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ABSTRACT: Here we introduce the concept of CK-N-injectivity as a generalization of N-injectivity. We give a
homomorphism diagram representation of such concept, as well as an equivalent condition in terms of module
decompositions. The concept CK-N-jectivity is also dealt with, as a generalization of CK-N-injectivity. We
introduce a generalization of N-injectivity, namely C-N-injectivity. Its generalization CI-N-injectivity ( given
in [8] as C-N-injectivity ). In our study of C-N-injectivity, we discovered some mistake results (given in [1] as
IC-Pseudo-injecyivity), and we dealt with their corrections. Finally we turn our attention to a more
generalization of injective modules, namely the generalized extending modules (or module with (C;” )) and
obtained some important results.
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1 INTRODUCTION

Throughtout this paper, R is an associative ring with identity and all modules are unitary right R-
modules. A submodule N of an R-module M is called an essential submodule in M (denoted by N <®
M) if N \ K 6= 0 for any non-zero submodule K of M. For a submodule C of an R-module M is
called closed in M (denoted by N < M) if C has no proper essential extensions in M. Clearly, every
direct summand of M is closed in M. Moreover, if A is any submodule of M, then there exists, by
zorn's Lemma, a submodule B of M maximal with respect to the property that A is an essential
submodule of B, and in this case B is a closed submodule of M. A module M is an extending module
(or a CS-module, or a module with (Ci)) if every closed submodule is a direct summand (or
equivalently, if L < M, then there is a decomposition M = M: © Mz, suchthatL< Miand L © M:
<®* M) : For the properties of closed submodules and extending modules ( see [2] , [9] ):In[6]
;a module M has the condition (C1" ) (given in [11] as (Ci) ) if every submodule of M has a
complement which is adirect summand of M ( equivalently, every closed submodule has a
complement which is a direct summand, or if L < M, then there is a decomposition M = M: © M,
suchthat L\ Mz = 0;and L© M: <®* M). It is well known that the condition (C:i) is inherited by
direct summands, while the inheritance of modules having the condition (C1") is not so (given by an
example in [12]). In Lemma 22, we prove that if a module M = Mi © M., then Mi (i = 1,2) has
(C:") if and only if for every submodule of M with zero intersection with M; ( j# i) has a
complement summand submodule of M. As an immediate result of Lemma 22, we obtained
Corollary 23, namely, if M = Z:(M) © F, then both have (C;") if and only if every submodule C of
M, with zero intersection with Z:(M) (or with F) has a complement summand containing F (or

Z:(M)). An extenging module M which satisfies the condition (Cz): ( every submodule of M

which is isomorphic to a direct summand of M, is itself direct summand), is called continuous. We
introduce the concept of CK-injectivity as the following: Let M and N be an R-modules, M is said to

be CK-N-injective if for every submodule X of N and every homomorphism f: X | M, with ker f
<N can be extended to a homomorphism f : N | M. An R-module is CK-injective, if it is CK-N-
injective for all R-modules N. Here we shows that a module M is CK-N-injective if and only if for
every closed submodule L of M© N, withL\ M=0,and L\ N < N, there exists a submodule
M’ of M © N, such that M ©N = M © M’;and L < M’. We shows that the concept of CK-N-

injectivity is inherited by direct summands on both ways, we also study the properties of such
concept. It is clear that if M is N-injective, then M is CK-N-injective. Example 5, shows that there
are CK-injective modules, which is not injective. An R-module M is said to be C-N-injective, if for

every closed submodule N' of N, and every monomorphism — : N’ | N, and every homomorphism

f: N | M, there exists a homomorphism @ : N | M, suchthat @ — =f. We prove that a module
N is continuous if and only if K is C-N-injective for every closed submodule K of N. Example 35,
tells us that there exists an R-modules that are C-injective modules, which are not injective. An R-
module M is said to be CI-N-injective,if for every closed submodule N’ of N, and for every
homomorphism f from N to M, there exists a homomorphism f : N | M, suchthat f jn = f:

2 CK-INJECTIVE MODULES

Definition 1. A module M is said to be CK-N-injective, if for every submodule X of N and every
homomorphism f: X — M, with ker f<® N can be extended to a homomorphism f : N — M.

Theorem 2: Let M and N be R-modules. Then the following are equivalent:
1. M is CK-N-injective.
2. For every submodule L of M @ N, with L N M = 0, and L N N <° N, there exists a submodule
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M'of M @ N, suchthatM @N=M @M’ and L <M’

3. For every closed submodule L of M @ N, with L N M = 0, and L N N <° N, there exists a
submodule M' of M @ N, such that M @ N =M @ M', and that L <M’

Proof.(1)= (2): Let L< M@ N,LNM=0,andthat LN N<*N. Write K=NN (L& M), and
letw: L & M — M be the projection. Then ker (n[x) =L N K =L N N < N. Since M is CK-N-
injective, we have that there exists a homomorphism f: N — M, such that f | k = 7| k. Put M’ ={ n—
f(n)|neN} thenforallmeMandneN,wehavem+n=(m+f(n))+(n-f(n))eMD
M’,and hence M @ N =M @ M. NowletleL,asl= m+n (meM,neN),wehavel—-m=n
ENN(LA M), thenn|x (I-m)=nK(n)=f(n),thenl=n+m=n-1f(n) eM’, and hence L <
M.

(2) = (1): Let X be a submodule of N, and f: X — M be a homomorphism, with ker f < N. Choose
W={x-f(x) |x€ X}, it follows that WN M =0, and W N N = ker f < N. By assumption, there
exists M<M @ N, suchthat M @ N=M @ M’, W < M'. Let © denote the projection of M @ M’
onto M, then for every x € X, we have that # (X) = (f(x) + (x-f(x))==n (f( x) ) = f( x).
Therefore M is CK-N-injective.

(2) = (3): Itisclear.

B)=>@2):LetL<M® N,suchthat LN M =0, LN N <N, and let K be a maximal essential
extensionof LinM @ N, then K<*M @ N, and KN M =0. Since L <° K, we have that L N N <* K
N N, and hence K N N < N. By assumption, there exists M'<M @ N, suchthat M@ N=M @ M’,
K <M/, and hence there exists M'<M @ N, suchthat M @ N=M @ M/, and that L <M'.

Proposition 3: Let M be CK-N-injective, then M @ N =M @ C holds for every complement C of
MinM @ N, with CNN < N.
Proof. Let C be a complement of M in M @ N, with CNN < N, then C <* M @ N. By Theorem 2,
there exists M'<M @ N, suchthat M@ N =M @ M’, C<M'. But C is maximal zero intersection
of MinM @& N, then M'=C.

Lemma 4: Let M be N-injective, then M is CK-N-injective.

Proof. Itis clear.

The following example shows that CK-N-injective need not be N-injective.

Example 5: Z, is CK-Z-injective, which is not injective.

Proposition 6: Let M = A @ B, where B is CK-A-injective. Let A = A;@ Az, and B = B; @ B..
Then the following are satisfies ( for i,j =1,2) :

1. Bj is CK-A-injective.

2. B is CK-Aj-injective.

3. Bj is CK-Aj-injective.

Proof. For1. Write M=A @ B, @ B,.Let L<A @ B, suchthat L N B; =0, and that L N A <°
A, then L <M, L N B =0. Since B is CK-A-injective, we have that there exists M’ <M, such that M
= M@ B, ®B,,andthat L<M. ThenAD B, =[(ADB,)N(B2HM )] DB, L<(AD
B;:) N (B2 @ M'). Then B; is CK-A-injective.

For2. Write M=A; @ A, @ B. Let L<A; @ B, suchthat LN B =0, and that L N A < A;. Itis
clear that L <M, and L N A =L N A;. Since B is CK-A-injective, then there exists M’ <M, such
that M = M'@ B, and that L<M'. ThenA; @ B=[(Ai®B)NM]@ B,andL<(A; §B)N
M'. Hence B is CK-A;-injective.

For 3. Follows from (1) and (2).

Proposition 7: Let M be CK-N-injective, and N' be a closed submodule of N. Then M is CK-N"-
injective.

Proof. Let X be a submodule of N, and f be a homomorphism from X into M with ker f < N’
Hence ker f <° N. Since M is CK-N-injective, then there exists a homomorphism f from N into M,
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suchthat f |[X =1

Proposition 8: If M is CK-N-injective, and N isomorphic to W, then M is CK-W-injective.

Proof. Let X be a submodule of W, and f : X — M be a homomorphism, with ker f <* W, and let v
be an isomorphism from W into N, then f y™' be a homomorphism from y( X ) into M. Claim that
ker (fy™) <" N. So let y(ker f) <® K <N, we have that ker f <® y"1( K ) <W, and that ker =y 1( K
), then y( ker ) = K, and consequently ( fy™1) < N. By assumption, there exists a homomorphism 0
from N into M with 6|, x) = f. Define Oy: W — M, then Oy( w ) = f{ w ), for any w € W. Hence M is
CK-W-injective.

Proposition 9: If M is CK-N-injective, and N' is a direct summand submodule of N, then M is CK-
N/N'-injective.

Proof. Write M = N'@ K. Proposition 7, tells us that M is CK-K-injective. Since K is isomorphic to
M/N’, then M is CK-N/N'-injective.

The following example shows that CK-N-injective need not be N/N'-injective, for every submodule
N'of N.

Example 10: Z, is CK-Zinjective (by example 2.5) and Z is not CK-Z/p"Z (p- prime, n=2,3,4.....
)-injective.

Proposition 11: Let M be CK-N-injective and N' be a closed submodule of N. Then every
monomorphism from a submodule X/N' of N/N'into M can be extended to a homomorphism from
N/N'"into M.

Proof. Let X be a submodule of N which contains N’, and let ¢ : X/N'— M be a monomorphism.
Let © denote the natural epimorphism of N onto N/N'and n’ = n|x, then ker ( ¢n’ ) =a'! (ker ¢ ) =
' 0) = ker ©’ = N'’<° N. Since M is CK-N-injective, we have that there exists a homomorphism 0
from N to M, such that 6|x = ¢n’. Since O( N’) = ¢n'( N") = ¢( 0 ) = 0, we have that ker m <ker 6, and
consequently there exists a homomorphism y from N/N' to M, such that yr = 6. It follows that for
every X+ N'e XIN, y (x +N)=ya'(x)=0(x)=0¢n'( x)=d(x+ N’). Thus y extends ¢.

Lemma 12: ([6], Lemma 2.3.) It was shown that if M =N @ K, and C is a complement in N of a
submodule A of N. Then

(1) C @ Kis a complement of A in M.

(2) Cis a complement of A @ K in M.

(In [6]) A module M is said to be N-jective if, for every complement C of M in M @ N is a direct
summand.

Definition 13: A module M is said to be CK-N-jective if, for every complement Cof Min M & N
with C N N < N is a direct summand.

Proposition 14: Let M = A & B, where B is CK-A-jective. Let A = A;PA,, and B = B, B..
Then the following are satisfied ( for i,j = 1,2):

1. Bj is CK-A-jective.

2. B is CK-Aj-jective.

3. Bi is CK-Aj-jective.

Proof. For 1. Write M = A @ B,@ B,. Let C be a complement of B, in A @ B;, withC N A< A
Then by Lemma 12(2), we have that C is a complement of B in M. Since B is CK-A-jective, then C
<&® M, we have that C <® A @ B,. Then B, is CK-A-jective.

For 2. Write M = A; @ A, & B. Let C be a complement of B in A, B, withC N A; < A;. Then
by Lemma 12(1), we have that C @ A, is a complement of B in M. Since C N A; < A;, we have
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that C N A; is a complement of K in A4, for some submodule K of A. Hence by Lemma 12(1), (C N
A;) @ Azisacomplement of Kin A. Itisclearthat CNA;=C N A, then(CH A, )NA=(CN
A)®D A=(CNA;) D A, < A Since B is CK-A-jective, we have that C @ A, <® M, then C <®
A @ B;. Therefore B is CK-A;-jective.

For 3. Follows from (1) and (2).

Lemma 15: (/10], Lemma 1 ) Let A and B be submodules of a module M, with A N B = 0. Then A is
a complement of B in M if and only if A is a closed submodule of M, and A & B is essential in M.

Proposition 16: Let M = A @ B, B is CK-A-jective. If A is an extending module. then every closed
submodule C of M, with C N\ B = 0 and C N A <° A is a direct summand of M.

Proof. Since A is an extending module, we have (C @ B)NA<*A; <® A, and hence ((C @ B) N
A)OB< A ®&B.SinceChHB=((CHB)NA) DB, we have that C @ B <* A; & B. By
Lemma 15, C is a complement of B in A; € B. It follows that C N A=C N A4, and hence C N A,
< A1, Proposition 14, tell us that B is CK-A;-jective. Therefore C <® A; @ B <® M.

3 GENERALIZED EXTENDING MODULES

( In[6] ) A module M is said to have (C," ) if, for every submodule X of M, there exists a direct
summand submodule K of M, which is a complement of X in M.

Proposition 17: ([6], Proposition 3.11.) Let M be an R-module, which has (C;" ). Then the second
singular submodule Z (M) of M splits.

Lemma 18: ( [6], Lemma 3.14. ) Let A <B <M. If C is a complement of A in M, then C N\ B is a
complement of A in B.

Theorem 19: ( [6], Theorem 3.2.) If M = M; é M, where M; and M, are both have the condition
(Cy"), then M has (C1 ).

Remark 20 :
(1) Let R be a commutative integral domain, and Let M be an R- module, which is not torsion. If

M has (C;), then its torsion submodule t(M) is injective (given in [5], Corollary 2.)

(2) Let R be a commutative integral domain , and let M be an R- module, which is not torsion. If
M has (C;" ), then its torsion submodule t(M) is not necessary to be injective.

Example 21: Let M = Z,@ Z, it is clear that M is not torsion, and by Theorem 19, we have M has
(C1"). But Z is not injective.

Lemma 22: IfM =M, @ M,, then M; (i = 1,2 ) has(C:" ) ifand only if for every submodule L of
M, with L N M= 0 (j # I ), then there exists a submodule H of M, such that H + M; is a direct
summand in M and is a complement of L in M.

Proof. Suppose first that My has (C;" ). Let L < M, with L N M, = 0, then there exists H <® My,
such that H is a complement of (L@ M,) N M; inM;. As((L G M) N M;) @ H<® My, we
havethat ((L® M,)N M) P HB M, <* M.SinceLA M, =((LEM;)NM;) D M,, it
follows that L @ M, @ H <® M. Thus, by Lemma 15, H @ M, is a complement of L in M.
Conversely, suppose that for every submodule L of M, with L N M, = 0, there exists a submodule H
of M, such that H + M, <® M, and that is a complement of L in M. let C < M4, then there exists a
submodule H of M, such that H + M, <® M, and that is a complement of C in M. By Lemma 18, we
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have that M; N (H + M) is a complement of C in M. Itis clear that M; N (H + M,) <® M.

Corollary 23: If M= Z,(M) @ F, then both have (C;") if and only if every submodule C of M, with
zero intersection with Z;(M) (or with F) has a complement summand containing F ( or Z(M)).

Proposition 24: If M = Z,(M) @ F, then M has the condition (C;" ) if and only if Z,(M) and F
both have (C;").

Proof. Suppose first that Z,(M) and F both have (C;" ). By Theorem 19, we have M has (C;").
Conversely, write M = Z,(M) @ F. Let N be nonsingular submodule of M, then N N Z(M) = 0.
Since Z(M) <® Z,(M), we have that N N Z,(M) = 0. Since M has (C;" ), we have that there exists K
<® M, which is a complement of N in M. Write M = K @ K/, since K @ N <* M, we have that
Z,(K) @ Z»(N) < Z,(M), and that Z,(K) <® Z,(M), and consequently Z,(K) = Z,(M). Hence Z,(M)
<® K. By Lemma 22, we have F has (C;). Again, let L be a submodule of M, with L N F = 0. Since
M has (C; ), we have that there exists H <® M, such that H is a complement of (L @ F) N Z,(M)
iNM.As((LF)NZ,(M)) D H<*M,wehavethat[ (LB F)N Z,(M)] D [Z(M) N H] <°
Z,(M), then[ (L F)NZ,(M)] D F D Z,(H) <*M. Since LA F=[(LBF)NZ;(M)]16 F,
we have that L @ F @ Z,(H) <* M. It is clear that F @ Z,(H) is a direct summand submodule of M,
and hence F @ Z,(H) is a complement of L in M. By Corollary 23, we have Z,(M) has (C;" ).

Corollary 25: Let M be an R-module has (C;" ), and the second singular submodule Z 1) # M.
Then for every submodule N of M, with N N Z(M) = 0, there exists a submodule H' of F, such that
H'D Z,(M) is a direct summand of M, and is a complement of N in M.

Proof. Write M = Z,(M) @ F. Let N be a submodule of M, such that N N Z(M) = 0, then by
Proposition 24, and Lemma 22, there exists H + Z,(M) <® M, and it is a complement of N in M.
Hence H + Z,(M) = Z,(M) @ (F N (H + Z,(M) ) ). Choose H'=F N ( H + Z,(M) ).

Corollary 26: ([11],Theorem 2.7.) A module M satisfies (C;" ) if and only if M = Z,(M) @ K, for
some (nonsingular) submodule K of M, and Z,(M) and K both satisfy (C; ).
Proof. Straightforward from Theorem 19, and Proposition 24.

Corollary 27: Let R be a commutative integral domain, and Let M be an R- module which is not
torsion. If M has (C; " ), then the following are holds:

1. t(M) is contained in a complement of every torsion free submodule of M.

2. M=t(M) @ F, where t(M) and F both have (C;" ).

Definition 28: An R-module M has the condition (*) "if every submodule of M has a unique
complementin M "

Proposition 29: Let M be a right R-module has (*), then the following are equivalent :

1. M has (Cy ).

2. M is an extending module.

3. M is quasi - continuous.

Proof. (1) = (2): Let A be a closed submodule of M. By (C;" ), there exists a decomposition M = B
@ C, where B is a complement of A in M. Since A < M, then A is a complement of B in M. By (*),
we have that A = C. Therefore M is an extending module.

(2) = (3): Let A and B are both direct summand submodules of M, and A N B = 0. Then by (C,),
there exists a decomposition M = M, @ M,, where A @ B <* M;. Then M, is a complement of A &
B. Since M has the condition (*), we have that A @ B = M.

(3) = (1): Itis clear from the fact that every extending module has (C;" ).
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Proposition 30: Let M = A & B, where B is A-jective. If A = A; € Az, where A; is an extending
module, then for every closed submodule C of M, with C N B = 0, and A, <C B, is a summand of
M.

Proof. Since A, is an extending module, we have that (C @ B ) N A; <* A;'<® A, and hence [ (C
OB)NAI DA, PB< A’ DA, DB.SinceCHAB=[(CHB)NA;]D A, ® B, we have
that C @ B <* A’ @ A, @ B, and that C is a complement of B in A;’ @ A, @ B, and hence B is
A;' @ A; -jective. Therefore C<® A, D A, B <O M.

4 C-INJECTIVE AND CI-INJECTIVE

Definition 31: An R-module M is said to be C-N-injective if, for every closed submodule N' of N,
every monomorphism o from N'to N, and every homomorphism f from N'into M, then there exists a
homomorphism y from N into M, such that yo=f .

Definition 32: An R-module M is said to be CI-N-injective, if for every closed submodule N' of N,
and any homomorphism f from N'into M, Can be extended to a homomorphism f from N'into M.

Lemma 33: (In [9]) Let M be an R-module. Then M is continuous if and only if for every closed
submodule C of M, and every monomorphism o _from C into M, then o is split.

Remark 34: If M and N are right R-modules, then we have the following implications :

M is N-injective = M is C-N-injective = M is CI- N-injective.
Generally neither of the converse implications is true, and we shows that by the following
examples.

Example 35: Let R be a von neumman regular ring. Suppose that a right R-module R is extending,
then by ( [7], exercises 6G, (38)), we have R as a right R-module is continuous. Let M be a right R-
module which is not injective, and C be a closed submodule of Rg . Let o be a monomorphism from C
to Rg, and f be a homomorphism from C to M. Then, by Lemma 33, we have R = a(C) @ K, for
some Kr < Rg. Let  be a projection homomorphism from o(C) @ K to a(C). Then for every ¢ € C,
we have fa "ma(C) = o(c). Therefore M is C-R-injective.

Example 36: It is clear that Z is Cl-Z-injective. Let a. be a monomorphism from Z 10 Z, where
a(l)=n, n=2,3,4,.... . suppose that there exists a homomorphism y from Z 10 Z, such that wo=Iz if
and only if nZis a direct summand of Z. Then there is not exists a homomorphism y from Z 10 Z,
such that wa= lz Then Zis not C- Z-injective.

Proposition 37: Let M be an R-module. Then M is continuous if and only if N is C-M-injective for
every closed submodule N of M.

Proof. Suppose first that N is C-M-injective for every closed submodule N of M. Let L <® M, and
let a be a monomorphism from L into M, and I denote the identity mapping on L. By assumption,
there exists a homomorphism y from M to L, such that yo = I, then M = a(L) @ ker y, by Lemma
33, we have M is continuous.

Conversely, suppose that M is continuous. Let M, and M, be closed submodules of M, and let a be a
monomorphism from M, into M, and f be a homomorphism from M; to M,. By Lemma 33, we have
M = a(M;) @ W, for some submodule W of M. Let © be a projection homomorphism from a(M,) D
W to a(M;,). Then for every m; € M4, we have fo 'ma(m;) = f(m,). Therefore N is-C-M-injective
for every closed submodule N of M.
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Proposition 38: Let M be CI-N-injective and N' be a closed submodule of N, then we have the
following :

1. M is CI-N"-injective .

2. M is CI-N/N™-injective .

Proof. For 1. Let N” <° N’, and let f be a homomorphism from N” into M, then N”" < N. Since M be
CI-N-injective, we have that there exists a homomorphism f from N into M, such that f |y = f.
Therefore M is CI-N'-injective.

For 2. Let X be a submodule of N, which contained N’, X/N’ < N/N’, and let ¢ be a homomorphism
from X/N' into M. Let n denote the natural homomorphism of N onto N/N’, and ' = 7t|x. Claim that
X < N. Suppose that X <° L, for some submodule L of N, since N’ < N, we have that X/N' <® L/N’ <
N/N’, and that X < N. Since M is CI-N-injective, we have that there exists a homomorphism 6 from
N to M, such that 0|x = ¢x’. Since O( N’ ) = ¢n'( N’ ) = ¢( 0 ) = 0, we have that ker n < ker 6, and
consequently there exists a homomorphism y from N/N' into M, such that yr = 0. For every x + N’
EX/N,y(x+N')=wyr'(x)=0(x)=0¢x'(X) =d(x +N"). Thus y extends ¢.

(In [7]) An abelian group D is divisible if, given anyy €D and 0 # n € Z , there exists X €D, such
that nx =y.

Lemma 39: ([7],chapter IV, Lemma 3.9.) An abelian group D is divisible if and only if D is
injective.

Lemma 40: Let M be an abelian group, then the following are equivalent :

1. M is an injective.

2. M is C-injective.

3. M is divisiblle.

Proof. (1) = (2): It is clear.

(2) > (3): Let m € M and 0 # n € Z. Let a be a monomorphism from Z into Z, such that a(1) = n, and
let ¢ be a homomorphism from Z into M, such that ¢(1) = m . Since M is C-injective, we have that
there exists a homomorphism y from Z into M, such that ay = ¢. Put y(1) = m’, then m = ¢(1) =
ya(l) =y(n) =ny(1) = nm’. Hence M is divisiblle.

(3) = (1): Clear from Lemma 39.

Proposition 41: Let M and N be an R-modules. If M is C-N-injective, and L is a direct summand
submodule of M and K is a closed submodule of N, then we have the following :

1. L is C-N-injective;

2. M is C-K-injective;

3. L is C-K-injective.

Proof. For 1. Let N’ be a closed submodule of N, let a be a monomorphism from N’ into N, and f be
a homomorphism from N’ into L. Consider 1. be the inclusion monomorphism from L into M. Since
M is C-N-injective, we have that there exists a homomorphism y from N to M, such that yo = 1. f.
Let © be a projection homomorphism from M into L. Define my from N to L, then for every n’ € N,
we have that mya( n') = f(n') =f(n"). Therefore L is C-N-injective.

For 2. Let K’ be a closed submodule of K, let a be a monomorphism from K’ into K, and f be a
homomorphism from K’ into M. Consider 1k be inclusion monomorphism from K into N. Since K’ <°
N, and M is C-N-injective, we have that there exists a homomorphism y from N into M, such that y
wa = f. Then for every k' € K, we have y a( k') = ya( k') = f{ k' ).Therefore M is C-K-injective.
For 3. Follows from (1) and (2).

Corollary 42: Let M and N be right R-modules. Then M is C-N-injective if and only if M is C-X-
injective, for every closed submodule X of N.
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Corollary 43: A direct summand of quasi-C-injective is a quasi-C-injective.

Recall that the ring R is said to be principal right ideal ring (for short right P1-ring) if every right
ideal of R is principal. This concept ( given in [4] and [1] as R is pri-ring ) and generalizing these
concept to modules, an R-module M is called epi-retractable if every submodule of M is a
homomorphic image of M .

In [7], a ring R is said to be right hereditary if every right ideal of R is projective as a right R-
module, that is equivalent to submodules of projective right R-modules are projective.

In [3], amodule M is called an hereditary module if every submodule of M is projective.

Proposition 44: [[4],Proposition 2.5.] Let R be a right hereditary ring, then R is PI-ring if and
only if every free right R-module is epi-retractable.

Lemma 45: Let R be a ring, such that the right ideal x “is a direct summand of R, for every x €R.
Then every right ideal of R is projective.

Proof. Let x € R, by assumption, write R = x°@ D. Since R is projective, then D is projective, and
consequently R/x°. Then xR is projective.

Corollary 46: Let R be a ring, such that the right ideal x ?is a direct summand of R, for every x eR.
Then R is right hereditary ring.

Corollary 47: Let R be a ring, such that the right ideal x ’is a direct summand of R, for every x €R.
Then R is PI-ring if and only if every free right R-module is epi-retractable.

Remark 48: In [1], Proposition 2.3., tell us if R is right hereditary PI-ring .Then every free R-
module is continuous. But this is not true, for example Zas a Z-module, and we will correct them in
the following Proposition.

Proposition 49: Let R be a right Pl-ring with the right ideal x %is a direct summand of R, for every
x €R. Then every submodule of R”) (for some index set 1 ) is isomorphic to a summand.

Proof. Let X ba a submodule of R". Since R” is free, then by Proposition 44, we have R" is epi-
retractable, and consequently there exists an epimorphism o from R"” to X. Let Ix be the identity
mapping on X, by Corollary 46, we have that X is projective, and consequently there exists a
monomorphism B from X to R®, such that ap = Ix. Then RO = B(X) @ ker a. Hence X is isomorphic
to a summand of RY.

Remark 50:
1. If R be a ring, which satisfies all conditions in Proposition 49, then every free right R-module

need not to be continuous for example Zz.

2. If R be a ring which satisfies all conditions in Proposition 49. Then every free right R-
module, which has the condition (C) is semisimple R-module.

Proposition 51: ( [3], Proposition 9 ) Let R be any ring,and M an hereditary continuous right R-
module. Then M is a direct sum of Neotherian uniform submodules, each with a division
endomorphism ring .

Remark 52: Proposition 2.4 in [1], tell us if R is a right hereditary PI-ring, then every projective
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R-module is a direct sum of Neotherian uniform submodules each with a division endomorphism
ring. But this is not true, for example Zas a Z-module and we will reformulate them in the following
Proposition.

Proposition 53: Let R be a right Pl-ring with the right ideal x “is a direct summand of R, for every
X €R and let M be a projective right R-module whose closed submodules are C-M-injective. Then M
is a direct sum of Neotherian uniform submodules each with a division endomorphism ring.

Proof. Straightforward from Proposition 37, and Proposition 51.
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