

ON GENERALIZATION OF INJECTIVE MODULES

Mehany, M.S.

EL-Arabey, A.E., Kamal, M.A., EL-Baroudy, M.H., and Ammar, A.Y.

ABSTRACT: Here we introduce the concept of CK-N-injectivity as a generalization of N-injectivity. We give a homomorphism diagram representation of such concept, as well as an equivalent condition in terms of module decompositions. The concept CK-N-jectivity is also dealt with, as a generalization of CK-N-injectivity. We introduce a generalization of N-injectivity, namely C-N-injectivity. Its generalization CI-N-injectivity (given in [8] as C-N-injectivity). In our study of C-N-injectivity, we discovered some mistake results (given in [1] as IC-Pseudo-injectivity), and we dealt with their corrections. Finally we turn our attention to a more generalization of injective modules, namely the generalized extending modules (or module with (C_1^*)) and obtained some important results.

Mathematics Subject Classification: 16D50, 16D70, 16D80.

Keywords: CK-injective modules; C-injective modules; Cl-injective modules; continuous modules.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .10, No. 3

www.cirjam.com, editorjam@gmail.com

1 INTRODUCTION

Throughtout this paper, R is an associative ring with identity and all modules are unitary right Rmodules. A submodule N of an R-module M is called an essential submodule in M (denoted by $N \le e^{-\alpha}$ M) if $N \setminus K$ 6= 0 for any non-zero submodule K of M. For a submodule C of an R-module M is called closed in M (denoted by $N \leq^c M$) if C has no proper essential extensions in M. Clearly, every direct summand of M is closed in M. Moreover, if A is any submodule of M, then there exists, by zorn's Lemma, a submodule B of M maximal with respect to the property that A is an essential submodule of B, and in this case B is a closed submodule of M. A module M is an extending module (or a CS-module, or a module with (C1)) if every closed submodule is a direct summand (or equivalently, if $L \le M$, then there is a decomposition $M = M_1 \otimes M_2$, such that $L \le M_1$ and $L \otimes M_2$ ≤ M): For the properties of closed submodules and extending modules (see [2], [9]): In[6] ; a module M has the condition $\left(C_1^{*}\right)$ (given in [11] as $\left(C_{11}\right)$) if every submodule of M has a complement which is adirect summand of M (equivalently, every closed submodule has a complement which is a direct summand, or if $L \le M$, then there is a decomposition $M = M_1 \otimes M_2$, such that $L \setminus M_2 = 0$; and $L \otimes M_2 \le M$. It is well known that the condition (C_1) is inherited by direct summands, while the inheritance of modules having the condition (C_1^*) is not so (given by an example in [12]). In Lemma 22, we prove that if a module $M = M_1 \odot M_2$, then M_i (i = 1,2) has (C_1^*) if and only if for every submodule of M with zero intersection with M_j ($j\neq i$) has a complement summand submodule of M. As an immediate result of Lemma 22, we obtained Corollary 23, namely, if $M = \mathbb{Z}_2(M) \otimes \mathbb{F}$, then both have (\mathbb{C}_1^*) if and only if every submodule C of M, with zero intersection with Z₂(M) (or with F) has a complement summand containing F (or $Z_2(M)$). An extenging module M which satisfies the condition (C_2): (every submodule of M which is isomorphic to a direct summand of M, is itself direct summand), is called continuous. We introduce the concept of CK-injectivity as the following: Let M and N be an R-modules, M is said to be CK-N-injective if for every submodule X of N and every homomorphism f: X! M, with ker f ≤^cN can be extended to a homomorphism f⁻: N! M. An R-module is CK-injective, if it is CK-Ninjective for all R-modules N. Here we shows that a module M is CK-N-injective if and only if for every closed submodule L of M © N, with L \ M = 0, and L \ N \leq^c N, there exists a submodule M' of M \odot N, such that M \odot N = M \odot M'; and L \leq M'. We shows that the concept of CK-Ninjectivity is inherited by direct summands on both ways, we also study the properties of such concept. It is clear that if M is N-injective, then M is CK-N-injective. Example 5, shows that there are CK-injective modules, which is not injective. An R-module M is said to be C-N-injective, if for every closed submodule N' of N, and every monomorphism \rightarrow : N'! N, and every homomorphism $f: N' \mid M$, there exists a homomorphism $\wp: N \mid M$, such that $\wp \rightarrow = f$. We prove that a module N is continuous if and only if K is C-N-injective for every closed submodule K of N. Example 35, tells us that there exists an R-modules that are C-injective modules, which are not injective. An Rmodule M is said to be CI-N-injective, if for every closed submodule N' of N, and for every homomorphism f from N to M, there exists a homomorphism $f^-: N ! M$, such that $f^-|_{N'} = f$:

2 CK-INJECTIVE MODULES

Definition 1: A module M is said to be CK-N-injective, if for every submodule X of N and every homomorphism $f: X \to M$, with ker $f \le^c N$ can be extended to a homomorphism $f^-: N \to M$.

Theorem 2: Let M and N be R-modules. Then the following are equivalent: 1. M is CK-N-injective.

2. For every submodule L of $M \oplus N$, with $L \cap M = 0$, and $L \cap N \leq^c N$, there exists a submodule

M' of $M \oplus N$, such that $M \oplus N = M \oplus M'$, and $L \leq M'$.

3. For every closed submodule L of $M \oplus N$, with $L \cap M = 0$, and $L \cap N \leq^c N$, there exists a submodule M' of $M \oplus N$, such that $M \oplus N = M \oplus M'$, and that $L \leq M'$.

Proof. (1) \Rightarrow (2): Let $L \leq M \oplus N$, $L \cap M = 0$, and that $L \cap N \leq^c N$. Write $K = N \cap (L \oplus M)$, and let $\pi : L \oplus M \to M$ be the projection. Then $\ker (\pi|_K) = L \cap K = L \cap N \leq^c N$. Since M is CK-N-injective, we have that there exists a homomorphism $f : N \to M$, such that $f|_K = \pi|_K$. Put $M' = \{n - f(n) | n \in N\}$, then for all $m \in M$ and $n \in N$, we have $m + n = (m + f(n)) + (n - f(n)) \in M \oplus M'$, and hence $M \oplus N = M \oplus M'$. Now let $l \in L$, as $l = m + n \pmod{M}$, $m \in M$, we have $l - m = n \in N \cap (L \oplus M)$, then $\pi|_K (1 - m) = \pi|_K (n) = f(n)$, then $l = n + m = n - f(n) \in M'$, and hence $l \in M'$.

(2) \Rightarrow (1): Let X be a submodule of N, and f: X \rightarrow M be a homomorphism, with ker f \leq^c N. Choose W = { x - f(x) | x \in X }, it follows that W \cap M = 0, and W \cap N = ker f \leq^c N. By assumption, there exists M' \leq M \oplus N, such that M \oplus N = M \oplus M', W \leq M'. Let π denote the projection of M \oplus M' onto M, then for every x \in X, we have that π (x) = π (f(x) + (x - f(x)) = π (f(x)) = f(x). Therefore M is CK-N-injective.

 $(2) \Rightarrow (3)$: It is clear.

(3) ⇒ (2): Let $L \le M \oplus N$, such that $L \cap M = 0$, $L \cap N \le^c N$, and let K be a maximal essential extension of L in $M \oplus N$, then $K \le^c M \oplus N$, and $K \cap M = 0$. Since $L \le^e K$, we have that $L \cap N \le^e K \cap N$, and hence $K \cap N \le^c N$. By assumption, there exists $M' \le M \oplus N$, such that $M \oplus N = M \oplus M'$, $K \le M'$, and hence there exists $M' \le M \oplus N$, such that $M \oplus N = M \oplus M'$, and that $L \le M'$.

Proposition 3: Let M be CK-N-injective, then $M \oplus N = M \oplus C$ holds for every complement C of M in $M \oplus N$, with $C \cap N \leq^c N$.

Proof. Let C be a complement of M in M \oplus N, with $C \cap N \leq^c N$, then $C \leq^c M \oplus N$. By Theorem 2, there exists $M' \leq M \oplus N$, such that $M \oplus N = M \oplus M'$, $C \leq M'$. But C is maximal zero intersection of M in M \oplus N, then M' = C.

Lemma 4: Let M be N-injective, then M is CK-N-injective.

Proof. It is clear.

The following example shows that CK-N-injective need not be N-injective.

Example 5: \mathbb{Z}_2 is CK- \mathbb{Z} -injective, which is not injective.

Proposition 6: Let $M = A \oplus B$, where B is CK-A-injective. Let $A = A_1 \oplus A_2$, and $B = B_1 \oplus B_2$. Then the following are satisfies (for i, j = 1,2):

- 1. B_i is CK-A-injective.
- 2. B is CK-A_i-injective.
- 3. B_i is CK-A_i-injective.

Proof. For 1. Write $M = A \oplus B_1 \oplus B_2$. Let $L \le A \oplus B_1$, such that $L \cap B_1 = 0$, and that $L \cap A \le^c$ A, then $L \le M$, $L \cap B = 0$. Since B is CK-A-injective, we have that there exists $M' \le M$, such that $M = M' \oplus B_1 \oplus B_2$, and that $L \le M'$. Then $A \oplus B_1 = [(A \oplus B_1) \cap (B2 \oplus M')] \oplus B_1$, $L \le (A \oplus B_1) \cap (B2 \oplus M')$. Then B_1 is CK-A-injective.

For 2. Write $M = A_1 \oplus A_2 \oplus B$. Let $L \le A_1 \oplus B$, such that $L \cap B = 0$, and that $L \cap A \le^c A_1$. It is clear that $L \le M$, and $L \cap A = L \cap A_1$. Since B is CK-A-injective, then there exists $M' \le M$, such that $M = M' \oplus B$, and that $L \le M'$. Then $A_1 \oplus B = [(A_1 \oplus B) \cap M'] \oplus B$, and $L \le (A_1 \oplus B) \cap M'$. Hence B is CK-A₁-injective.

For 3. Follows from (1) and (2).

Proposition 7: Let M be CK-N-injective, and N' be a closed submodule of N. Then M is CK-N'-injective.

Proof. Let X be a submodule of N', and f be a homomorphism from X into M with ker $f \le^c N'$. Hence ker $f \le^c N$. Since M is CK-N-injective, then there exists a homomorphism f^- from N into M,

such that $f^-|X = f$.

Proposition 8: *If M is CK-N-injective, and N isomorphic to W, then M is CK-W-injective.*

Proof. Let X be a submodule of W, and $f: X \to M$ be a homomorphism, with ker $f \le^c W$, and let ψ be an isomorphism from W into N, then $f \psi^{-1}$ be a homomorphism from $\psi(X)$ into M. Claim that $\ker(f \psi^{-1}) \le^c N$. So let $\psi(\ker f) \le^e K \le N$, we have that $\ker f \le^e \psi^{-1}(K) \le W$, and that $\ker f = \psi^{-1}(K)$, then $\psi(\ker f) = K$, and consequently $(f \psi^{-1}) \le^c N$. By assumption, there exists a homomorphism θ from N into M with $\theta|_{\psi(X)} = f$. Define $\theta\psi: W \to M$, then $\theta\psi(w) = f(w)$, for any $w \in W$. Hence M is CK-W-injective.

Proposition 9: If M is CK-N-injective, and N' is a direct summand submodule of N, then M is CK-N/N'-injective.

Proof. Write $M = N' \oplus K$. Proposition 7, tells us that M is CK-K-injective. Since K is isomorphic to M/N', then M is CK-N/N'-injective.

The following example shows that CK-N-injective need not be N/N'-injective, for every submodule N' of N.

Example 10: \mathbb{Z}_2 is CK- \mathbb{Z} -injective (by example 2.5) and \mathbb{Z}_2 is not CK- $\mathbb{Z}/p^n\mathbb{Z}$ (p- prime, n=2,3,4...)-injective.

Proposition 11: Let M be CK-N-injective and N' be a closed submodule of N. Then every monomorphism from a submodule X/N' of N/N' into M can be extended to a homomorphism from N/N' into M.

Proof. Let X be a submodule of N which contains N', and let $\phi: X/N' \to M$ be a monomorphism. Let π denote the natural epimorphism of N onto N/N'and $\pi' = \pi|_X$, then ker $(\phi\pi') = \pi'^{-1}(\ker \phi) = \pi'^{-1}(0) = \ker \pi' = N' \le^c N$. Since M is CK-N-injective, we have that there exists a homomorphism θ from N to M, such that $\theta|_X = \phi\pi'$. Since $\theta(N') = \phi\pi'(N') = \phi(0) = 0$, we have that $\ker \pi \le \ker \theta$, and consequently there exists a homomorphism ψ from N/N' to M, such that $\psi\pi = \theta$. It follows that for every $x + N' \in X/N'$, $\psi(x + N') = \psi\pi'(x) = \theta(x) = \phi\pi'(x) = \phi(x + N')$. Thus ψ extends ϕ .

Lemma 12: ([6], Lemma 2.3.) It was shown that if $M = N \oplus K$, and C is a complement in N of a submodule A of N. Then

- (1) $C \oplus K$ is a complement of A in M.
- (2) C is a complement of $A \oplus K$ in M.

(In [6]) A module M is said to be N-jective if, for every complement C of M in $M \oplus N$ is a direct summand.

Definition 13: A module M is said to be CK-N-jective if, for every complement C of M in $M \oplus N$ with $C \cap N \leq^{c} N$ is a direct summand.

Proposition 14: Let $M = A \oplus B$, where B is CK-A-jective. Let $A = A_1 \oplus A_2$, and $B = B_1 \oplus B_2$. Then the following are satisfied (for i, j = 1, 2):

- 1. B_i is CK-A-jective.
- 2. B is CK- A_i -jective.
- 3. B_i is CK- A_i -jective.

Proof. For 1. Write $M = A \oplus B_1 \oplus B_2$. Let C be a complement of B_1 in $A \oplus B_1$, with $C \cap A \le^c A$. Then by Lemma 12(2), we have that C is a complement of B in M. Since B is CK-A-jective, then $C \le^{\oplus} M$, we have that $C \le^{\oplus} A \oplus B_1$. Then B_1 is CK-A-jective.

For 2. Write $M = A_1 \oplus A_2 \oplus B$. Let C be a complement of B in $A_1 \oplus B$, with $C \cap A_1 \leq^c A_1$. Then by Lemma 12(1), we have that $C \oplus A_2$ is a complement of B in M. Since $C \cap A_1 \leq^c A_1$, we have

that $C \cap A_1$ is a complement of K in A_1 , for some submodule K of A. Hence by Lemma 12(1), ($C \cap A_1$) $\bigoplus A_2$ is a complement of K in A. It is clear that $C \cap A_1 = C \cap A$, then ($C \bigoplus A_2$) $\cap A = (C \cap A_1) \bigoplus A_2 \leq^c A$. Since B is CK-A-jective, we have that $C \bigoplus A_2 \leq^{\bigoplus} M$, then $C \leq^{\bigoplus} A \bigoplus B_1$. Therefore B is CK-A₁-jective.

For 3. Follows from (1) and (2).

Lemma 15: ([10], Lemma 1) Let A and B be submodules of a module M, with $A \cap B = 0$. Then A is a complement of B in M if and only if A is a closed submodule of M, and $A \oplus B$ is essential in M.

Proposition 16: Let $M = A \oplus B$, B is CK-A-jective. If A is an extending module. then every closed submodule C of M, with $C \cap B = 0$ and $C \cap A \leq^{c} A$ is a direct summand of M.

Proof. Since A is an extending module, we have $(C \oplus B) \cap A \leq^e A_1 \leq^{\oplus} A$, and hence $(C \oplus B) \cap A \otimes B \leq^e A_1 \oplus B$. Since $C \oplus B = (C \oplus B) \cap A \otimes B$, we have that $C \oplus B \leq^e A_1 \oplus B$. By Lemma 15, C is a complement of B in $A_1 \oplus B$. It follows that $C \cap A = C \cap A_1$, and hence $C \cap A_1 \in^c A_1$, Proposition 14, tell us that B is CK-A₁-jective. Therefore $C \subseteq^{\oplus} A_1 \oplus B \subseteq^{\oplus} M$.

3 GENERALIZED EXTENDING MODULES

(In[6]) A module M is said to have (C_1^*) if, for every submodule X of M, there exists a direct summand submodule K of M, which is a complement of X in M.

Proposition 17: ([6], Proposition 3.11.) Let M be an R-module, which has (C_1^*) . Then the second singular submodule $Z_2(M)$ of M splits.

Lemma 18: ([6], Lemma 3.14.) Let $A \le B \le M$. If C is a complement of A in M, then $C \cap B$ is a complement of A in B.

Theorem 19: ([6], Theorem 3.2.) If $M = M_1 \oplus M_2$, where M_1 and M_2 are both have the condition (C_1^*) , then M has (C_1^*) .

Remark 20:

- (1) Let R be a commutative integral domain, and Let M be an R- module, which is not torsion. If M has (C_1) , then its torsion submodule t(M) is injective (given in [5], Corollary 2.)
- (2) Let R be a commutative integral domain, and let M be an R- module, which is not torsion. If M has (C_1^*) , then its torsion submodule t(M) is not necessary to be injective.

Example 21: Let $M = \mathbb{Z}_2 \oplus \mathbb{Z}$, it is clear that M is not torsion, and by Theorem 19, we have M has (C_1^*) . But \mathbb{Z}_2 is not injective.

Lemma 22: If $M = M_1 \oplus M_2$, then M_i (i = 1,2) has (C_1^*) if and only if for every submodule L of M, with $L \cap M_j = 0$ ($j \neq i$), then there exists a submodule H of M, such that $H + M_j$ is a direct summand in M and is a complement of L in M.

Proof. Suppose first that M_1 has $({C_1}^*)$. Let $L \le M$, with $L \cap M_2 = 0$, then there exists $H \le^{\oplus} M_1$, such that H is a complement of $(L \oplus M_2) \cap M_1$ in M_1 . As $((L \oplus M_2) \cap M_1) \oplus H \le^e M_1$, we have that $((L \oplus M_2) \cap M_1) \oplus H \oplus M_2 \le^e M$. Since $L \oplus M_2 = ((L \oplus M_2) \cap M_1) \oplus M_2$, it follows that $L \oplus M_2 \oplus H \le^e M$. Thus, by Lemma 15, $H \oplus M_2$ is a complement of L in M.

Conversely, suppose that for every submodule L of M, with $L \cap M_2 = 0$, there exists a submodule H of M, such that $H + M_2 \leq^{\oplus} M$, and that is a complement of L in M. let $C \leq M_1$, then there exists a submodule H of M, such that $H + M_2 \leq^{\oplus} M$, and that is a complement of C in M. By Lemma 18, we

have that $M_1 \cap (H + M_2)$ is a complement of C in M_1 . It is clear that $M_1 \cap (H + M_2) \leq M_1$.

Corollary 23: If $M = Z_2(M) \oplus F$, then both have (C_1^*) if and only if every submodule C of M, with zero intersection with $Z_2(M)$ (or with F) has a complement summand containing F (or $Z_2(M)$).

Proposition 24: If $M = Z_2(M) \oplus F$, then M has the condition (C_1^*) if and only if $Z_2(M)$ and F both have (C_1^*) .

Proof. Suppose first that $Z_2(M)$ and F both have $({C_1}^*)$. By Theorem 19, we have M has $({C_1}^*)$. Conversely, write $M = Z_2(M) \oplus F$. Let N be nonsingular submodule of M, then $N \cap Z(M) = 0$. Since $Z(M) \leq^e Z_2(M)$, we have that $N \cap Z_2(M) = 0$. Since M has $({C_1}^*)$, we have that there exists $K \leq^{\oplus} M$, which is a complement of N in M. Write $M = K \oplus K'$, since $K \oplus N \leq^e M$, we have that $Z_2(K) \oplus Z_2(N) \leq^e Z_2(M)$, and that $Z_2(K) \leq^e Z_2(M)$, and consequently $Z_2(K) = Z_2(M)$. Hence $Z_2(M) \leq^{\oplus} K$. By Lemma 22, we have F has $({C_1}^*)$. Again, let L be a submodule of M, with $L \cap F = 0$. Since M has $({C_1}^*)$, we have that there exists $H \leq^{\oplus} M$, such that H is a complement of $(L \oplus F) \cap Z_2(M)$ in M. As $((L \oplus F) \cap Z_2(M)) \oplus H \leq^e M$, we have that $[(L \oplus F) \cap Z_2(M)] \oplus [Z_2(M) \cap H] \leq^e Z_2(M)$, then $[(L \oplus F) \cap Z_2(M)] \oplus F \oplus Z_2(H) \leq^e M$. Since $L \oplus F = [(L \oplus F) \cap Z_2(M)] \oplus F$, we have that $L \oplus F \oplus Z_2(H) \leq^e M$. It is clear that $F \oplus Z_2(H)$ is a direct summand submodule of M, and hence $F \oplus Z_2(H)$ is a complement of L in M. By Corollary 23, we have $Z_2(M)$ has $({C_1}^*)$.

Corollary 25: Let M be an R-module has (C_1^*) , and the second singular submodule $Z_2(M) \neq M$. Then for every submodule N of M, with $N \cap Z(M) = 0$, there exists a submodule H' of F, such that $H' \oplus Z_2(M)$ is a direct summand of M, and is a complement of N in M.

Proof. Write $M = Z_2(M) \oplus F$. Let N be a submodule of M, such that $N \cap Z(M) = 0$, then by Proposition 24, and Lemma 22, there exists $H + Z_2(M) \le M$, and it is a complement of N in M. Hence $H + Z_2(M) = Z_2(M) \oplus (F \cap (H + Z_2(M)))$. Choose $H' = F \cap (H + Z_2(M))$.

Corollary 26: ([11], Theorem 2.7.) A module M satisfies (C_1^*) if and only if $M = Z_2(M) \oplus K$, for some (nonsingular) submodule K of M, and $Z_2(M)$ and K both satisfy (C_1^*) .

Proof. Straightforward from Theorem 19, and Proposition 24.

Corollary 27: Let R be a commutative integral domain, and Let M be an R- module which is not torsion. If M has (C_I^*) , then the following are holds:

- 1. t(M) is contained in a complement of every torsion free submodule of M.
- 2. M= $t(M) \oplus F$, where t(M) and F both have (C_1^*) .

Definition 28: An R-module M has the condition (*) "if every submodule of M has a unique complement in M"

Proposition 29: *Let M be a right R-module has* (*), *then the following are equivalent :*

- 1. M has (C_1^*) .
- 2. M is an extending module.
- 3. M is quasi continuous.

Proof. (1) \Rightarrow (2): Let A be a closed submodule of M. By (C_1^*) , there exists a decomposition $M = B \oplus C$, where B is a complement of A in M. Since $A \leq^c M$, then A is a complement of B in M. By (*), we have that A = C. Therefore M is an extending module.

- (2) \Rightarrow (3): Let A and B are both direct summand submodules of M, and $A \cap B = 0$. Then by (C_1) , there exists a decomposition $M = M_1 \oplus M_2$, where $A \oplus B \leq^e M_1$. Then M_2 is a complement of $A \oplus B$. Since M has the condition (*), we have that $A \oplus B = M_1$.
- (3) \Rightarrow (1): It is clear from the fact that every extending module has (C_1^*) .

Proposition 30: Let $M = A \oplus B$, where B is A-jective. If $A = A_1 \oplus A_2$, where A_1 is an extending module, then for every closed submodule C of M, with $C \cap B = 0$, and $A_2 \leq C \oplus B$, is a summand of M.

Proof. Since A_1 is an extending module, we have that $(C \oplus B) \cap A_1 \leq^e A_1' \leq^{\oplus} A_1$, and hence $[(C \oplus B) \cap A_1] \oplus A_2 \oplus B \leq^e A_1' \oplus A_2 \oplus B$. Since $C \oplus B = [(C \oplus B) \cap A_1] \oplus A_2 \oplus B$, we have that $C \oplus B \leq^e A_1' \oplus A_2 \oplus B$, and that C is a complement of B in $A_1' \oplus A_2 \oplus B$, and hence B is $A_1' \oplus A_2$ -jective. Therefore $C \leq^{\oplus} A_1' \oplus A_2 \oplus B \leq^{\oplus} M$.

4 C-INJECTIVE AND CI-INJECTIVE

Definition 31: An R-module M is said to be C-N-injective if, for every closed submodule N' of N, every monomorphism α from N' to N, and every homomorphism f from N' into M, then there exists a homomorphism ψ from N into M, such that $\psi \alpha = f$.

Definition 32: An R-module M is said to be CI-N-injective, if for every closed submodule N' of N, and any homomorphism f from N' into M.

Lemma 33: (In [9]) Let M be an R-module. Then M is continuous if and only if for every closed submodule C of M, and every monomorphism α from C into M, then α is split.

Remark 34: If M and N are right R-modules, then we have the following implications:

M is *N*-injective \Rightarrow *M* is *C*-*N*-injective \Rightarrow *M* is *CI*- *N*-injective.

Generally neither of the converse implications is true, and we shows that by the following examples.

Example 35: Let R be a von neumman regular ring. Suppose that a right R-module R is extending, then by ([7], exercises 6G, (38)), we have R as a right R-module is continuous. Let M be a right R-module which is not injective, and C be a closed submodule of R_R . Let α be a monomorphism from C to R_R , and f be a homomorphism from C to M. Then, by Lemma 33, we have $R_R = \alpha(C) \oplus K$, for some $K_R \leq R_R$. Let π be a projection homomorphism from $\alpha(C) \oplus K$ to $\alpha(C)$. Then for every $c \in C$, we have $f\alpha^{-1}\pi\alpha(c) = \alpha(c)$. Therefore M is C-R-injective.

Example 36: It is clear that \mathbb{Z} is CI- \mathbb{Z} -injective. Let α be a monomorphism from \mathbb{Z} to \mathbb{Z} , where $\alpha(1) = n$, $n = 2, 3, 4, \ldots$ suppose that there exists a homomorphism ψ from \mathbb{Z} to \mathbb{Z} , such that $\psi \alpha = I_{\mathbb{Z}}$ if and only if $n\mathbb{Z}$ is a direct summand of \mathbb{Z} . Then there is not exists a homomorphism ψ from \mathbb{Z} to \mathbb{Z} , such that $\psi \alpha = I_{\mathbb{Z}}$ Then \mathbb{Z} is not \mathbb{C} - \mathbb{Z} -injective.

Proposition 37: Let M be an R-module. Then M is continuous if and only if N is C-M-injective for every closed submodule N of M.

Proof. Suppose first that N is C-M-injective for every closed submodule N of M. Let $L \le \mathfrak{P} M$, and let α be a monomorphism from L into M, and I_L denote the identity mapping on L. By assumption, there exists a homomorphism ψ from M to L, such that $\psi\alpha = I_L$, then $M = \alpha(L) \bigoplus \ker \psi$, by Lemma 33, we have M is continuous.

Conversely, suppose that M is continuous. Let M_1 and M_2 be closed submodules of M, and let α be a monomorphism from M_1 into M, and f be a homomorphism from M_1 to M_2 . By Lemma 33, we have $M = \alpha(M_1) \bigoplus W$, for some submodule W of M. Let π be a projection homomorphism from $\alpha(M_1) \bigoplus W$ to $\alpha(M_1)$. Then for every $m_1 \in M_1$, we have $f\alpha^{-1}\pi\alpha(m_1) = f(m_1)$. Therefore N is-C-M-injective for every closed submodule N of M.

Proposition 38: Let M be CI-N-injective and N' be a closed submodule of N, then we have the following:

- 1. M is CI-N'-injective.
- 2. M is CI-N/N'-injective.

Proof. For 1. Let $N'' \le^c N'$, and let f be a homomorphism from N'' into M, then $N'' \le^c N$. Since M be CI-N-injective, we have that there exists a homomorphism f^- from N into M, such that $f^-|_{N''} = f$. Therefore M is CI-N'-injective.

For 2. Let X be a submodule of N, which contained N', $X/N' \le^c N/N'$, and let ϕ be a homomorphism from X/N' into M. Let π denote the natural homomorphism of N onto N/N', and $\pi' = \pi|_X$. Claim that $X \le^c N$. Suppose that $X \le^e L$, for some submodule L of N, since $N' \le^c N$, we have that $X/N' \le^e L/N' \le N/N'$, and that $X \le^c N$. Since M is CI-N-injective, we have that there exists a homomorphism θ from N to M, such that $\theta|_X = \phi \pi'$. Since $\theta(N') = \phi \pi'(N') = \phi(0) = 0$, we have that $\theta = 0$. For every $\theta = 0$, and consequently there exists a homomorphism $\theta = 0$ from $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have that $\theta = 0$. For every $\theta = 0$, we have $\theta = 0$.

(In [7]) An abelian group D is divisible if, given any $y \in D$ and $0 \neq n \in \mathbb{Z}$, there exists $x \in D$, such that nx = y.

Lemma 39: ([7],chapter IV, Lemma 3.9.) An abelian group D is divisible if and only if D is injective.

Lemma 40: Let M be an abelian group, then the following are equivalent:

- 1. M is an injective.
- 2. M is C-injective.
- 3. M is divisiblle.

Proof. (1) \Rightarrow (2): It is clear.

(2) \Rightarrow (3): Let $m \in M$ and $0 \neq n \in \mathbb{Z}$. Let α be a monomorphism from \mathbb{Z} into \mathbb{Z} , such that $\alpha(1) = n$, and let ϕ be a homomorphism from \mathbb{Z} into M, such that $\phi(1) = m$. Since M is C-injective, we have that there exists a homomorphism ψ from \mathbb{Z} into M, such that $\alpha\psi = \phi$. Put $\psi(1) = m'$, then $m = \phi(1) = \psi(1) = \psi(1) = n$, Hence M is divisible.

 $(3) \Rightarrow (1)$: Clear from Lemma 39.

Proposition 41: Let M and N be an R-modules. If M is C-N-injective, and L is a direct summand submodule of M and K is a closed submodule of N, then we have the following:

- 1. L is C-N-injective;
- 2. *M* is C-K-injective;
- 3. L is C-K-injective.

Proof. For 1. Let N' be a closed submodule of N, let α be a monomorphism from N' into N, and f be a homomorphism from N' into L. Consider ι_L be the inclusion monomorphism from L into M. Since M is C-N-injective, we have that there exists a homomorphism ψ from N to M, such that $\psi\alpha = \iota_L f$. Let π be a projection homomorphism from M into L. Define $\pi\psi$ from N to L, then for every $n' \in N'$, we have that $\pi\psi\alpha(n') = \pi\iota_L f(n') = f(n')$. Therefore L is C-N-injective.

For 2. Let K' be a closed submodule of K, let α be a monomorphism from K' into K, and f be a homomorphism from K' into M. Consider ι_K be inclusion monomorphism from K into N. Since $K' \leq^c$ N, and M is C-N-injective, we have that there exists a homomorphism ψ from N into M, such that ψ $\iota_K \alpha = f$. Then for every $k' \in K'$, we have ψ $\iota_K \alpha(k') = \psi \alpha(k') = f(k')$. Therefore M is C-K-injective. For 3. Follows from (1) and (2).

Corollary 42: Let M and N be right R-modules. Then M is C-N-injective if and only if M is C-X-injective, for every closed submodule X of N.

Corollary 43: A direct summand of quasi-C-injective is a quasi-C-injective.

Recall that the ring R is said to be principal right ideal ring (for short right PI-ring) if every right ideal of R is principal. This concept (given in [4] and [1] as R is pri-ring) and generalizing these concept to modules, an R-module M is called epi-retractable if every submodule of M is a homomorphic image of M.

In [7], a ring R is said to be right hereditary if every right ideal of R is projective as a right R-module, that is equivalent to submodules of projective right R-modules are projective.

In [3], a module M is called an hereditary module if every submodule of M is projective.

Proposition 44: [[4],Proposition 2.5.] Let R be a right hereditary ring, then R is PI-ring if and only if every free right R-module is epi-retractable.

Lemma 45: Let R be a ring, such that the right ideal x^0 is a direct summand of R, for every $x \in R$. Then every right ideal of R is projective.

Proof. Let $x \in R$, by assumption, write $R = x^0 \oplus D$. Since R is projective, then D is projective, and consequently R/x^0 . Then xR is projective.

Corollary 46: Let R be a ring, such that the right ideal x^0 is a direct summand of R, for every $x \in R$. Then R is right hereditary ring.

Corollary 47: Let R be a ring, such that the right ideal x^0 is a direct summand of R, for every $x \in R$. Then R is PI-ring if and only if every free right R-module is epi-retractable.

Remark 48: In [1], Proposition 2.3., tell us if R is right hereditary PI-ring. Then every free R-module is continuous. But this is not true, for example \mathbb{Z} as a \mathbb{Z} -module, and we will correct them in the following Proposition.

Proposition 49: Let R be a right PI-ring with the right ideal x^0 is a direct summand of R, for every $x \in R$. Then every submodule of $R^{(I)}$ (for some index set I) is isomorphic to a summand.

Proof. Let X ba a submodule of $R^{(I)}$. Since $R^{(I)}$ is free, then by Proposition 44, we have $R^{(I)}$ is epiretractable, and consequently there exists an epimorphism α from $R^{(I)}$ to X. Let I_X be the identity mapping on X, by Corollary 46, we have that X is projective, and consequently there exists a monomorphism β from X to $R^{(I)}$, such that $\alpha\beta = I_X$. Then $R^{(I)} = \beta(X) \oplus \ker \alpha$. Hence X is isomorphic to a summand of $R^{(I)}$.

Remark 50:

- 1. If R be a ring, which satisfies all conditions in Proposition 49, then every free right R-module need not to be continuous for example $\mathbb{Z}_{\mathbb{Z}}$.
- 2. If R be a ring which satisfies all conditions in Proposition 49. Then every free right R-module, which has the condition (C_2) is semisimple R-module.

Proposition 51: ([3], Proposition 9) Let R be any ring, and M an hereditary continuous right R-module. Then M is a direct sum of Neotherian uniform submodules, each with a division endomorphism ring.

Remark 52: Proposition 2.4 in [1], tell us if R is a right hereditary PI-ring, then every projective

R-module is a direct sum of Neotherian uniform submodules each with a division endomorphism ring. But this is not true, for example \mathbb{Z} as a \mathbb{Z} -module and we will reformulate them in the following Proposition.

Proposition 53: Let R be a right PI-ring with the right ideal x^0 is a direct summand of R, for every $x \in R$ and let M be a projective right R-module whose closed submodules are C-M-injective. Then M is a direct sum of Neotherian uniform submodules each with a division endomorphism ring.

Proof. Straightforward from Proposition 37, and Proposition 51.

REFERENCES

- Abbas, M. S., Saied, S. M., IC-Pseudo-Injective modules, International Journal of Algebra, Vol., 2012, no. 6, 255-264.
- 2. Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending modules, pitman, 1996.
- 3. Dung, N. V., Simth, P. F., Hereditary CS-modules, Math. Scand. 71(1992), 173-180.
- 4. Ghorbani, A., Vedadi, M. R., Epi-Retractable modules and some applications, Bulletin of the Iranian Mathematical Society Vol. 35 No. 1 (2009), pp 155-166.
- 5. Kamal, M. A., Muller, B. J., Extenging modules over commutative domains, Osaka J. Math. 25(1988), 531-538.
- 6. Kamal, M. A., Sayed, A., On generalized extenging modules, Acta.Math. Univ. Comenianae, Vol.LXXVI,2(2007), pp.193-200.
- 7. Lam, T. Y., Lectures on Modules and Rings. Springer Verlag, Berlin-Heidelberg-New York, 1999.
- 8. Mermut, E., Clara, C. S., Simth, P. F., Injectivity relative to closed submodules, Journal of Algebra 312 (2009) 548-557.
- 9. Mohamed, S. H., Muller, B. J., Continuous and discrete modules, Cambridge University Press 1990.
- 10. Mohamed, S. H., Muller, B. J., Ojective modules, Communication in Alg., 30(4) (2002), 1817-1827.
- 11. Smith, P. F., Tercan, A. (1993). Generalizations of CS-modules. Comm. Algebra 1809--1847.
- 12. Smith, P. F., Tercan, A. (2004). Direct summands of modules which satisfy (C₁₁). Algebra Colloq. 231-237.