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ABSTRACT 

The aims of this paper are, firstly, to define a new family of the Thukral and Petkovic type methods for finding zeros of 
nonlinear equations and secondly, to introduce new formulas for approximating the order of convergence of the iterative 
method.  It is proved that these methods have the convergence order of eight requiring only four function evaluations per 
iteration.  In fact, the optimal order of convergence which supports the Kung and Traub conjecture have been obtained. 
Kung and Traub conjectured that the multipoint iteration methods, without memory based on n evaluations, could achieve 

optimal convergence order 
1

2 .
n 

  Thus, new iterative methods which agree with the Kung and Traub conjecture for 

4n   have been presented.  It is observed that our proposed methods are competitive with other similar robust methods 

and very effective in high precision computations. 
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1 INTRODUCTION 

Finding the root of nonlinear equations is one of important problem in science and engineering [3,11,18]. In this paper, we 

present two new multipoint eighth-order iterative methods to find a simple root   of the nonlinear 

equation   0 ,f x  where :f D    for an open interval D is a scalar function. The multipoint root-solvers is of 

great practical importance since it overcomes theoretical limits of one-point methods concerning the convergence order 
and computational efficiency.  In recent years, some modifications of the Newton-type methods for simple roots have been 
proposed and analysed [11].  Therefore the purpose of this paper is to show further development of the eighth-order 
methods and introduce new formulas for approximating the order of convergence. This paper is actually a continuation of 
the previous study [15]. The extension of this investigation is based on the improvement of the Thukral and Petkovic 
method.  In addition, the new iterative methods have a better efficiency index than the second and seventh order methods 
given in [1-20]. Hence, the proposed eighth-order methods are significantly better when compared with the established 
methods. 

The well-known Newton’s method for finding simple roots is given by 

 

 
1

,
n

n n

n

f x
x x

f x


 


          (1) 

which converges quadratically [3,11,18].  For the purpose of this paper, we improve the Thukral et al method [15] and 
construct a new Ostrowski-type eighth-order methods for finding simple roots of nonlinear equations.  The prime motive of 
this study is to develop a new class of three-step methods for finding simple roots of nonlinear equations. The eighth-order 
methods presented in this paper only use four evaluations of the function per iteration.  In fact, we have obtained the 
optimal order of convergence which supports the Kung and Traub conjecture [9]. Kung and Traub conjectured that the 

multipoint iteration methods, without memory based on n evaluations, could achieve optimal convergence order 
1

2 .
n 

  

Thus, we present new iterative methods which agree with the Kung and Traub conjecture for 4 .n     

The structure of this paper is as follows: Some basic definitions relevant to the present work are presented in the section 
2.  In section 3 the new three-point methods of optimal order and prove the order of convergence are described.  In 
section 4 the two new formulas for approximating the order of convergence of the iterative methods are defined. In section 
5, three well-established eighth-order methods are stated, it will demonstrate the effectiveness of the new eighth-order 
iterative methods. Finally, in section 6, numerical comparisons are made to demonstrate the performance of the presented 
methods. 

2 PRELIMINARIES 

In order to establish the order of convergence of the new eighth-order methods, some of the definitions are stated: 

Definition 1  Let  f x  be a real function with a simple root   and let  n
x  be a sequence of real numbers that 

converge towards .   The order of convergence p is given by 

 

1
l im 0

n

p
n

n

x

x








 


 



         (2) 

where p


  and   is the asymptotic error constant, [3,11,18]. 

Definition 2 Let 
k k

e x    be the error in the kth iteration, then the relation 

 
1

1
,

p p

k k k
e e e




             (3) 

is the error equation. If the error equation exists then p is the order of convergence of the iterative method, [3,11,18]. 

Definition 3 Let r be the number of function evaluations of the new method.  The efficiency of the new method is 
measured by the concept of efficiency index and defined as 

 r p             (4) 

where p is the order of the method, [14]. 

Definition 4 (Kung and Traub conjecture) Let  
1n n

x g x


  define as iterative function without memory with k-

evaluations.  Then 
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  
1

2
k

o p t
p g p


            (5) 

where o p t
p  is the maximum order [9]. 

3 DEVELOPMENT OF THE METHODS AND ANALYSIS OF CONVERGENCE 

In this section we define two new eighth-order methods for finding simple roots of a nonlinear equation.  In fact, the first 
iterative method is based on the King’s fourth-order method [6] and is improved by introducing a weight-function in the 
third step of the method.  The second eighth-order method is based on the Ostrowski fourth-order method [14].  

We start with the Thukral et al. eighth-order iterative scheme, which is presented in [15] and given by 

 

 
,

n

n n

n

f x
y x

f x
 


          (6) 

   

     

 

 2

n n n

n n

n n n

f x a f y f y
z y

f x a f y f x

   
     

    
   

,       (7) 

 

 
 

   

 

 

 

 
1

4
n n n

n n

n n n n

f z f z f z
x z u t

f y b f z f x f x


   
      

   
   

,      (8) 

where  u t  is the arbitrary real function satisfying the conditions 

       
2

0 1, 0 2 , 0 1 0 4 , 0 7 2 7 2 1 2 ,u u u a u a a                 (9) 

and a and b are real parameters. The function  u t  in (8) can take many forms satisfying the conditions (9).  Hence, the 

following two functions (which are depending on King’s parameter) are given by  

     
2 2 3

1
1 2 5 2 1 2 1 2 2u t t a t a a t       ,       (10) 

and 

 
   

 

2 2

2 2

5 2 2 8 2 1 4

5 2 1 2 1 2 2

a a a t a t

u t

a a a t

     



   

,       (11) 

where    
n n

t f y f x   and satisfy the conditions at equation (9). 

The scheme (8) is an optimal eighth-order convergence method and is very efficient in obtaining a simple root of a 
nonlinear equation.  For the purpose of this paper we shall introduce new parameters to accelerate convergence of the 
eighth-order method.   

3.1 Modification of the Thukral and Petkovic method 

We apply the new concept to the Thukral et al. [15] method (8) and obtain the new improved eighth-order methods for 
finding simple roots of nonlinear equations, given by 

 

 

 
,

n

n n

n

f x
y x

f x
 


          (12) 

 
 

 

n

n n

n

f y
z y K t

f x

 
   

 
 

,         (13) 
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  
 

 

2
2 3 4

1
2 1 2 4

1 1

n

n n

n

f zv w
x z K t a t p t

b v c w f x





  
               

,   (14) 

where 

 

 

 

 

 

 

n n n

n n n

f y f z f z
t v w tv

f x f y f x
    ,      (15) 

 
 

1

1 2

a t
K t

a t

 
  

 
 

,         (16) 

 

where , , ,a b c p   and  
0

x  is the initial guess and provided that denominators of (14) are not equal to zero. Now, we 

shall verify the convergence property of the new eighth-order iterative method (14). 

Theorem 1 

Let D   be a simple zero of a sufficiently differentiable function :f D  
 
for an open interval D.  If the initial 

guess 
0

x  is sufficiently close to ,  then the convergence order of the new iterative method defined by (14) is eight. 

Proof     

Let    be a simple root of  f x , i.e.   0f    and   0f   , and the error is expressed as  

e x   .            

Using the Taylor series expansion and taking into account   0f   , we have 

   
1

2

( )

m

i m

n n i n n

i

f x f e c e e




 
    

 
 .       (17) 

   
1

2

( ) 1

m

i m

n i n n

i

f x f ic e e




 
     

 
 .       (18) 

where 

 
 

 !

k

k

f
c

k f







  

 2k   .        (19) 

Dividing (17) by (18), we get 

 

 
   

2 2 3 3 4

2 2 3 2 3 2 4
2 7 4 3 .

n

n n n n

n

f x
e c e c c e c c c c e

f x
       


    (20) 

and hence, we have 

   
2 2 3 3 4

2 2 3 2 3 2 4
2 7 4 3 .

n n n n
y c e c c e c c c c e             (21) 

Now, the Taylor expansion of   
n

f y   about   gives   

       
2 3

2 3
( )

n n n n
f y f y c y c y          

 
.     (22) 

       
2 2 3 3 4

2 2 3 2 3 2 4
2 7 5 3

n n n n
f y f c e c c e c c c c e        

 
    (23) 
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Using (17) and (23) we have 

 
   

     
  

2 2

2 3 2

 
, 1 2 4 2 1

2

n n

n n n n

n n

f x a f y
k x y c e c c e

f x a f y



      

 

.   (24) 

Thus from (13), we obtain   

 
 

 
 

3 4

2 2 3
, 1 2

n

n n n n n

n

f y
z y K x y a c c c e

f x
 

 
            

 

    (25) 

Expanding  
n

f z  about  , we get 

     
2

2
( )

n n n
f z f z c z       

 
.       (26) 

    
3 4

2 2 3
( ) 1 2

n n
f z f a c c c e     

 
.       (27) 

The expansion of the weight function used in the third step (14) is given as 

     
2

2 2 2

2 3 2
2 1 1 2 4 2 1

n n
k t c e c a c e


       .     (28) 

  
2 2

2 3
1 2

1
n

v
a c c e

c v
   


.        (29) 

  
3 3

2 2 3
1 2

1
n

w
a c c c e

c w
   


.        (30) 

 
4 4 4 2 3 5

2 3 2 2
4 2 3

n n
p t p c e c c p c e    .       (31) 

Substituting appropriate expressions in (14) 

  
 

 

2
2 3 4

1
2 1 2 4

1 1

n

n n

n

f zv w
e z K t a t p t

b v c w f x






  
                

,  (32) 

we obtain the error equation 

 
2 2 2 2 4 2 4 4 4 2 2

1 2 2 3 2 3 2 2 2 2 2 3 2 3
2 4 4 1 4 4 2

n
e c c c a c b c a c a b c a b c a c a b c c a c c


         


 

 

4 4 4 2 2 2 8

2 2 2 2 3 2 3 2 4 3
1 3 1 5 2 .

n
b c c p c c c b c c c c c e      



     

(33) 

 

The expression (33) establishes the asymptotic error constant for the eighth-order of convergence for the Newton-type 
method defined by (14).         

3.2 New family of Ostrowski eighth-order convergence method 

Now, we consider an iteration scheme of the form 

 

 

 
,

n

n n

n

f x
y x

f x
 


          (34) 

 
 

 

1

1 2
n

n n

n

f y
z y t

f x

  
    

 
 

,        (35) 
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 
 

 
1

, ,
n

n n

n

f z
x z L t v w

f x


 
   

 
 

,        (36) 

where , ,t v w  are given by (15), 

   
 

 

4
, , 1 2 1

1 1

n

n

f zv w
L t v w t t r q t

b v c w f x

     
                    

,    (37) 

and , , , , .a b c q r    

This scheme consists of three-step in which the two steps represents the Ostrowski’s fourth-order method and the weight-
function in third step is different to the previous eighth-order given in (14). 

Theorem 2 

Let D   be a simple zero of a sufficiently differentiable function :f D  
 
for an open interval D.  If the initial 

guess 
0

x  is sufficiently close to ,  then the convergence order of the new iterative method defined by (36) is eight. 

Proof 

Using appropriate expressions in the proof of the theorem 1 and substituting them into (36), we obtain the asymptotic error 
constant 

 
2 4 4 4 2 2 2 8

1 2 2 3 2 2 2 2 3 2 3 2 4 3
3 2

n n
e c c c c b c q c c c b c c c c b c e


         
 

 

                 (38) 

The expression (38) establishes the asymptotic error constant for the eighth-order of convergence for the new Newton-

type method defined by (36).         

4 NEW FORMULAS FOR APPROXIMATING THE ORDER OF CONVERGENCE 

We begin the three well-known formulas for approximating the order of convergence;   

Definition 5 Suppose that 
1
,

n n
x x


 and 

1n
x


  are three successive iterations closer to the root      of (1).  Then the 

computational order of convergence may be approximated by the following; 

 

   

   

1

1

1

1

ln

C O C 1

ln

n n

n n

x x

x x

 

 









 



 

,        (39) 

   

   

1

1

ln /
C O C 2

ln /

n n

n n

f x f x

f x f x





 ,         (40) 

 

   

   

1

1

1

1 2

ln

C O C 3

ln

n n

n n

x x

x x







 

 



 

,         (41) 

where 
1

.
i i i

x x x


    The formulas (39), (40), (41) are given in [21], [12], [2], respectively. The two new formulas are 

actually the improvements of the above formulas. 

Definition 6  Suppose that 
1
,

n n
x x


 and 

1n
x


  are three successive iterations closer to the root      of  (1).  Then 

the computational order of convergence may be approximated by  
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1

1 2

ln
C O C 4

ln

n n

n n

 

 



 






,         (42) 

where    
i i i

f x f x    

Definition 7  Suppose that 
2 1

,
n n

z z
 

 and 
n

z   are three successive iterations closer to the root      of  (1).  Then 

the computational order of convergence may be approximated by  

 

   

   

1

1 2

ln
C O C 5

ln

n n

n n

f z f z

f z f z



 





,        (43)  

for 2 .n   

5 THE ESTABLISHED METHODS 

For the purpose of comparison, three eighth-order methods presented in [10,13,20] are considered.   Since these methods 
are well established, the essential formulas are used to calculate the approximate solution of the given nonlinear 
equations and thus compare the effectiveness of the new eighth-order method for simple roots.  Furthermore, the following 
eighth-order iterative methods used a familiar divided difference scheme, known as 

        
1

,
n n n n n n

f x y f x f y x y


    and further expansion of this scheme may be found in [11,14,18].  

5.1 The  Liu and Wang method 

Liu et al. [10] developed the family of eighth-order Newton-type method, which is given by 

 

 
,

n

n n

n

f x
y x

f x
 


          (44) 

 

 

 

2

2

1 2

1 5

n

n n

n

f yt a t
z y

a t f x

   
       

   

,        (45) 

 

     

2

1
1

, , ,

n

n n

n n n n n n

f z
x z w w

f z y f z x f y x




 
          

 

,    (46) 

where ,a   , ,t w  are given by (15). 

5.2 The Sharma and Sharma method 

Sharma et al. [13] developed the family of eighth-order variants of the Ostrowski-type methods, however the particular 
form we consider in this paper is given by 

 

 
,

n

n n

n

f x
y x

f x
 


          (47) 

 
 

 

1

1 2
n

n n

n

f y
z y t

f x

  
    

 
 

,        (48) 

   

   

2

1

, y
1

, z , z

n n n

n n

n n n n

f x f z
x z w w

f y f x




 
         

 

, .       (49) 

5.3  The Wang and Liu method 

Another variant of Ostrowski-type method was considered by Wang et al. [20] and is given by 
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 

 
,

n

n n

n

f x
y x

f x
 


          (50) 

 
 

 

1

1 2
n

n n

n

f y
z y t

f x

  
    

 
 

,        (51) 

            
1

1
2 , z , z 2 , y , ,

n n n n n n n n n n n n n n
x z f x f y f x y z f y x x f z




      .  (52) 

6 NUMERICAL EXAMPLES 

The present eighth-order methods given by (14) and (36) are employed to solve nonlinear equations with simple roots. To 
demonstrate the performance of the new eighth-order methods, ten particular nonlinear equations are used.  The 
consistency and stability of results by examining the convergence of the new iterative methods are determined.  The 
findings are generalised by illustrating the effectiveness of the eighth-order methods for determining the simple roots of a 
nonlinear equation.  Consequently, estimates are given of the approximate solutions produced by the methods considered 
and list the errors obtained by each of the methods.  The numerical computations listed in the tables were performed on 
an algebraic system called Maple. In fact, the errors displayed are of absolute value and insignificant approximations by 
the various methods have been omitted in the following tables. 

The new eighth-order method requires four function evaluations and has the order of convergence eight.  To determine 
the efficiency index of the new method, definition 3 shall be used.  Hence, the efficiency index of the new iterative methods 

given by (14) and (36) is 
4

8 1 .6 8 2 .  It is well-known that the efficiency index of the new eighth-order method is better 

than the lower order methods.  The test functions and their exact root   are displayed in table 1. The difference between 

the root 
 
and the approximation 

n
x  for test functions with initial guess

0
x ,

 
0 ,a b c       2r    and 

3p q    are displayed in tables. In fact, 
n

x  is calculated by using the same total number of function evaluations 

(TNFE) for all methods.  In the calculations, 12 TNFE are used by each method.  Furthermore, the computational order of 
convergence approximations (COC) are displayed in tables. From the tables we observe that the COCs perfectly 
coincides with the theoretical result. However, this is the case when initial guess are reasonably close to the sought zeros.  

Table 1  Test functions and their roots. 

Functions                                                                 Roots Initial Guess 

       
2

1
e x p s in ln 1f x x x x    0   

0
0 .2 5x   

   
2

2
1 0 e x p 1f x x x    0 .1 0 1 0 2 5 .. .   

0
0 .2x   

       
1 0

3
2 1 e x p 1f x x x x x       2   

0
2 .1x   

         
2

4
1 e x p s in e x p c o s 1f x x x x x     0   

0
0 .5x   

 
2 2

5
s in ( ) 1f x x x    1 .4 0 4 4 9 1 .. .   

0
1 .2 5x   

     
6

e x p c o s ,f x x x    1 .7 4 6 1 3 9 .. .   
0

1 .5x   

   
2

7
ln 2 1f x x x x      4 .1 5 2 5 9 0 .. .   

0
4 .5x   

 
1 0 5

8
1f x x x x     0 .7 8 8 2 7 4 .. .   

0
0 .5x   

   
1

9
s in 3f x x x


   0   

0
0 .5x   

 
5 4 2

1 0
4 1 5f x x x x     1 .3 4 7 4 2 8 .. .   

0
1x   
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Table 2 Comparison of new iterative methods 

i
f  (8) (14) (36) (46) (49) (52) 

1
f  0.669e-171 0.698e-190 0.884e-321 0.296e-284 0.440e-217 0.362e-246 

2
f  0.806e-353 0.337e-382 0.185e-442 0.158e-328 0.221e-432 0.834e-625 

3
f  0.615e-195 0.805e-227 0.219e-286 0.160e-288 0.926e-259 0.241e-275 

4
f  0.992e-285 0.107e-301 0.754e-374 0.821e-371 0.400e-371 0.236e-387 

5
f  0.141e-488 0.370e-529 0.204e-616 0.662e-621 0.420e-569 0.253e-610 

6
f  0.169e-462 0.430e-487 0.882e-562 0.166e-594 0.563e-531 0.150e-582 

7
f  0.217e-705 0.828e-724 0.374e-818 0.113e-807 0.347e-756 0.125e-780 

8
f  0.200e-138 0.202e-239 0.333e-147 0.554e-162 0.599e-153 0.894e-154 

9
f  0.479e-321 0.483e-355 0.728e-595 0.167e-664 0.279e-614 0.449e-752 

1 0
f  0.682e-352 0.702e-404 0.104e-486 0.113e-423 0.824e-445 0.752e-456 

 

 

Table 3  COC of various iterative methods  

i
f  (39) (43) (42) (40) (41) 

1
f  7.9996 7.6846 7.5878 6.7466 7.2171 

2
f  8.0000 8.0764 7.5466 7.6447 7.6036 

3
f  7.9999 7.7517 7.9163 7.1072 7.5309 

4
f  7.9847 7.8834 7.6395 7.8123 7.6487 

5
f  8.0000 7.9721 7.9807 7.9084 7.9455 

6
f  8.0000 8.0370 7.7197 7.7706 7.7476 

7
f  8.0000 7.9930 7.9795 7.9656 7.9727 

8
f  7.9394 7.5016 5.2019 5.3559 5.3155 

9
f  8.9853 9.1994 8.0681 8.2238 8.1741 

1 0
f  8.0000 7.9293 8.0056 7.7835 7.8969 
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Table 4  COC of various iterative methods  

i
f  (39) (43) (42) (40) (41) 

1
f  7.9999 7.8756 7.7841 6.9798 7.4301 

2
f  8.0000 8.0045 7.5675 7.6599 7.6212 

3
f  8.0000 7.9242 8.0718 7.3394 7.7243 

4
f  8.0001 8.3636 8.1047 8.2881 8.1145 

5
f  8.0000 7.9939 8.0020 7.9347 7.9693 

6
f  8.0000 8.0061 7.7245 7.7732 7.7512 

7
f  8.0000 7.9977 7.9845 7.9709 7.9779 

8
f  7.9999 7.3677 6.9089 7.1600 7.0974 

9
f  8.9879 9.0744 8.1555 8.3045 8.2571 

1 0
f  8.0000 7.9864 8.0537 7.7873 7.9577 

 

 

Table 5  COC of various iterative methods  

i
f  (39) (43) (42) (40) (41) 

1
f  7.9880 8.1452 7.4501 7.0320 7.2710 

2
f  8.0000 8.0533 8.1322 8.2313 8.1898 

3
f  7.9848 7.9930 7.3210 6.8832 7.1175 

4
f  7.9911 7.9049 7.2915 7.4027 7.2975 

5
f  8.0000 8.0804 7.8768 7.8223 7.8503 

6
f  8.0000 8.0437 8.0839 8.1321 8.1104 

7
f  8.0000 8.0168 8.0050 7.9930 7.9992 

8
f  7.9988 8.1233 7.3749 7.8616 7.7485 

9
f  11.000 10.967 10.887 11.103 11.035 

1 0
f  7.9948 7.9159 7.6918 7.5483 7.6219 
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Table 6  COC of various iterative methods  

i
f  (39) (43) (42) (40) (41) 

1
f  7.9847 7.4896 7.1419 6.7178 6.9600 

2
f  6.9931 7.1282 6.8545 6.9341 6.9007 

3
f  7.9850 7.9813 7.1508 6.7318 6.9561 

4
f  8.0000 7.8696 7.0746 7.1803 7.0803 

5
f  7.9968 7.9803 7.7967 7.7436 7.7709 

6
f  7.9965 8.0076 8.0143 8.0590 8.0388 

7
f  8.0000 8.0118 8.0058 7.9936 7.9999 

8
f  7.9986 7.9673 7.1960 7.6105 7.5103 

9
f  10.994 11.173 11.009 11.206 11.144 

1 0
f  8.0000 8.0375 7.9520 7.7691 7.8627 

 

 

Table 7  COC of various iterative methods  

i
f  (39) (43) (42) (40) (41) 

1
f  7.9999 7.9524 7.8708 7.1422 7.5513 

2
f  8.0000 8.0286 7.6889 7.7745 7.7387 

3
f  8.0000 7.9754 8.1062 7.4516 7.7970 

4
f  7.9910 7.8965 7.2781 7.3896 7.2841 

5
f  8.0000 7.9977 8.0052 7.9426 7.9747 

6
f  8.0000 8.0085 7.7734 7.8189 7.7984 

7
f  8.0000 7.9992 7.9865 7.9735 7.9802 

8
f  7.9974 7.7889 7.0995 7.5291 7.4264 

9
f  10.993 10.958 10.130 10.296 10.243 

1 0
f  8.0000 7.9964 8.0576 7.8787 7.9703 

 

7 REMARKS AND CONCLUSION 

In this paper, the performance of the new family of eighth-order Newton-type iterative methods have been demonstrated.  
The prime motive of presenting these new iterative methods was to improve the Thukral et al. method and introduce two 
new formulas for approximating the order of convergence.  The effectiveness of the new eighth-order methods by showing 
the accuracy of the simple root of a nonlinear equation have been examined.  After an extensive experimentation it has 
been not been possible to designate a specific iterative method which always produces the best results for all tested 
nonlinear equations. The main purpose of demonstrating the new Newton-type methods for several types of nonlinear 
equations was purely to illustrate the accuracy of the approximate solution, the stability of the convergence, the 
consistency of the results and to determine the efficiency of the new iterative method. It has been shown numerically and 
verified that the new Newton-type methods converge of the order eight.  Empirically, it is found that a suitable choice of p 
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and q in (14) and (36) respectively, results in accelerating the convergence of the new iterative method. Furthermore, the 

new formula (43) for approximating the order of convergence is producing better approximations than the formula (42), 
(41), and (40).  It is noted that the formula (39) is producing better estimates than the other formulas, this is because it 
dependents on the exact value of the simple root. In conclusion the new three-point methods may be considered a very 
good alternative to the classical methods. 
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