odd) and p=((m+n-2)/2))(m+n)+2 (if 
m+n is even). 

Proof. The first m+n terms of sequence are a₁, a₂, a₃,..., am,b₁, b₂,..., bn. First of all we consider the case when m+n is 

odd. Since we define 3-step sequences as xi=xi-nxi-n-1xi-n-2 for i>n we have 

 

xm+n+1=x₁x₂x₃=a₁a₂a₃ 

xm+n+2=x₂x₃x₄=a₂a₃a₄ 

xm+n+3=x₃x₄x₅=a₃a₄a₅ 

. 

. 

. 
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x2(m+n)=x(m+n)x(m+n+1)x(m+n+2)=bn(a₁a₂a₃)(a₂a₃a₄)=a₁a₂a₃a₄bn 

. 

. 

. 

x(2(m+n)+1)=x(m+n+1)x(m+n+2)x(m+n+3)=(a₁a₂a₃)(a₂a₃a₄)(a₃a₄a₅)=a₁a₂a₃a₄a₅ 

x(2(m+n)+2)=x(m+n+2)x(m+n+3)x(m+n+4)=(a2a3a4)(a3a4a5)(a4a5a6)=a2a3a4a5a6 

x(2(m+n)+3)=x(m+n+3)x(m+n+4)x(m+n+5)=(a3a4a5)(a4a5a6)(a5a6a7)=a3a4a5a6a7 

 

. 

. 

 

x(3(m+n))=x(2(m+n))x(2(m+n)+1)x(2(m+n)+2)= 

(a₁a₂a₃a₄bn)(a₁a₂a₃a₄a₅) 

(a₂a₃a₄a₅a₆)=a₁a₂a₃a₄a₅a₆bn 

x(3(m+n)+1)=x(2(m+n)+1)x(2(m+n)+2)x(2(m+n)+3)=(a₁a₂a₃a₄a₅)(a₂a₃a₄a₅a₆) 

(a₃a₄a₅a₆a₇)=a₁a₂a₃a₄a₅a₆a₇ 

X(3(m+n)+2)=x(2(m+n)+2)x(2(m+n)+3)x(2(m+n)+4)=(a₂a₃a₄a₅a₆)(a₃a₄a₅a₆a₇) 

(a₄a₅a₆a₇a₈)=a₂a₃a₄a₅a₆a₇a₈ 

. 

. 

. 

x((m+n-3)/2)(m+n)=x((m+n-5)/2)(m+n)x((m+n-5)/2)(m+n)+1x((m+n-5)/2)(m+n)+2= 

a₁a₂a₃...amb₁b₂...bn-3bn 

x((m+n-3)/2)(m+n)+1=a₁a₂...amb₁b₂...b(n-2) 

x((m+n-3)/2)(m+n)+2=a₂a₃...amb₁b₂...bn 

x((m+n-3)/2)(m+n)+3=a₁a₂...amb₁b₂...bn 

 

Thus we obtain the period of 3-step sequences of M×N is p=((m+n-3)/2)(m+n)+2 if m+n is odd. 

Now we consider the case when m+n is even. As given above the first m+n terms of sequence are a₁, a₂, a₃,..., am,b₁, 
b₂,..., bn. Since we define 3-step sequences as xi=xi-nxi-n-1xi-n-2 for i>n we have 

 

xm+n+1=x₁x₂x₃=a₁a₂a₃ 

xm+n+2=x₂x₃x₄=a₂a₃a₄ 

xm+n+3=x₃x₄x₅=a₃a₄a₅ 

. 

. 

. 

x2(m+n)=x(m+n)x(m+n+1)x(m+n+2)=bn(a₁a₂a₃)(a₂a₃a₄)=a₁a₂a₃a₄bn 

x(2(m+n)+1)=x(m+n+1)x(m+n+2)x(m+n+3)=(a₁a₂a₃)(a₂a₃a₄)(a₃a₄a₅)=a₁a₂a₃a₄a₅ 

x(2(m+n)+2)=x(m+n+2)x(m+n+3)x(m+n+4)=(a2a3a4)(a3a4a5)(a4a5a6)=a2a3a4a5a6 

x(2(m+n)+3)=x(m+n+3)x(m+n+4)x(m+n+5)=(a3a4a5)(a4a5a6)(a5a6a7)=a3a4a5a6a7 

 

. 
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. 

 

x(3(m+n))=x(2(m+n))x(2(m+n)+1)x(2(m+n)+2)= 

(a₁a₂a₃a₄bn)(a₁a₂a₃a₄a₅) 

(a₂a₃a₄a₅a₆)=a₁a₂a₃a₄a₅a₆bn 

x(3(m+n)+1)=x(2(m+n)+1)x(2(m+n)+2)x(2(m+n)+3)=(a₁a₂a₃a₄a₅)(a₂a₃a₄a₅a₆) 

(a₃a₄a₅a₆a₇)=a₁a₂a₃a₄a₅a₆a₇ 

X(3(m+n)+2)=x(2(m+n)+2)x(2(m+n)+3)x(2(m+n)+4)=(a₂a₃a₄a₅a₆)(a₃a₄a₅a₆a₇) 

(a₄a₅a₆a₇a₈)=a₂a₃a₄a₅a₆a₇a₈ 

. 

. 

. 

 

x((m+n-2)/2)(m+n)=a₁a₂a₃...amb₁b₂...bn-1 

x((m+n-2)/2)(m+n)+1=a₁a₂...amb₁b₂...b(n-2) 

x((m+n-3)/2)(m+n)+2=a₂a₃...amb₁b₂...bn-1bn 

x((m+n-3)/2)(m+n)+3=a₁a₂...amb₁b₂...bn 

 

Thus we have the period of 3-step sequences of M×N is p=((m+n-2)/2)(m+n)+2 when m+n is even. 

CONCLUSION 

In this paper we determine the period of 2-step and 3-step sequences for the direct product of two monoids M and N (M  
N) which contain idempotent elements. In future studies it may be possible to examine the period of 2-step, 3-step and n-
step sequences for different kinds of semigroups. 
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